Fibonacci Heaps

Theorem. [Fredman-Tarjan 1986] Starting from an empty Fibonacci heap, any sequence of \(m \) INSERT, EXTRACT-MIN, and DECREASE-KEY operations involving \(n \) INSERT operations takes \(O(m + n \log n) \) time.

This statement is a bit weaker than the actual theorem.

Priority queues performance cost summary

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
<th>binomial heap</th>
<th>Fibonacci heap †</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>IS-EMPTY</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>INSERT</td>
<td>(O(1))</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>(O(n))</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>(O(1))</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>DELETE</td>
<td>(O(1))</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
<td>(O(\log n))</td>
</tr>
<tr>
<td>MELD</td>
<td>(O(1))</td>
<td>(O(n))</td>
<td>(O(\log n))</td>
<td>(O(1))</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>(O(n))</td>
<td>(O(1))</td>
<td>(O(\log n))</td>
<td>(O(1))</td>
</tr>
</tbody>
</table>

† amortized

Ahead. \(O(1) \) INSERT and DECREASE-KEY, \(O(\log n) \) EXTRACT-MIN.

Fibonacci Heaps

Theorem. [Fredman-Tarjan 1986] Starting from an empty Fibonacci heap, any sequence of \(m \) INSERT, EXTRACT-MIN, and DECREASE-KEY operations involving \(n \) INSERT operations takes \(O(m + n \log n) \) time.

History.

- Ingenious data structure and application of amortized analysis.
- Original motivation: improve Dijkstra’s shortest path algorithm from \(O(m \log n) \) to \(O(m + n \log n) \).
- Also improved best-known bounds for all-pairs shortest paths, assignment problem, minimum spanning trees.
Fibonacci Heaps

- **structure**
 - insert
 - extract the minimum
 - decrease key
 - bounding the rank
 - meld and delete

Fibonacci Heaps

Basic idea.
- Similar to binomial heaps, but less rigid structure.
- Binomial heap: eagerly consolidate trees after each INSERT; implement DECREASE-KEY by repeatedly exchanging node with its parent.

- Fibonacci heap: lazily defer consolidation until next EXTRACT-MIN; implement DECREASE-KEY by cutting off node and splicing into root list.

Remark. Height of Fibonacci heap is $\Theta(n)$ in worst case, but it doesn't use sink or swim operations.

Fibonacci heap: structure

- Set of heap-ordered trees.
- Each child no smaller than its parent.

Fibonacci heap: structure

- Set of heap-ordered trees.
- Set of marked nodes.

used to keep trees bushy (stay tuned)
Fibonacci heap: structure

Heap representation.
- Store a pointer to the minimum node.
- Maintain tree roots in a circular, doubly-linked list.

Fibonacci heap: representation

Node representation. Each node stores:
- A pointer to its parent.
- A pointer to any of its children.
- A pointer to its left and right siblings.
- Its rank = number of children.
- Whether it is marked.

Operations we can do in constant time:
- Find the minimum element.
- Merge two root lists together.
- Determine rank of a root node.
- Add or remove a node from the root list.
- Remove a subtree and merge into root list.
- Link the root of a one tree to root of another tree.

Fibonacci heap: notation

<table>
<thead>
<tr>
<th>notation</th>
<th>meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>number of nodes</td>
</tr>
<tr>
<td>$\text{rank}(x)$</td>
<td>number of children of node x</td>
</tr>
<tr>
<td>$\text{rank}(H)$</td>
<td>max rank of any node in heap H</td>
</tr>
<tr>
<td>$\text{trees}(H)$</td>
<td>number of trees in heap H</td>
</tr>
<tr>
<td>$\text{marks}(H)$</td>
<td>number of marked nodes in heap H</td>
</tr>
</tbody>
</table>

$n = 14$ \hspace{1cm} $\text{rank}(H) = 3$ \hspace{1cm} $\text{trees}(H) = 5$ \hspace{1cm} $\text{marks}(H) = 3$
Fibonacci heap: potential function

Potential function.

\[\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H) \]

\[\Phi(H) = 5 + 2 \cdot 3 = 11 \]

\[\text{trees}(H) = 5 \quad \text{marks}(H) = 3 \]

Fibonacci heap: insert

- Create a new singleton tree.
- Add to root list; update min pointer (if necessary).

Fibonacci heap: insert

- Create a new singleton tree.
- Add to root list; update min pointer (if necessary).
Fibonacci heap: insert analysis

Actual cost. \(c_i = O(1). \)

Change in potential. \(\Delta \Phi = \Phi(H) - \Phi(H_{i-1}) = +1. \)

Amortized cost. \(\hat{c}_i = c_i + \Delta \Phi = O(1). \)

\[
\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)
\]

Linking operation

Useful primitive. Combine two trees \(T_1 \) and \(T_2 \) of rank \(k \).
- Make larger root be a child of smaller root.
- Resulting tree \(T' \) has rank \(k + 1 \).

Fibonacci heap: extract the minimum

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.
Fibonacci heap: extract the minimum

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Fibonacci heap: extract the minimum

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.
Fibonacci heap: extract the minimum

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Fibonacci heap: extract the minimum

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Fibonacci heap: extract the minimum

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Fibonacci heap: extract the minimum

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.
Fibonacci heap: extract the minimum

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

link 41 to 18

Fibonacci heap: extract the minimum

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.
Fibonacci heap: extract the minimum

- Delete min; meld its children into root list; update min.
- Consolidate trees so that no two roots have same rank.

Fibonacci heap: extract the minimum analysis

Actual cost. $c_i = O(\text{rank}(H)) + O(\text{trees}(H))$.
- $O(\text{rank}(H))$ to meld min’s children into root list.
- $O(\text{rank}(H)) + O(\text{trees}(H))$ to update min.
- $O(\text{rank}(H)) + O(\text{trees}(H))$ to consolidate trees.

Change in potential. $\Delta \Phi \leq \text{rank}(H') + 1 - \text{trees}(H)$.
- No new nodes become marked.
- $\text{trees}(H') \leq \text{rank}(H') + 1$.

Amortized cost. $O(\log n)$.
- $\hat{c}_i = c_i + \Delta \Phi = O(\text{rank}(H)) + O(\text{rank}(H'))$.
- The rank of a Fibonacci heap with n elements is $O(\log n)$.

$\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)$
Fibonacci heap vs. binomial heaps

Observation. If only **INSERT** and **EXTRACT-MIN** operations, then all trees are binomial trees.

![Diagram of binomial trees]

Binomial heap property. This implies \(\text{rank}(H) \leq \log_2 n \).

Fibonacci heap property. Our **DECREASE-KEY** implementation will not preserve this property, but we will implement it in such a way that \(\text{rank}(H) \leq \log_\phi n \).

Fibonacci heap: decrease key

Intuition for decreasing the key of node \(x \).

- If heap-order is not violated, decrease the key of \(x \).
- Otherwise, cut tree rooted at \(x \) and meld into root list.

Fibonacci heap: decrease key

Intuition for decreasing the key of node \(x \).

- If heap-order is not violated, decrease the key of \(x \).
- Otherwise, cut tree rooted at \(x \) and meld into root list.

Fibonacci heap: decrease key

Decrease-key of \(x \) **from 30 to 7**

![Diagram of decrease-key operation from 30 to 7]

Decrease-key of \(x \) **from 23 to 5**

![Diagram of decrease-key operation from 23 to 5]
Fibonacci heap: decrease key

Intuition for decreasing the key of node x.

- If heap-order is not violated, decrease the key of x.
- Otherwise, cut tree rooted at x and meld into root list.

decrease-key of 22 to 4
decrease-key of 48 to 3
decrease-key of 31 to 2
decrease-key of 17 to 1

Fibonacci heap: decrease key

Intuition for decreasing the key of node x.

- If heap-order is not violated, decrease the key of x.
- Otherwise, cut tree rooted at x and meld into root list.
- Problem: number of nodes not exponential in rank.

rank = 4, nodes = 5

Fibonacci heap: decrease key

Intuition for decreasing the key of node x.

- If heap-order is not violated, decrease the key of x.
- Otherwise, cut tree rooted at x and meld into root list.
- Solution: as soon as a node has its second child cut, cut it off also and meld into root list (and unmark it).

Fibonacci heap: decrease key

Case 1. [heap order not violated]

- Decrease key of x.
- Change heap min pointer (if necessary).

decrease-key of x from 46 to 29
Fibonacci heap: decrease key

Case 1. [heap order not violated]
- Decrease key of \(x \).
- Change heap \(\text{min} \) pointer (if necessary).

Case 2a. [heap order violated]
- Decrease key of \(x \).
- Cut tree rooted at \(x \), meld into root list, and unmark.
- If parent \(p \) of \(x \) is unmarked (hasn't yet lost a child), mark it; otherwise, cut \(p \), meld into root list, and unmark (and do so recursively for all ancestors that lose a second child).

Fibonacci heap: decrease key

Case 2a. [heap order violated]
- Decrease key of \(x \).
- Cut tree rooted at \(x \), meld into root list, and unmark.
- If parent \(p \) of \(x \) is unmarked (hasn't yet lost a child), mark it; otherwise, cut \(p \), meld into root list, and unmark (and do so recursively for all ancestors that lose a second child).
Fibonacci heap: decrease key

Case 2a. [heap order violated]
- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

decrease-key of x from 29 to 15

![Diagram of decrease-key from 29 to 15](image)

Fibonacci heap: decrease key

Case 2b. [heap order violated]
- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn't yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

decrease-key of x from 35 to 5

![Diagram of decrease-key from 35 to 5](image)
Case 2b. [heap order violated]
- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
 - If parent p of x is unmarked (hasn't yet lost a child), mark it;
 - Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

```
Fibonacci heap: decrease key
define decrease-key of x from 35 to 5
```
Case 2b. [heap order violated]
- Decrease key of x.
- Cut tree rooted at x, meld into root list, and unmark.
- If parent p of x is unmarked (hasn’t yet lost a child), mark it;
 Otherwise, cut p, meld into root list, and unmark
 (and do so recursively for all ancestors that lose a second child).

decrease-key of x from 35 to 5

Actual cost. $c_i = O(c)$, where c is the number of cuts.
- $O(1)$ time for changing the key.
- $O(1)$ time for each of c cuts, plus melding into root list.

Change in potential. $\Delta \Phi = O(1) - c$.
- $trees'(H) = trees(H) + c$.
- $marks'(H) \leq marks(H) - c + 2$.
- $\Delta \Phi \leq c + 2 \cdot (-c + 2) = 4 - c$.

Amortized cost. $\hat{c}_i = c_i + \Delta \Phi = O(1)$.

Analysis summary
Insert. $O(1)$.
Delete-min. $O(rank(H))$ amortized.
Decrease-key. $O(1)$ amortized.

Fibonacci lemma. Let H be a Fibonacci heap with n elements.
Then, $rank(H) = O(\log n)$.

number of nodes is exponential in rank
Bounding the rank

Lemma 1. Fix a point in time. Let \(x \) be a node of rank \(k \), and let \(y_1, \ldots, y_k \) denote its current children in the order in which they were linked to \(x \). Then:

\[
\text{rank}(y_i) \geq \begin{cases}
0 & \text{if } i = 1 \\
i - 2 & \text{if } i \geq 2
\end{cases}
\]

Pf.
- When \(y_i \) was linked into \(x \), \(x \) had at least \(i - 1 \) children \(y_1, \ldots, y_{i-1} \).
- Since only trees of equal rank are linked, at that time \(\text{rank}(y_i) = \text{rank}(x) \geq i - 1 \).
- Since then, \(y_i \) has lost at most one child (or \(y_i \) would have been cut).
- Thus, right now \(\text{rank}(y_i) \geq i - 2 \). □

Bounding the rank

Lemma 1. Fix a point in time. Let \(x \) be a node of rank \(k \), and let \(y_1, \ldots, y_k \) denote its current children in the order in which they were linked to \(x \). Then:

\[
\text{rank}(y_i) \geq \begin{cases}
0 & \text{if } i = 1 \\
i - 2 & \text{if } i \geq 2
\end{cases}
\]

Def. Let \(T_k \) be smallest possible tree of rank \(k \) satisfying property.

Bounding the rank

Lemma 2. Let \(s_k \) be minimum number of elements in any Fibonacci heap of rank \(k \). Then \(s_k \geq F_{k+2} \), where \(F_k \) is the \(k \)th Fibonacci number.

Pf. [by strong induction on \(k \)]
- Base cases: \(s_0 = 1 \) and \(s_1 = 2 \).
- Inductive hypothesis: assume \(s_i \geq F_{i+2} \) for \(i = 0, \ldots, k - 1 \).
- As in Lemma 1, let let \(y_1, \ldots, y_k \) denote its current children in the order in which they were linked to \(x \).

\[
s_k \geq 1 + 1 + (s_0 + s_1 + \ldots + s_{k-2}) \geq (1 + F_1) + F_2 + F_3 + \ldots + F_k \geq F_{k+2}.
\]

(Lemma 1)
(inductive hypothesis)
(Fibonacci fact 1)
Bounding the rank

Fibonacci lemma. Let \(H \) be a Fibonacci heap with \(n \) elements. Then, \(\text{rank}(H) \leq \log_\phi n \), where \(\phi \) is the golden ratio = \((1 + \sqrt{5}) / 2 \approx 1.618\).

Pf.
- Let \(H \) is a Fibonacci heap with \(n \) elements and rank \(k \).
- Then \(n \geq F_{k+2} \geq \phi^k \).
- Taking logs, we obtain \(\text{rank}(H) = k \leq \log_\phi n \). "}

Fibonacci fact 1

Def. The Fibonacci sequence is: \(0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots \)

\[
F_k = \begin{cases}
0 & \text{if } k = 0 \\
1 & \text{if } k = 1 \\
F_{k-1} + F_{k-2} & \text{if } k \geq 2
\end{cases}
\]

Fibonacci fact 1. For all integers \(k \geq 0 \), \(F_{k+2} \geq \phi^k \), where \(\phi = \frac{(1 + \sqrt{5})}{2} \approx 1.618 \).

Pf. [by induction on \(k \)]
- Base case: \(F_2 = 1 + F_0 = 2 \).
- Inductive hypothesis: assume \(F_{k+1} = 1 + F_0 + F_1 + \ldots + F_{k-1} \).

\[
\begin{align*}
F_{k+2} &= F_k + F_{k+1} \quad \text{(definition)} \\
&= F_k + (1 + F_0 + F_1 + \ldots + F_{k-1}) \quad \text{(inductive hypothesis)} \\
&= 1 + F_0 + F_1 + \ldots + F_{k-1} + F_k. \quad \text{(algebra)}
\end{align*}
\]

Fibonacci fact 2

Def. The Fibonacci sequence is: \(0, 1, 1, 2, 3, 5, 8, 13, 21, \ldots \)

\[
F_k = \begin{cases}
0 & \text{if } k = 0 \\
1 & \text{if } k = 1 \\
F_{k-1} + F_{k-2} & \text{if } k \geq 2
\end{cases}
\]

Fibonacci fact 2. \(F_{k+2} \geq \phi^k \), where \(\phi = \frac{(1 + \sqrt{5})}{2} \) \approx 1.618.

Pf. [by induction on \(k \)]
- Base cases: \(F_2 = 1 + 1 \geq 1 \), \(F_3 = 2 \geq \phi \).
- Inductive hypotheses: assume \(F_k \geq \phi^k \) and \(F_{k+1} \geq \phi^{k+1} \).

\[
\begin{align*}
F_{k+2} &= F_k + F_{k+1} \quad \text{(definition)} \\
&\geq \phi^k + \phi^{k+1} \quad \text{(inductive hypothesis)} \\
&= \phi^{k-1} + \phi^k + \phi^{k+1} \quad \text{(inductive hypothesis)} \\
&= \phi^k + \phi^{k+1} \quad \text{(algebra)} \\
&= \phi^{k+1}. \quad \text{\(\blacksquare \) (algebra)}
\end{align*}
\]

Fibonacci numbers and nature

Fibonacci numbers arise both in nature and algorithms.
Fibonacci heap: meld

Meld. Combine two Fibonacci heaps (destroying old heaps).

Recall. Root lists are circular, doubly-linked lists.

Actual cost. \(c_i = O(1) \).

Change in potential. \(\Delta \Phi = 0 \).

Amortized cost. \(\hat{c}_i = c_i + \Delta \Phi = O(1) \).

\[\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H) \]
Fibonacci heap: delete

Delete. Given a handle to an element x, delete it from heap H.
- DECREASE-KEY(H, x, ∞).
- EXTRACT-MIN(H).

Amortized cost. $c_i = O(rank(H))$.
- $O(1)$ amortized for DECREASE-KEY.
- $O(rank(H))$ amortized for EXTRACT-MIN.

$$\Phi(H) = \text{trees}(H) + 2 \cdot \text{marks}(H)$$

Priority queues performance cost summary

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
<th>binomial heap</th>
<th>Fibonacci heap \dagger</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>IS-EMPTY</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>INSERT</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>$O(n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>DELETE</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
</tr>
<tr>
<td>MELD</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>$O(n)$</td>
<td>$O(1)$</td>
<td>$O(\log n)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

\dagger amortized

Accomplished. $O(1)$ INSERT and DECREASE-KEY, $O(\log n)$ EXTRACT-MIN.

Heaps of heaps

- b-heaps.
- Fat heaps.
- 2-3 heaps.
- Leaf heaps.
- Thin heaps.
- Skew heaps.
- Splay heaps.
- Weak heaps.
- Leftist heaps.
- Quake heaps.
- Pairing heaps.
- Violation heaps.
- Run-relaxed heaps.
- Rank-pairing heaps.
- Skew-pairing heaps.
- Rank-relaxed heaps.
- Lazy Fibonacci heaps.
Brodal queues

Q. Can we achieve same running time as for Fibonacci heap but with worst-case bounds per operation (instead of amortized)?

Theory. [Brodal 1996] Yes.

Practice. Ever implemented? Constants are high (and requires RAM model).

Strict Fibonacci heaps

Q. Can we achieve same running time as for Fibonacci heap but with worst-case bounds per operation (instead of amortized) in pointer model?

Practice.

Fibonacci heaps: practice

Q. Are Fibonacci heaps useful in practice?

A. They are part of LEDA and Boost C++ libraries.

(but other heaps seem to perform better in practice)

Pairing heaps

Pairing heap. A self-adjusting heap-ordered general tree.

Theory. Same amortized running times as Fibonacci heaps for all operations except **DECREASE-KEY**.

- $O(\log n)$ amortized. [Fredman et al. 1986]
- $\Omega(\log \log n)$ lower bound on amortized cost. [Fredman 1999]
- $2\sqrt{\Theta(\log \log n)}$ amortized. [Pettie 2005]
Pairing heaps

Practice. As fast as (or faster than) the binary heap on some problems. Included in GNU C++ library and LEDA.

Priority queues performance cost summary

<table>
<thead>
<tr>
<th>operation</th>
<th>linked list</th>
<th>binary heap</th>
<th>binomial heap</th>
<th>pairing heap</th>
<th>Fibonacci heap</th>
<th>Brodal queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAKE-HEAP</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>IS-EMPTY</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>INSERT</td>
<td>O(1)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>EXTRACT-MIN</td>
<td>O(n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>DECREASE-KEY</td>
<td>O(1)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(1)</td>
</tr>
<tr>
<td>DELETE</td>
<td>O(1)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
<td>O(log n)</td>
</tr>
<tr>
<td>MELD</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
<tr>
<td>FIND-MIN</td>
<td>O(n)</td>
<td>O(1)</td>
<td>O(log n)</td>
<td>O(1)</td>
<td>O(1)</td>
<td>O(1)</td>
</tr>
</tbody>
</table>

† amortized

Priority queues with integer priorities

Assumption. Keys are integers between 0 and C.

Theorem. [Thorup 2004] There exists a priority queue that supports INSERT, FIND-MIN, and DECREASE-KEY in constant time and EXTRACT-MIN and DELETE-KEY in either O(log log n) or O(log log C) time.

Priority queues with integer priorities

Assumption. Keys are integers between 0 and C.

Theorem. [Thorup 2004] There exists a priority queue that supports INSERT, FIND-MIN, and DECREASE-KEY in constant time and EXTRACT-MIN and DELETE-KEY in either O(log log n) or O(log log C) time.

Corollary 1. Can implement Dijkstra's algorithm in either O(m log log n) or O(m log log C) time.

Corollary 2. Can sort n integers in O(n log log n) time.

Computational model. Word RAM.
Soft heaps

Goal. Break information-theoretic lower bound by allowing priority queue to **corrupt** 10% of the keys (by increasing them).

Theorem. [Chazelle 2000] Starting from an empty soft heap, any sequence of n **INSERT**, **MIN**, **EXTRACT-MIN**, **MELD**, and **DELETE** operations takes $O(n)$ time and at most 10% of its elements are corrupted at any given time.

The Soft Heap: An Approximate Priority Queue with Optimal Error Rate

BERNARD CHAZELLE
Princeton University, Princeton, New Jersey, and NEC Research Institute

Abstract. A simple variant of a priority queue, called a soft heap, is introduced. The data structure supports the usual operations: insert, delete, find, and delete. Its novelty is to host the logarithmic factor of the complexity of a heap in a comparison-based model. To break this information-theoretic barrier, the amortized time of the data structure is increased by allowing keys to increase in a controlled manner. When the value of certain keys increases and another sequence of operations is accepted, a soft heap with error rate $1/2$ or $1/4$ incurs an extra $O(n)$ cost. The amortized complexity of each operation is constant, except for **INSERT**, which takes $O(\log 1/e)$ time. The soft heap is optimal for any value of e. In a comparison-based model, the data structure is purely pointer-based. No arrays are used and no numeric assumptions are made on the keys. The main idea behind the soft heap is to move items across the data structure not individually, as is customary, but in groups, in a data-structuring equivalent of “car pooling.” Keys must be raised as a result in order to preserve the heap ordering of the data structure. The soft heap can be used to compute exact or approximate medians and percentiles optimally. It is also useful for approximate sorting and for computing minimum spanning trees of general graphs.

Q. Brilliant. But how could it possibly be useful?

Ex. Linear-time deterministic selection. To find kth smallest element:
- Insert the n elements into **soft heap**.
- Extract the minimum element $n / 2$ times.
- The largest element deleted $\geq 4n / 10$ elements and $\leq 6n / 10$ elements.
- Can remove $\geq 5n / 10$ of elements and recur.
- $T(n) \leq T(3n / 5) + O(n) \Rightarrow T(n) = O(n)$. •
Theorem. [Chazelle 2000] There exists an $O(m \alpha(m, n))$ time deterministic algorithm to compute an MST in a graph with n nodes and m edges.

Algorithm. Borůvka + nongreedy + divide-and-conquer + soft heap + ...