i FIBONACCI HEAPS

CHARLES E. LEISERSON
RONALD L. RIVEST

CLIFFORD STEIN

preliminaries
insert
extract the minimum

decrease key

bounding the rank
meld and delete

Lecture slides by Kevin Wayne

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on Apr 15, 2013 6:59 AM

Fibonacci heaps

Theorem. [Fredman-Tarjan 1986] Starting from an empty Fibonacci heap,
any sequence of m INSERT, EXTRACT-MIN, and DECREASE-KEY operations
involving n INSERT operations takes O(m + nlog n) time.

this statement is a bit weaker
than the actual theorem

Fibonacci Heaps and Their Uses in Improved Network
Optimization Algorithms

MICHAEL L. FREDMAN

University of California, San Diego, La Jolla, California
AND

ROBERT ENDRE TARJAN

AT&T Bell Laboratories, Murray Hill, New Jersey

Abstract. In this paper we develop a new data structure for implementing heaps (priority queues). Our
structure, Fibonacci heaps (abbreviated F-heaps), extends the binomial queues proposed by Vuillemin
and studied further by Brown. F-heaps support arbitrary deletion from an r-item heap in O(logn)
amortized time and all other standard heap operations in O(1) amortized time. Using F-heaps we are
able to obtain improved running times for several network optimization algorithms. In particular, we
obtain the following worst-case bounds, where n i the number of vertices and / the number of edges
in the problem graph:

(1) Otnlogn + m) for the singl path problem with ive edge lengths, improved
from O(m10gmme7);

(2) Otn'logn + nm) for the all-pairs shortest path problem, improved from O(v7110gmma1);

(3) O(n'logn + nm) for the assignment problem (weighted bipartite matching), improved from
O(nm 1ogommsayn);

(4) O(mg(m, m)) for the minimum spanning tree problem, improved from O(110g10Bwsayr), Where
B(m, n) = min {i1108"n < m/n). Note that B(m, n) < log*n if m = n.

O these results, the improved bound for minimum spanning trees is the most striking, although all the
resuls give asymptotic improvements for graphs of appropriate densities.

Priority queues performance cost summary

linked list binary heap binomial heap | Fibonacci heap t

MAKE-HEAP o) o(1) o(1) o)
IS-EMPTY o) o) o(l) o(l)
INSERT o(1) O(log n) O(log n) o)
EXTRACT-MIN O(n) O(log n) O(log n) O(log n)
DECREASE-KEY o(1) O(log n) O(log n) o(1)
DELETE o) O(log n) O(log n) O(log n)
MELD o(1) o) O(log n) o(l)
FIND-MIN O(n) o(1) O(log n) o)

t amortized

Ahead. O(1) INSERT and DECREASE-KEY, O(log n) EXTRACT-MIN.

Fibonacci heaps

Theorem. [Fredman-Tarjan 1986] Starting from an empty Fibonacci heap,
any sequence of m INSERT, EXTRACT-MIN, and DECREASE-KEY operations
involving n INSERT operations takes O(m + nlog n) time.

History.
* Ingenious data structure and application of amortized analysis.
* Original motivation: improve Dijkstra's shortest path algorithm
from O(m log n) to O(m + n log n).
« Also improved best-known bounds for all-pairs shortest paths,
assignment problem, minimum spanning trees.

Fibonacci heaps

Basic idea.
v FIBONACCI HEAPS + Similar to binomial heaps, but less rigid structure.
' RivEe] » Binomial heap: eagerly consolidate trees after each INSERT;

g ‘
\ —
\
'“\‘

) I
INTRODUCTION TO

ALGORITHMS

» structure implement DECREASE-KEY by repeatedly exchanging node with its parent.

 Fibonacci heap: lazily defer consolidation until next EXTRACT-MIN;

SECTION 19.1 . . " . 5
implement DECREASE-KEY by cutting off node and splicing into root list.
Remark. Height of Fibonacci heap is ©(n) in worst case, but it doesn't use
sink or swim operations.
Fibonacci heap: structure Fibonacci heap: structure

« Set of heap-ordered trees.
\ » Set of marked nodes.

each child no smaller \

than its parent
used to keep trees bushy

(stay tuned)

heap-ordered tree .
min

)
®
©

3) root 17 @ @

@ @ @ G @ (e ®
heap H @ heap H marked <
© (9 ()

©)

Fibonacci heap: structure

Heap representation.

* Maintain tree roots in a circular, doubly-linked list.

heap H

Store a pointer to the minimum node.

Fibonacci heap: representation

Operations we can do in constant time:

heap H

Find the minimum element.

Merge two root lists together.

Determine rank of a root node.

Add or remove a node from the root list.

Remove a subtree and merge into root list.

Link the root of a one tree to root of another tree.

Fibonacci heap: representation

Node representation. Each node stores:
* A pointer to its parent.

heap H

A pointer to any of its children.

A pointer to its left and right siblings.

Its rank = number of children.

Whether it is marked.

children are in a

circular doubly-linked list @

Fibonacci heap: notation

notation meaning
n number of nodes

rank(x) number of children of node x

rank(H) max rank of any node in heap H
trees(H) number of trees in heap H

marks(H) number of marked nodes in heap H

n=14 rank(H) = 3 trees(H) = 5 marks(H) = 3 min
rank = 1 17 @ @ @ 3 rank = 3

heap H

11

/

/\
@

Fibonacci heap: potential function

Potential function.

®(H) = trees(H) + 2 - marks(H)

®H)=5+23=11 trees(H) = 5 marks(H) = 3 min

}
XL /i\
@

heap H

Fibonacci heap: insert

« Create a new singleton tree.
» Add to root list; update min pointer (if necessary).

insert 21

min

® :
> @l) /i\
©

heap H

13

15

v

INTRODUCTION TO

-
o - ‘
N\
v“‘
ALGORITHMS
s o

FIBONACCI HEAPS

SECTION 19.2

Fibonacci heap: insert

» inserf

+ Create a new singleton tree.

» Add to root list; update min pointer (if necessary).

insert 21
|
L ()) V) S—

heap H

RN

16

Fibonacci heap: insert analysis

Actual cost. ¢ =0(1).
v oo | FIBONACCI HEAPS

one more tree;

Change in potential. A® = ®(H) - P(Hi1) = +1. < change in marks -
~

Amortized cost. & = ¢ + AD =0O(1). ¢ ‘

\\ " \‘ » extract the minimum
®(H) = trees(H) + 2 - marks(H) A DY

ALGORITHMS

min
|
G oD))
7 / 24 @ @ @ / 3 \ SECTION 19.2
heap H @
17
Linking operation Fibonacci heap: extract the minimum
Useful primitive. Combine two trees T, and T, of rank k. » Delete min; meld its children into root list; update min.

» Make larger root be a child of smaller root.
* Resulting tree T' has rank k + 1.

tree T1 tree T2 tree T'

/

I\ 71\ e e e
I G GO [41 N
D e S

20

Fibonacci heap: extract the minimum

» Delete min; meld its children into root list; update min.

min (8 //2'4\ @ @ @ 41
Fibonacci heap: extract the minimum
» Consolidate trees so that no two roots have same rank.
rank
1 2
[] q [] []
current

(®
@

21

23

Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

current

min 7 /24 @ @ @ 41
Fibonacci heap: extract the minimum
» Consolidate trees so that no two roots have same rank.
rank
1 2 3
q D []
urrent

(®
@

22

24

Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

rank

1 2|3
® | » | o
_
current

Fibonacci heap: extract the minimum

25

» Consolidate trees so that no two roots have same rank.

rank

link 17 to 7

ﬁk e =N
min 7 24 17 52
@

27

Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

rank

link 23 to 17

current

Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

link 24 to 7

current

min
24 (7 (s2)

G

(39 0@
©

26

28

Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

current

) ® @

min

(24 /@ (44

@@

29

Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

rank

ol 1|23
[N I
min \ current
7 52 41
/ ~ \

@ © © (49

31

Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

rank
1 2|3
q o | o
min \ current a
7 52 41
/) N

© 0 O (4

30

Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

rank

link 41 to 18 NERERE
4 q [] p
min \ current
7 52 41
/ ~ %

© © O (9

32

Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

min current
7)

’) 2

() /@ /

3

Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

stop (no two trees have same rank)

min

35

Fibonacci heap: extract the minimum

» Consolidate trees so that no two roots have same rank.

rank
0|1 2|3
D ®
/ /

34

Fibonacci heap: extract the minimum analysis

Actual cost. ¢; = O(rank(H)) +(O(trees(H)).
* O(rank(H)) to meld min's children into root list. «<— = rank(H) children
* O(rank(H)) + O(trees(H)) to update min.

° O(rank(H)) + O(trees(H)) to consolidate trees. <— number of roots decreases by 1 after
each linking operation

<«— < rank(H) + trees(H) — 1 root nodes

Change in potential. A® < rank(H'") + 1 — (trees(H).
* No new nodes become marked.

* trees(H') < rank(H') + 1. <— no two trees have same rank after consolidation

Amortized cost. O(log n).
* (i = ci + AD = O(rank(H)) + O(rank(H')).
* The rank of a Fibonacci heap with n elements is O(log n).

N

Fibonacci lemma
(stay tuned)

O(H) =trees(H) + 2 - marks(H)

36

Fibonacci heap vs. binomial heaps

Observation. If only INSERT and EXTRACT-MIN operations, then all trees are

binomial trees. v FIBONAcCCI HEAPS
we link only trees of equal rank - -
Y
([J
By B, B, B
. \ —
I N\
>\ » decrease key
INTRODUCTION TO
ALGORITHMS
Binomial heap property. This implies rank(H) < logzn.
SECTION 19.3
Fibonacci heap property. Our DECREASE-KEY implementation will not preserve
this property, but we will implement it in such a way that rank(H) < log,n.
37
Fibonacci heap: decrease key Fibonacci heap: decrease key
Intuition for deceasing the key of node x. Intuition for deceasing the key of node x.
* If heap-order is not violated, decrease the key of x. * If heap-order is not violated, decrease the key of x.
* Otherwise, cut tree rooted at x and meld into root list. * Otherwise, cut tree rooted at x and meld into root list.
decrease-key of x from 30 to 7 decrease-key of x from 23 to 5
6 6 7
8 29 10 44 8 29 10 44 45 32
30 23 22 48 31 17 23 22 48 31 17 55
45 32 24 50 24 50

55
39 40

Fibonacci heap: decrease key

Intuition for deceasing the key of node x.
* If heap-order is not violated, decrease the key of x.
* Otherwise, cut tree rooted at x and meld into root list.

decrease-key of 22 to 4

decrease-key of 48 to 3

decrease-key of 31 to 2 6 7
decrease-key of 17 to 1

22 48 31 17 55

50

Fibonacci heap: decrease key

24

41

Intuition for deceasing the key of node x.
* If heap-order is not violated, decrease the key of x.
* Otherwise, cut tree rooted at x and meld into root list.
» Solution: as soon as a node has its second child cut,
cut it off also and meld into root list (and unmark it).

min

7
marked node:
one child already cut
P (© ® ©

@/ ©

43

Fibonacci heap: decrease key

Intuition for deceasing the key of node x.
* If heap-order is not violated, decrease the key of x.
* Otherwise, cut tree rooted at x and meld into root list.
* Problem: number of nodes not exponential in rank.

// - 7 5 4 3 ,]
8 29 10 44 45 32 24 50
rank = 4, nodes = 5 55
42
Fibonacci heap: decrease key
Case 1. [heap order not violated]
* Decrease key of x.
« Change heap min pointer (if necessary).
decrease-key of x from 46 to 29
min
7 38

@ © © @)

Gy (& (@
44

Fibonacci heap: decrease key

Case 1. [heap order not violated]
* Decrease key of x.
» Change heap min pointer (if necessary).

decrease-key of x from 46 to 29

/\@

26@ 0

@/ ©

Fibonacci heap: decrease key

45

Case 2a. [heap order violated]
* Decrease key of x.

decrease-key of x from 29 to 15

47

Fibonacci heap: decrease key

Case 2a. [heap order violated]
* Decrease key of x.

decrease-key of x from 29 to 15
min

7

Ly

/
D (» (&
/ x

© © 0

Fibonacci heap: decrease key

/ ()

Case 2a. [heap order violated]

* Cut tree rooted at x, meld into root list, and unmark.

decrease-key of x from 29 to 15

min

Ly

/
D (5 (o
/ x

© 00

/o

46

48

Fibonacci heap: decrease key

Case 2a. [heap order violated]

If parent p of x is unmarked (hasn't yet lost a child), mark it;

decrease-key of x from 29 to 15

Fibonacci heap: decrease key

49

Case 2b. [heap order violated]
* Decrease key of x.

decrease-key of x from 35 to 5

51

Fibonacci heap: decrease key

Case 2a. [heap order violated]

If parent p of x is unmarked (hasn't yet lost a child), mark it;

decrease-key of x from 29 to 15

min

ol e
5 < <

@/

Fibonacci heap: decrease key

Case 2b. [heap order violated]

* Cut tree rooted at x, meld into root list, and unmark.

decrease-key of x from 35 to 5

min

/e/\@/z Q0
@ ©® @

& e

Fibonacci heap: decrease key

Case 2b. [heap order violated]

* Cut tree rooted at x, meld into root list, and unmark.

decrease-key of x from 35 to 5

15)--((8) (7)

5o o'

Fibonacci heap: decrease key

Case 2b. [heap order violated]

Otherwise, cut p, meld into root list, and unmark

decrease-key of x from 35 to 5

X min p

o060 ——@

Do o'

55

Fibonacci heap: decrease key

Case 2b. [heap order violated]

Otherwise, cut p, meld into root list, and unmark

decrease-key of x from 35 to 5

min

15 5
N

/_7\ 38
" @ © ©

Fibonacci heap: decrease key

Case 2b. [heap order violated]

(and do so recursively for all ancestors that lose a second child).

decrease-key of x from 35 to 5

min

;@/\@ /Z

second child cut @ e

Fibonacci heap: decrease key

Case 2b. [heap order violated]

(and do so recursively for all ancestors that lose a second child).

decrease-key of x from 35 to 5

min P P p"

1)< (@) (28)

)
but don't
S @ ® @
if it's a root

v FIBONACCI HEAPS

|

INTRODUCTION TO

ALGORITHMS

» bounding the rank

SECTION 19.4

57

Fibonacci heap: decrease key analysis

Actual cost. ¢ = O(c), where c is the number of cuts.
* 0O(1) time for changing the key.
* 0(1) time for each of ¢ cuts, plus melding into root list.

Change in potential. A® = O(1) - c.

* trees(H') =trees(H) + c.

each cut (except first) unmarks a node

. U — -—
marks(H) = marks(H) ¢+ 2. last cut may or may not mark a node

* AD <c+2:-(c+2) =4 -c.

Amortized cost. é = ¢ + AP =O(1).

D(H) =trees(H) + 2 - marks(H)

Analysis summary

Insert. o(l).
O(rank(H)) amortized.
Decrease-key. O(1) amortized.

Delete-min.

Fibonacci lemma. Let H be a Fibonacci heap with n elements.
Then, rank(H) = O(log n).

\

number of nodes is
exponential in rank

60

Bounding the rank

Lemma 1. Fix a point in time. Let x be a node of rank k, and let y,, ..., y,
denote its current children in the order in which they were linked to x.

AN

o) - @

0 ifi=1
k(y) >
rank(y:) 2 {i—Q if i > 2

Pf.
* When y; was linked into x, x had at least i — 1 children y,, ..., y;;.
« Since only trees of equal rank are linked, at that time
rank(y;) = rank(x) = i —1.
« Since then, y; has lost at most one child (or y; would have been cut).
* Thus, right now rank(y;) = i— 2. =

61

Bounding the rank

Lemma 1. Fix a point in time. Let x be a node of rank k, and let y,, ..., y,
denote its current children in the order in which they were linked to x.

AN

©) - @

0 ifi=1
i) =
rank(y;) = {i2 if i > 2

Def. Let T, be smallest possible tree of rank k satisfying property.

T, TS Te
Fo=8 Fr=13 Fs=Fe+F7r=8+13=2]

63

Bounding the rank

Lemma 1. Fix a point in time. Let x be a node of rank k, and let y,, ..., y,
denote its current children in the order in which they were linked to x.

AN

O) - @

0 ifi=1
i—2 ifi>?2

rank(y;) > {

Def. Let T, be smallest possible tree of rank k satisfying property.
To T

T, Ts T, Ts
Fa=1 F3=2 Fa=3 Fs=5 Fe=8 F7=13

62

Bounding the rank

Lemma 2. Lets, be minimum number of elements in any Fibonacci heap of
rank k. Then s, = Fi., where Fy is the k* Fibonacci number.

Pf. [by strong induction on k]
* Base cases: so=1 and s; =2.
¢ Inductive hypothesis: assumes; > Fi; fori=0,...,k-1.
* Asin Lemma 1, let let y,, ..., y, denote its current children in the order in
which they were linked to x.

\%

Sk 1+1+4 (so+s1 +...+ S2) (Lemma 1)

v

(1+F1)+ F» + F3 +...+ Fy (inductive hypothesis)

= Fieo. ® (Fibonacci fact 1)

64

Bounding the rank Fibonacci fact 1

Fibonacci lemma. Let H be a Fibonacci heap with n elements. Def. The Fibonacci sequenceis: 0,1,1,2,3,5,8,13,21, ...
Then, rank(H) < log,n, where ¢ is the golden ratio = (1 +v5)/2=~1.618.

0 if k=0
Pf. Fr,=<1 ifk=1

. . . . Fr1+ Fro ifk>2
* Let H is a Fibonacci heap with n elements and rank k. ko 2

* Then n = Fro = ¢k.

f 1 Fibonacci fact 1. For all integers k>0, F,,, = 1+ Fo+Fi+... + Fx.

Lemma 2 Fibonacci
Fact 2

Pf. [by induction on k]
* Base case: F,=1+Fo=2.

* Taking logs, we obtain rank(H) =k < log,n. = * Inductive hypothesis: assume F,,;, = 1 +Fo+ Fi + ... + F1.
Firo = Fr + Fra (definition)
= Fr+(+Fo+Fi1+...+F1) (inductive hypothesis)
= 1+Fo+Fi+...+Fii+Fr. = (algebra)
65
Fibonacci fact 2 Fibonacci numbers and nature
Def. The Fibonacci sequenceis: 0,1,1,2,3,5,8,13,21, ... Fibonacci numbers arise both in nature and algorithms.
0 ifk=0
Fr,=<1 ifk=1

Frp 1+ Fy o ifk>2

Fibonacci fact 2. F,,, = ¢, where ¢ = (1 ++5)/2=1.618.
Pf. [by induction on k]
* Base cases: F,=1=1, F;=2 = ¢.
* Inductive hypotheses: assume F, = ¢¢ and F,,; > ¢k+!

Frio = Fr + Frn (definition)
= k-1 + Pk-2 (inductive hypothesis)
= ¢k-2(1+ ¢) (algebra) pinecone
= k-2 2 @=¢+1)

q)k_ n (algebra) cauliflower

67

Fibonacci heap: meld

Meld. Combine two Fibonacci heaps (destroying old heaps).

v FIBONACCI HEAPS

- Recall. Root lists are circular, doubly-linked lists.
‘

' Q
A
'w\\‘

INTRODUCTION TO

ALGORITHMS
» meld and delete JE— — T

SECTION 19.2, 19.3 / / \

heap H: heap H:

70

Fibonacci heap: meld Fibonacci heap: meld analysis

Meld. Combine two Fibonacci heaps (destroying old heaps). Actual cost. ¢ =0(1).
Change in potential. A® = 0.

Recall. Root lists are circular, doubly-linked lists. Amortized cost. é& = ¢ + AD =0().

O(H) = trees(H) + 2 - marks(H)

heap H

@ heap H

71 72

Fibonacci heap: delete

Delete. Given a handle to an element x, delete it from heap H.
* DECREASE-KEY(H, x, -°).
* EXTRACT-MIN(H).

Amortized cost. ¢ = O(rank(H)).
* O(1) amortized for DECREASE-KEY.
* O(rank(H)) amortized for EXTRACT-MIN.

D(H) =trees(H) + 2 - marks(H)

73

PRIORITY QUEUES

» advanced topics

Priority queues performance cost summary

linked list binary heap binomial heap | Fibonacci heap t

MAKE-HEAP

IS-EMPTY

INSERT

EXTRACT-MIN

DECREASE-KEY

DELETE

MELD

FIND-MIN

o)

o)

o)

)

o)

o)

o)

O(n)

o)
o)
O(log n)
O(log n)
O(log n)
O(log n)
o)

o(l)

o)
o)
O(log n)
0O(log n)
O(log n)
O(log n)
0O(log n)

O(log n)

o(1)
o)
o)

O(log n)
o)

O(log n)
o)

o(1)

1 amortized

Accomplished. O(1) INSERT and DECREASE-KEY, O(log n) EXTRACT-MIN.

Heaps of heaps

e b-heaps.

» Fat heaps.

* 2-3 heaps.

» Leaf heaps.

* Thin heaps.

» Skew heaps.
» Splay heaps.
* Weak heaps.

* Leftist heaps.
* Quake heaps.
 Pairing heaps.
 Violation heaps.

* Run-relaxed heaps.
» Rank-pairing heaps.

« Skew-pairing heaps.
* Rank-relaxed heaps.
» Lazy Fibonacci heaps.

74

76

Brodal queues

Q. Can we achieve same running time as for Fibonacci heap but with
worst-case bounds per operation (instead of amortized)?

Theory. [Brodal 1996] Yes.

Worst-Case Efficient Priority Queues®

Gerth Stglting Brodalf

Abstract

An implementation of priority queues is presented that
supports the operations MAKEQUEUE, FINDMIN, INSERT,
MELD and DRCREASEKEY in worsl case time O(1) and
DeLkreMIN and DeLkTE in worst case time O(logn). The
space requirement is linear. The data structure presented is
the first achicving this worst case performance.

Practice. Ever implemented? Constants are high (and requires RAM model).

77

Fibonacci heaps: practice

Q. Are Fibonacci heaps useful in practice?
A. They are part of LEDA and Boost C++ libraries.
(but other heaps seem to perform better in practice)

ZEDN i boost

79

Strict Fibonacci heaps

Q. Can we achieve same running time as for Fibonacci heap but with
worst-case bounds per operation (instead of amortized) in pointer model?

Theory. [Brodal-Lagogiannis-Tarjan 2002] Yes.

Gerth Stolting Brodal George Lagogiannis Robert E. Tarjan'
MADALGO* Agricultural University Dept. of Computer Science
Dept. of Computer Science of Athens Princeton University
Aarhus University lera Odos 75, 11855 Athens and HP Labs

Abogade 34, 8200 Aarhus N Greece 35 Olden Street, Princeton
Denmark lagogian@aua.gr New Jersey 08540, USA
gerth@cs.au.dk ret@cs.princeton.edu

Pairing heaps

ABSTRACT

We present the first pointer-based heap implementation with
time bounds matching those of Fibonacei heaps in the worst
case. We support make-heap, insert, find-i

and extensive use of redundant counter scherr
balance. Our solution uses neither. Our key simplific
is to discard the structure of the smaller heap when doing
a meld. We use the pigeonhole principle in place of the
redundant counter mechanism

Pairing heap. A self-adjusting heap-ordered general tree.

The Pairing Heap: A New Form of

Self-Adjusting Heap

Michael L. Fredman'4, Robert Sedgewick? >, Daniel D. Sleator?, and

Robert E. Tarjan®3-®

Abstract. Recently, Fredman and Tarjan invented a new, especially efficient form of heap (priority
queue) called the Fibonacci heap. Although theoretically efficient, Fibonacci heaps are complicated to
implement and not as fast in practice as other kinds of heaps. In this paper we describe a new form of
heap, called the pairing heap, intended to be competitive with the Fibonacci heap in theory and easy
to implement and fast in practice. We provide a partial complexity analysis of pairing heaps. Complete
analysis remains an open problem.

Theory. Same amortized running times as Fibonacci heaps for all operations

except DECREASE-KEY.

* O(log n) amortized. [Fredman et al. 1986]

* Q(log log n) lower bound on amortized cost. [Fredman 1999]

* 9V/O(oglogn) amortized. [Pettie 2005]

78

80

Pairing heaps

Pairing heap. A self-adjusting heap-ordered general tree.

Practice. As fast as (or faster than) the binary heap on some problems.
Included in GNU C++ library and LEDA.

Pairing Heaps:
Experiments and Analysis

Atorths an
Data s

JOHN T. STASKO and JEFFREY SCOTT VITTER

81

Priority queues with integer priorities

Assumption. Keys are integers between 0 and C.

Theorem. [Thorup 2004] There exists a priority queue that supports INSERT,
FIND-MIN, and DECREASE-KEY in constant time and EXTRACT-MIN and DELETE-KEY
in either O(log log n) or O(log log C) time.

- OURNAL or

lclenc:@nln:c\" OMPUTER

N> SYSTEM

£ SCIENCES
ELSEVIER Journal of Computer and System Sciences 69 (2004) 330-353

hitpiwenl

Integer priority queues with decrease key in constant time and
the single source shortest paths problem

Mikkel Thorup

AT&T Labs Research Florham Park, NJ 07932, USA

Abstract

We consider Fibonacei heap style integer priority queues supporting find-min, insert, and decrease key
operations in constant time. We present a deterministic linear space solution that with n integer keys
supports delete in O(loglog n) time. If the integers are in the range [0, N), we can also support delete in
O(loglog N) time.

83

Priority queues performance cost summary

inkedlise | binary heap | binamial | pairing | Fbomsc | frada

MAKE-HEAP o) o(l) o(1) o(1) o(l) o)
IS-EMPTY o(1) o(l) o(1) o(1) o(l) o)
INSERT o(1) O(log n) O(log n) o(1) o(l) o)

EXTRACT-MIN O(n) O(log n) O(log n) O(log n) O(log n) O(log n)
DECREASE-KEY o(l) O(log n) O(logn) 9y/O(loglogn) o(l) o(l)

DELETE o(1) O(log n) O(log n) O(log n) O(log n) O(log n)
MELD o(1) o) O(log n) o(1) o(l) o)
FIND-MIN o) o(l) O(log n) o(1) o(l) o)

t amortized

82

Priority queues with integer priorities

Assumption. Keys are integers between 0 and C.
Theorem. [Thorup 2004] There exists a priority queue that supports INSERT,
FIND-MIN, and DECREASE-KEY in constant time and EXTRACT-MIN and DELETE-KEY

in either O(log log n) or O(log log C) time.

Corollary 1. Can implement Dijkstra's algorithm in either O(m log log n) or
O(m log log C) time.

Corollary 2. Can sort n integers in O(n log log n) time.

Computational model. Word RAM.

84

Soft heaps Soft heaps

Goal. Break information-theoretic lower bound by allowing priority queue to Goal. Break information-theoretic lower bound by allowing priority queue to
corrupt 10% of the keys (by increasing them). corrupt 10% of the keys (by increasing them).
Representation.

 Set of binomial trees (with some subtrees missing).

» Each node may store several elements.

* Each node stores a value that is an upper bound on the original keys.
» Binomial trees are heap-ordered with respect to these values.

elements inserted

88 11 22 99 44 33 77 66 0 55

A
soft heap
corrupted
85
Soft heaps Soft heaps
Goal. Break information-theoretic lower bound by allowing priority queue to Goal. Break information-theoretic lower bound by allowing priority queue to
corrupt 10% of the keys (by increasing them). corrupt 10% of the keys (by increasing them).
Theorem. [Chazelle 2000] Starting from an empty soft heap, any sequence Q. Brilliant. But how could it possibly be useful?
of n INSERT, MIN, EXTRACT-MIN, MELD, and DELETE operations takes O(n) time Ex. Linear-time deterministic selection. To find k” smallest element:
and at most 10% of its elements are corrupted at any given time. * Insert the n elements into soft heap.

* Extract the minimum element n /2 times.

* The largest element deleted = 4n/10 elements and < 6n/ 10 elements.
The Soft Heap: An Approximate Priority Queue with
Optimal Error Rate * Can remove = 51/ 10 of elements and recur.

* T(n) < TG3n/5) + On) = T(n)=O0(n). =
BERNARD CHAZELLE

Princeton University, Princeton, New Jersey, and NEC Research Institute

Abstract. A simple variant of a priority queue, called a soft heap, is introduced. The data structure
supports the usual operations: insert, delete, meld, and findmin. Its novelty is to beat the logarithmic
bound on the complexity of a heap in a comparison-based model. To break this information-theoretic
barrier, the entropy of the data structure is reduc artificially raising the values of
Given any mixed sequence of 1 operations, a soft heap with crror rate & (for any 0
ised. The amortized xity of each

rays are
behind the soft heap is to
ry, but in groups, in a
data-structuring equ e rised as a result, in order to preserve the
heap ordering of the data structure. The soft heap can be used to compute exact or approximate
medians and percentiles optimally. Tt is also useful for approximate sorting and for computing
minimum spanning trees of general graphs.

87

Soft heaps

Theorem. [Chazelle 2000] There exists an O(m a(m, n)) time deterministic
algorithm to compute an MST in a graph with n nodes and m edges.

Algorithm. Borlvka + nongreedy + divide-and-conquer + soft heap +

A Minimum Spanning Tree Algorithm with Inverse-
Ackermann Type Complexity

BERNARD CHAZELLE

Princeton University, Princeton, New Jersey, and NEC Research Institute

Abstract. A deterministic algorithm for computing a minimum spanning tree of a connected graph is
presented. Its running time is O(ma(m, n)), where « is the ¢ I functional inverse of
Ackermann’s function and n (respectively, m) is the number of vertices (respectively, edges). The
algorithm is comparison-based: it uses pointers, not arrays, and it makes no numeric assumptions on
the edge costs.

89

