PRIORITY QUEUES

PEARSON
Addisor

n
Wesley

» binary heaps
» d-ary heaps

» binomial heaps

» Fibonacci heaps

Ngorith

\ J 3 J

\\ JON KLEINBERG - EVA TARDOS
\

|

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on Apr 10, 2013 5:50 AM

Priority queue applications

Applications.
* A* search.
¢ Heapsort.
e Online median.
« Huffman encoding.
* Prim's MST algorithm.
» Discrete event-driven simulation.
» Network bandwidth management.
» Dijkstra's shortest-paths algorithm.

-
—

Le

http://younginc.sitel1.com/source/5895/fos0092.html

Priority queue data type

A min-oriented priority queue supports the following core operations:
* MAKE-HEAP(): create an empty heap.
* INSERT(H, x): insert an element x into the heap.
* EXTRACT-MIN(H): remove and return an element with the smallest key.
* DECREASE-KEY(H, x, k): decrease the key of element x to k.

The following operations are also useful:
* IS-EMPTY(H): is the heap empty?
* FIND-MIN(H): return an element with smallest key.
* DELETE(H,x): delete element x from the heap.
* UNION(H1, H»): replace heaps Hi and H» with their union.

Note. Each element contains a key (duplicate keys are permitted)
from a totally-ordered universe.

PRIORITY QUEUES

» binary heaps

Algorithms

FOURTH EDITION

ROBERT SEDGEWICK | KEVIN WAYNE

SECTION 2.4

Complete binary tree

Binary tree. Empty or node with links to two disjoint binary trees.

Complete tree. Perfectly balanced, except for bottom level.

complete tree with n = 16 nodes (height = 4)

Property. Height of complete binary tree with n nodes is |log: n].
Pf. Height increases (by 1) only when n is a power of 2. =

Binary heap

Binary heap. Heap-ordered complete binary tree.

Heap-ordered. For each child, the key in child < key in parent.

parent

A complete binary tree in nature

Explicit binary heap

Pointer representation. Each node has a pointer to parent and two children.
* Maintain number of elements n.
* Maintain pointer to root node.
* Can find pointer to last node or next node in O(log n) time.

root

last next

Implicit binary heap Binary heap demo

Array representation. Indices start at 1.
» Take nodes in level order.
* Parent of node at k is at |k/2].

* Children of node at k are at 2k and 2k + 1.
heap ordered

1

6 10 8 12 18 11 25 21 17 19

9 10
Binary heap: insert Binary heap: extract the minimum
Insert. Add element in new node at end; repeatedly exchange new element Extract min. Exchange element in root node with last node; repeatedly
with element in its parent until heap order is restored. exchange element in root with its smaller child until heap order is restored.

element to
remove

exchange
with root

add key to heap
(violates heap order)

sink down

violates
heap order

remove
from heap

Binary heap: decrease key Binary heap: analysis

Decrease key. Given a handle to node, repeatedly exchange element with Theorem. In an implicit binary heap, any sequence of m INSERT, EXTRACT-MIN,
its parent until heap order is restored. and DEeCREASE-KEY operations with n INSERT operations takes O(m log n) time.
Pf.

« Each heap op touches nodes only on a path from the root to a leaf;
the height of the tree is at most log, n.

decrease key of node x to 11
* The total cost of expanding and contracting the arrays is O(n). =

Theorem. In an explicit binary heap with n nodes, the operations INSERT,
DECREASE-KEY, and EXTRACT-MIN take O(log n) time in the worst case.

Binary heap: find-min Binary heap: delete

Find the minimum. Return element in the root node. Delete. Given a handle to a node, exchange element in node with last node;
either swim down or sink up the node until heap order is restored.

delete node x or y

root

Binary heap: union

Union. Given two binary heaps H, and H,, merge into a single binary heap.

Observation. No easy solution: Q(n) time apparently required.

H: H2

Binary heap: heapify

Theorem. Given n elements, can construct a binary heap containing those n
elements in O(n) time.
Pf.

* There are at most [n /2] nodes of height #.

* The amount of work to sink a node is proportional to its height 4.

e Thus, the total work is bounded by:

|log, m| |logy)
n/2"M h < nh/2"
S /2 < S L e
\ ZT‘ T 9k T 9k-1
i=1
S 2n = <2

Corollary. Given two binary heaps H, and H, containing n elements in total,
can implement UNION in O(n) time.

Binary heap: heapify

Heapify. Given n elements, construct a binary heap containing them.
Observation. Can do in O(nlog n) time by inserting each element.

Bottom-up method. Fori=nto 1, repeatedly exchange the element in node i
with its smaller child until subtree rooted at i is heap-ordered.

8 12 9 7 22 3 26 14 11 15 22
1 2 3 4 5 6 7 8 9 10 11

Priority queues performance cost summary

linked list binary heap

MAKE-HEAP o) o(1)

ISEMPTY o(l) o)
INSERT o(1) O(log n)
EXTRACT-MIN O(n) O(log n)
DECREASE-KEY o(l) O(log n)
DELETE o(l) O(log n)

UNION o(1) O(n)

FIND-MIN o(n) o(1)

Priority queues performance cost summary

Q. Reanalyze so that EXTRACT-MIN and DELETE take O(1) amortized time?

linked list binary heap binary heap t

MAKE-HEAP
ISEMPTY
INSERT
EXTRACT-MIN
DECREASE-KEY
DELETE
UNION

FIND-MIN

Complete d-ary tree

o(1)
o(1)
o(1)
o(n)
o(1)
o(1)
o(1)

O(n)

o(1)
o(1)
O(log n)
O(log n)
O(log n)
O(log n)
O(n)

o)

o(1)
o(1)
O(log n)
o()y t
O(log n)
o(y t
o(n)

o)

1 amortized

Binary tree. Empty or node with links to d disjoint d-ary trees.

Complete tree. Perfectly balanced, except for bottom level.

Fact. The height of a complete d-ary tree with n nodes is < [logan].

21

23

PRIORITY QUEUES

» d-ary heaps

Algorithms

FOURTH EDITION

ROBERT SEDGEWICK | KEVIN WAYNE

SECTION 2.4

Multiway heap: insert

Insert. Add node at end; repeatedly exchange element in child with element
in parent until heap order is restored.

Running time. Proportional to height = O(log. n).

Multiway heap: extract the minimum

Extract min. Exchange root node with last node; repeatedly exchange
element in parent with element in largest child until heap order is restored.

Running time. Proportional to d x height = O(d log. n).

25

Priority queues performance cost summary

linked list binary heap d-ary heap

MAKE-HEAP o() o(l) o(l)
ISEMPTY o(l) o(l) o)
INSERT o(l) O(log n) O(loga n)

EXTRACT-MIN 0O(n) O(log n) O(d loga n)

DECREASE-KEY o(l) O(log n) O(loga n)
DELETE o(1) O(log n) O(d logaq n)
UNION o(1) O(n) O(n)

FIND-MIN O(n) o(1) o)

27

Multiway heap: decrease key

Decrease key. Given a handle to an element x, repeatedly exchange it with

its parent until heap order is restored.

Running time. Proportional to height = O(log. n).

v THOMAS H.CORMEN
CHARLES E. LEISERSON
RONALD L. RIVEST

\ CLIFFORD STEIN

Q

INTRODUCTION TO

ALGORITHMS
SR

PRIORITY QUEUES

CHAPTER 6 (2° EDITION)

» binomial heaps

Priority queues performance cost summary

linked list binary heap d-ary heap

MAKE-HEAP o(1) o(1) o(1)
ISEMPTY o(1) o(1) o(1)
INSERT o(1) O(log n) O(loga n)

EXTRACT-MIN Oo(n) O(log n) O(d loga n)

DECREASE-KEY o(1) O(log n) O(loga n)
DELETE o(1) O(log n) O(d loga n)
UNION o(1)
FIND-MIN Oo(n) o(l) o(1)

Goal. O(log n) INSERT, DECREASE-KEY, EXTRACT-MIN, and UNION.

mergeable heap 20

Binomial tree

Def. A binomial tree of order k is defined recursively:
* Order 0: single node.
* Order k: one binomial tree of order k-1 linked to another of order k1.

B,

Binomial heaps

Programming S.L. Graham, R.L. Rivest
Techniques Editors

A Data Structure for
Manipulating Priority
Queues

Jean Vuillemin
Université de Paris-Sud

A data structure is described which can be used for
representing a collection of priority queues. The
primitive operations are insertion, deletion, union,
update, and search for an item of earliest priority.

Key Words and Phrases: data structures,
impl. ion of set i priority queues,
mergeable heaps, binary trees

CR Categories: 4.34, 5.24, 5.25, 5.32, 8.1

Binomial tree properties

Properties. Given an order k binomial tree B,
* Its height is k.
* It has 2¢ nodes.
* It has (’:) nodes at depth i.
* The degree of its root is k.

 Deleting its root yields k binomial trees B, i, ...

Pf. [by induction on k]

Bk+1

Binomial heap

Def. A binomial heap is a sequence of binomial trees such that:
e Each tree is min-heap ordered.
* There is either 0 or 1 binomial tree of order «.

6 3 18
8 29 10 44 37
30 23 22 48 31 17
45 32 24 50
>3 B, B, B,
Binomial heap properties
Properties. Given a binomial heap with n nodes:
* The node containing the min element is a root of By, B,, ..., or B,.
* It contains the binomial tree B, iff b,= 1, where b, b,b, b, is binary
representation of n.
* It has < |log, n] + 1 binomial trees.
* lts height < |log, n].
6 3 18
8 29 10 44 37
n=19
trees = 3
30 23 22 48 31 17 height = 4
binary = 10011
45 32 24 50
> B, B, B,

50

Binomial heap representation

Binomial trees. Represent trees using left-child, right-sibling pointers.

Roots of trees. Connect with singly-linked list, with degrees decreasing
from left to right.

6 3 18 6 3 18
&
Q'b&
© ¢ ® @ e * ¥ -
& %
& ‘9’5,
I © ©
50 31 17 44
binomial heap leftist power-of-2 heap representation

Binomial heap: union

Union operation. Given two binomial heaps H, and H,, (destructively)
replace with a binomial heap H that is the union of the two.

Warmup. Easy if H, and H- are both binomial trees of order k.

* Connect roots of H; and H..
* Choose node with smaller key to be root of H.

30 23 22 48 31 17

45 32 24 50

55

5 i ---------
® @ @
T /
/ff@f°° B @ @
@@ (59
& @ 3
@
6) a)
OENCRCRC ;
T/

@@G

6 ©) @
® @@ @ ;
JL /
/ff@fQQ B @ @
@@ (59
& 2 3
@)
/I{i ii
6) <)
OENCRCRC ;
T/
/f@@fQQ o — ®
@@ (59
& @ &
Q

40

6

9 @@@
II 00 @ z @
e o
Q)
(3) T
jogelc ;
@@
Q)
6 z
0 @@@
II 00 (e g @
A A
@)
1 0 0 1 1
19 +7 =26 0 . :]]
1 1 0 1 0

43

g 3
:II I ® @ @
+ g & o
@
@®; /pe; i
II: z z@@

Binomial heap: union

42

Union operation. Given two binomial heaps H, and H,, (destructively)

replace with a binomial heap H that is the union of the two.

Solution. Analogous to binary addition.

Running time. O(log n).

Pf. Proportional to number of trees in root lists < 2 (|log, n] + 1).

19 +7 =26

44

Binomial heap: extract the minimum

Extract-min. Delete the node with minimum key in binomial heap H.

* Find root x with min key in root list of H, and delete.

Binomial heap: decrease key

Decrease key. Given a handle to an element x in H, decrease its key to k.

» Suppose x is in binomial tree B,.

* Repeatedly exchange x with its parent until heap order is restored.

Running time. O(log n).

37

45

47

Binomial heap: extract the minimum

Extract-min. Delete the node with minimum key in binomial heap H.

* Find root x with min key in root list of H, and delete.

* H'< broken binomial trees.
* H < UNION(H', H).

Running time. O(log n).

Binomial heap: delete

37

Delete. Given a handle to an element x in a binomial heap, delete it.

* DECREASE-KEY(H, x, -©).
* DELETE-MIN(H).

Running time. O(log n).

30 23 22 48 31 17
/1] |
32 24 50

55

37

46

48

Binomial heap: insert

Insert. Given a binomial heap H, insert an element x.
* H' < MAKE-HEAP().
* H'< INSERT(H',x).
* H < UNION(H', H).

Running time. O(log n).

H'

/ 8 29 10 44 37
30 23 22
/1 |
45 32 24 50
l

55

Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of INSERT is O(1) and the
worst-case cost of EXTRACT-MIN and DECREASE-KEY is O(log n).

Pf. Define potential function ®(H,) = trees(H;) = # trees in binomial heap H..
e ®(Hp) = 0.
* ®(H;)) = 0 for each binomial heap H..

Case 1. [INSERT]
* Actual cost ¢; = number of trees merged + 1.
* AD = O(H;) - ®(H-1) = number of trees merged — 1.
* Amortized cost = ¢ = ¢; + OH;) — P(Hi-1) =2.

49

Binomial heap: sequence of insertions

Insert. How much work to insert a new node x?

e Ifn= ... 0, then only 1 credit. 3 6 ©
c Ifn= ... 01, then only 2 credits.

o Ifn= ... 011, then only 3 credits. ® © © &/

clfn= ... 0111, then only 4 credits. ™ & &

50

Observation. Inserting one element can take Q(log n) time.
ifn=11...111

Theorem. Starting from an empty binomial heap, a sequence of n
consecutive INSERT operations takes O(n) time.

Pf. n/2)()+ /D2 +1/8)3)+... <2n. =

Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of INSERT is O(1) and the
worst-case cost of EXTRACT-MIN and DECREASE-KEY is O(log n).

Pf. Define potential function ®(H,) = trees(H;) = # trees in binomial heap H..
* ®(Ho) = 0.
* ®(H;) = 0 for each binomial heap H..

Case 2. [DECREASE-KEY]
* Actual cost ¢; = O(log n).
* AD = ®(H)- D(Hi1) = 0.
* Amortized cost = ¢ = ¢; = O(log n).

Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of INSERT is O(1) and the
worst-case cost of EXTRACT-MIN and DECREASE-KEY is O(log n).

Pf. Define potential function ®(H,) = trees(H;) = # trees in binomial heap H..
* O(Ho) = 0.
* ®(H;) = 0 for each binomial heap H..

Case 3. [EXTRACT-MIN or DELETE]
* Actual cost ¢; = O(log n).
o AD = O(H) - P(Hi1) < |log, n].
* Amortized cost =¢ = ¢i + ®(H) — P(Hi-1) = O(logn). =

Priority queues performance cost summary

linked list binary heap binomial heap binomial heap

MAKE-HEAP o(1) o(1) o(1) o(1)
ISEMPTY o(1) o(1) o(1) o(1)
INSERT o(1) O(log n) O(log n) o)t
EXTRACT-MIN O(n) O(log n) O(log n) O(log n)
DECREASE-KEY o(1) O(log n) O(log n) O(log n)
DELETE o(l) O(log n) O(log n) O(log n) nJ
UNION o(1) o(n) O(log n) o)1 rd
FIND-MIN O(n) o(l) O(log n) o(l)

t amortized

Hopeless challenge. O(1) INSERT, DECREASE-KEY and EXTRACT-MIN. Why?
Challenge. O(1) INSERT and DECREASE-KEY, O(log n) EXTRACT-MIN.

