

Lecture slides by Kevin Wayne Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

PRIORITY QUEUES

- binary heaps
- d-ary heaps
- binomial heaps
- Fibonacci heaps

Priority queue data type

A min-oriented priority queue supports the following core operations:

- MAKE-HEAP(): create an empty heap.
- INSERT(*H*, *x*): insert an element *x* into the heap.
- EXTRACT-MIN(*H*): remove and return an element with the smallest key.
- DECREASE-KEY(H, x, k): decrease the key of element x to k.

The following operations are also useful:

- IS-EMPTY(*H*): is the heap empty?
- FIND-MIN(*H*): return an element with smallest key.
- DELETE(*H*, *x*): delete element *x* from the heap.
- UNION(H_1, H_2): replace heaps H_1 and H_2 with their union.

Note. Each element contains a key (duplicate keys are permitted) from a totally-ordered universe.

Last updated on Apr 10, 2013 5:50 AM

Priority queue applications

Applications.

- A* search.
- Heapsort.
- Online median.
- Huffman encoding.
- Prim's MST algorithm.
- Discrete event-driven simulation.
- Network bandwidth management.
- Dijkstra's shortest-paths algorithm.
- ...

http://younginc.site11.com/source/5895/fos0092.html

PRIORITY QUEUES

- binary heaps
- ▶ d-ary heaps
- binomial heaps
- ▶ Fibonacci heaps

Complete binary tree

Binary tree. Empty or node with links to two disjoint binary trees.

Complete tree. Perfectly balanced, except for bottom level.

Property. Height of complete binary tree with *n* nodes is $\lfloor \log_2 n \rfloor$. Pf. Height increases (by 1) only when *n* is a power of 2.

Binary heap

Binary heap. Heap-ordered complete binary tree.

Heap-ordered. For each child, the key in child \leq key in parent.

A complete binary tree in nature

Explicit binary heap

7

Pointer representation. Each node has a pointer to parent and two children.

- Maintain number of elements *n*.
- Maintain pointer to root node.
- Can find pointer to last node or next node in $O(\log n)$ time.

Implicit binary heap

Array representation. Indices start at 1.

- Take nodes in level order.
- Parent of node at k is at $\lfloor k/2 \rfloor$.
- Children of node at k are at 2k and 2k + 1.

Binary heap demo

Binary heap: insert

Insert. Add element in new node at end; repeatedly exchange new element with element in its parent until heap order is restored.

Binary heap: extract the minimum

Extract min. Exchange element in root node with last node; repeatedly exchange element in root with its smaller child until heap order is restored.

Binary heap: decrease key

Decrease key. Given a handle to node, repeatedly exchange element with its parent until heap order is restored.

decrease key of node x to 11

Binary heap: analysis

Theorem. In an implicit binary heap, any sequence of *m* INSERT, EXTRACT-MIN, and DECREASE-KEY operations with *n* INSERT operations takes $O(m \log n)$ time. Pf.

- Each heap op touches nodes only on a path from the root to a leaf; the height of the tree is at most $\log_2 n$.
- The total cost of expanding and contracting the arrays is *O*(*n*). •

Theorem. In an explicit binary heap with *n* nodes, the operations INSERT, DECREASE-KEY, and EXTRACT-MIN take $O(\log n)$ time in the worst case.

Binary heap: find-min

Find the minimum. Return element in the root node.

Binary heap: delete

Delete. Given a handle to a node, exchange element in node with last node; either swim down or sink up the node until heap order is restored.

delete node x or y

13

Binary heap: union

12

(21

Union. Given two binary heaps H_1 and H_2 , merge into a single binary heap.

 H_2

10

(11)

25[`]

Observation. No easy solution: $\Omega(n)$ time apparently required.

8

 H_1

Binary heap: heapify

Theorem. Given *n* elements, can construct a binary heap containing those *n* elements in O(n) time.

Pf.

- There are at most $[n/2^{h+1}]$ nodes of height *h*.
- The amount of work to sink a node is proportional to its height *h*.
- Thus, the total work is bounded by:

Corollary. Given two binary heaps H_1 and H_2 containing *n* elements in total, can implement UNION in O(n) time.

Binary heap: heapify

Heapify. Given *n* elements, construct a binary heap containing them. Observation. Can do in $O(n \log n)$ time by inserting each element.

Bottom-up method. For i = n to 1, repeatedly exchange the element in node iwith its smaller child until subtree rooted at *i* is heap-ordered.

17

Priority queues performance cost summary

operation	linked list	binary heap
Μακε-Ηεαρ	<i>O</i> (1)	<i>O</i> (1)
ISEMPTY	<i>O</i> (1)	<i>O</i> (1)
INSERT	<i>O</i> (1)	$O(\log n)$
Extract-Min	O(n)	$O(\log n)$
Decrease-Key	<i>O</i> (1)	$O(\log n)$
Delete	<i>O</i> (1)	$O(\log n)$
UNION	<i>O</i> (1)	O(n)
Find-Min	O(n)	<i>O</i> (1)

Priority queues performance cost summary

Q. Reanalyze so that EXTRACT-MIN and DELETE take O(1) amortized time?

operation	linked list	binary heap	binary heap †
ΜΑΚΕ-ΗΕΑΡ	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
ISEMPTY	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
INSERT	<i>O</i> (1)	$O(\log n)$	$O(\log n)$
Extract-Min	O(n)	$O(\log n)$	<i>O</i> (1) †
DECREASE-KEY	<i>O</i> (1)	$O(\log n)$	$O(\log n)$
Delete	<i>O</i> (1)	$O(\log n)$	<i>O</i> (1) †
UNION	<i>O</i> (1)	O(n)	O(n)
Find-Min	O(n)	<i>O</i> (1)	<i>O</i> (1)

† amortized

PRIORITY QUEUES

- binary heaps
- d-ary heaps
- binomial heaps
- ▹ Fibonacci heaps

Complete d-ary tree

Binary tree. Empty or node with links to *d* disjoint *d*-ary trees.

Complete tree. Perfectly balanced, except for bottom level.

Fact. The height of a complete *d*-ary tree with *n* nodes is $\leq \lfloor \log_d n \rfloor$.

Multiway heap: insert

Insert. Add node at end; repeatedly exchange element in child with element in parent until heap order is restored.

Running time. Proportional to height = $O(\log_d n)$.

Multiway heap: extract the minimum

Extract min. Exchange root node with last node; repeatedly exchange element in parent with element in largest child until heap order is restored.

Running time. Proportional to $d \times \text{height} = O(d \log_d n)$.

Multiway heap: decrease key

Decrease key. Given a handle to an element *x*, repeatedly exchange it with its parent until heap order is restored.

Running time. Proportional to height = $O(\log_d n)$.

Priority queues performance cost summary

operation	linked list	binary heap	d-ary heap
Μακε-Ηεαρ	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
ISEMPTY	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
INSERT	<i>O</i> (1)	$O(\log n)$	$O(\log_d n)$
Extract-Min	O(n)	$O(\log n)$	$O(d \log_d n)$
Decrease-Key	<i>O</i> (1)	$O(\log n)$	$O(\log_d n)$
Delete	<i>O</i> (1)	$O(\log n)$	$O(d \log_d n)$
UNION	<i>O</i> (1)	O(n)	O(n)
Find-Min	O(n)	<i>O</i> (1)	<i>O</i> (1)

CHAPTER 6 (2ND EDITION)

PRIORITY QUEUES

- binary heaps
- ▶ d-ary heaps
- binomial heaps
- ▹ Fibonacci heaps

Priority queues performance cost summary

operation	linked list	binary heap	d-ary heap
Μακε-Ηεαρ	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
ISEMPTY	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
INSERT	<i>O</i> (1)	$O(\log n)$	$O(\log_d n)$
EXTRACT-MIN	O(n)	$O(\log n)$	$O(d \log_d n)$
DECREASE-KEY	<i>O</i> (1)	$O(\log n)$	$O(\log_d n)$
Delete	<i>O</i> (1)	$O(\log n)$	$O(d \log_d n)$
UNION	<i>O</i> (1)	O(n)	O(n)
Find-Min	O(n)	<i>O</i> (1)	<i>O</i> (1)

Goal. O(log n) INSERT, DECREASE-KEY, EXTRACT-MIN, and UNION.

mergeable heap

29

Binomial tree

Def. A binomial tree of order *k* is defined recursively:

• Order 0: single node.

• Order k: one binomial tree of order k - 1 linked to another of order k - 1.

Binomial heaps

A data structure is described which can be used for representing a collection of priority queues. The primitive operations are insertion, deletion, union, update, and search for an item of earliest priority. Key Words and Phrases: data structures, implementation of set operations, priority queues, mergeable heaps, binary trees CR Categories 4.34, 5.24, 5.25, 5.32, 8.1

Binomial tree properties

Properties. Given an order k binomial tree B_k ,

- Its height is k.
- It has 2^k nodes.
- It has $\binom{k}{i}$ nodes at depth *i*.
- The degree of its root is *k*.
- Deleting its root yields *k* binomial trees *B*_{*k*-1}, ..., *B*₀.

Pf. [by induction on k]

Binomial heap

Def. A binomial heap is a sequence of binomial trees such that:

- Each tree is min-heap ordered.
- There is either 0 or 1 binomial tree of order *k*.

Binomial heap properties

Properties. Given a binomial heap with *n* nodes:

- The node containing the min element is a root of $B_0, B_1, ..., \text{ or } B_k$.
- It contains the binomial tree B_i iff $b_i = 1$, where $b_k \cdot b_2 b_1 b_0$ is binary representation of n.
- It has $\leq \lfloor \log_2 n \rfloor + 1$ binomial trees.
- Its height $\leq \lfloor \log_2 n \rfloor$.

Binomial heap representation

Binomial trees. Represent trees using left-child, right-sibling pointers.

Roots of trees. Connect with singly-linked list, with degrees decreasing from left to right.

Binomial heap: union

Union operation. Given two binomial heaps H_1 and H_2 , (destructively) replace with a binomial heap H that is the union of the two.

Warmup. Easy if H_1 and H_2 are both binomial trees of order k.

- Connect roots of *H*₁ and *H*₂.
- Choose node with smaller key to be root of *H*.

18 6 8 29 10 44 30 23 22 48 33 17 45 32 24 59 55 8 29 10 44 30 23 22 48 33 17 43 32 24 50 53 37 (37 .(12) (12 25 (28 (33) 28 ++(41) (41) 37 38 12 12 18 3 7 5 6 (37) (37

 8
 29
 10
 44

 30
 23
 22
 48
 31
 17

 43
 32
 24
 59
 55
.(12) 28 33 (25) +(41)18

8 29 10 44 30 23 22 48 31 17 45 32 24 50 55 (12 (25) (33) +(41

.(12)-18

Binomial heap: union

Union operation. Given two binomial heaps H_1 and H_2 , (destructively) replace with a binomial heap H that is the union of the two.

Solution. Analogous to binary addition.

Running time. $O(\log n)$.

Pf. Proportional to number of trees in root lists $\leq 2(\lfloor \log_2 n \rfloor + 1)$.

Binomial heap: extract the minimum

Extract-min. Delete the node with minimum key in binomial heap *H*.

• Find root *x* with min key in root list of *H*, and delete.

Binomial heap: decrease key

Decrease key. Given a handle to an element *x* in *H*, decrease its key to *k*.

- Suppose x is in binomial tree B_k .
- Repeatedly exchange *x* with its parent until heap order is restored.

Running time. $O(\log n)$.

Binomial heap: extract the minimum

Extract-min. Delete the node with minimum key in binomial heap *H*.

- Find root *x* with min key in root list of *H*, and delete.
- $H' \leftarrow$ broken binomial trees.
- $H \leftarrow \text{UNION}(H', H)$.

Running time. $O(\log n)$.

Binomial heap: delete

45

47

Delete. Given a handle to an element *x* in a binomial heap, delete it.

- DECREASE-KEY($H, x, -\infty$).
- DELETE-MIN(*H*).

Running time. $O(\log n)$.

Binomial heap: insert

Insert. Given a binomial heap *H*, insert an element *x*.

- $H' \leftarrow \mathsf{MAKE-HEAP}()$.
- $H' \leftarrow \mathsf{INSERT}(H', x)$.
- $H \leftarrow \text{UNION}(H', H)$.

Running time. $O(\log n)$.

Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of INSERT is O(1) and the worst-case cost of EXTRACT-MIN and DECREASE-KEY is $O(\log n)$.

- Pf. Define potential function $\Phi(H_i) = trees(H_i) = \#$ trees in binomial heap H_i .
 - $\Phi(H_0) = 0$.
 - $\Phi(H_i) \ge 0$ for each binomial heap H_i .

Case 1. [INSERT]

- Actual cost c_i = number of trees merged + 1.
- $\Delta \Phi = \Phi(H_i) \Phi(H_{i-1}) =$ number of trees merged 1.
- Amortized cost = $\hat{c}_i = c_i + \Phi(H_i) \Phi(H_{i-1}) = 2$.

Binomial heap: sequence of insertions

Insert. How much work to insert a new node *x*?

- If $n = \dots 0$, then only 1 credit.
- If $n = \dots 01$, then only 2 credits.
- If $n = \dots 011$, then only 3 credits.
- If $n = \dots 0111$, then only 4 credits.

Observation. Inserting one element can take $\Omega(\log n)$ time.

Theorem. Starting from an empty binomial heap, a sequence of n consecutive INSERT operations takes O(n) time.

Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of INSERT is O(1) and the worst-case cost of EXTRACT-MIN and DECREASE-KEY is $O(\log n)$.

- Pf. Define potential function $\Phi(H_i) = trees(H_i) = \#$ trees in binomial heap H_i .
 - $\Phi(H_0) = 0$.
 - $\Phi(H_i) \ge 0$ for each binomial heap H_i .

Case 2. [DECREASE-KEY]

- Actual cost $c_i = O(\log n)$.
- $\Delta \Phi = \Phi(H_i) \Phi(H_{i-1}) = 0.$
- Amortized cost = $\hat{c}_i = c_i = O(\log n)$.

Binomial heap: amortized analysis

Theorem. In a binomial heap, the amortized cost of INSERT is O(1) and the worst-case cost of EXTRACT-MIN and DECREASE-KEY is $O(\log n)$.

- Pf. Define potential function $\Phi(H_i) = trees(H_i) = \#$ trees in binomial heap H_i .
 - $\Phi(H_0) = 0$.
 - $\Phi(H_i) \ge 0$ for each binomial heap H_i .

Case 3. [EXTRACT-MIN or DELETE]

- Actual cost $c_i = O(\log n)$.
- $\Delta \Phi = \Phi(H_i) \Phi(H_{i-1}) \leq \lfloor \log_2 n \rfloor.$
- Amortized cost = $\hat{c}_i = c_i + \Phi(H_i) \Phi(H_{i-1}) = O(\log n)$.

Priority queues performance cost summary

operation	linked list	binary heap	binomial heap	binomial heap
Маке-Неар	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
ISEMPTY	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)	<i>O</i> (1)
INSERT	<i>O</i> (1)	$O(\log n)$	$O(\log n)$	<i>O</i> (1) †
EXTRACT-MIN	O(n)	$O(\log n)$	$O(\log n)$	$O(\log n)$
DECREASE-KEY	<i>O</i> (1)	$O(\log n)$	$O(\log n)$	$O(\log n)$
Delete	<i>O</i> (1)	$O(\log n)$	$O(\log n)$	$O(\log n)$
Union	<i>O</i> (1)	O(n)	$O(\log n)$	O(1) †
Find-Min	O(n)	<i>O</i> (1)	$O(\log n)$	<i>O</i> (1)

† amortized

Hopeless challenge. O(1) INSERT, DECREASE-KEY and EXTRACT-MIN. Why? Challenge. O(1) INSERT and DECREASE-KEY, $O(\log n)$ EXTRACT-MIN.