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PRIORITY QUEUES

‣ binary heaps

‣ d-ary heaps

‣ binomial heaps

‣ Fibonacci heaps
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Priority queue data type

A min-oriented priority queue supports the following core operations:

・MAKE-HEAP():  create an empty heap.

・INSERT(H, x):  insert an element x into the heap.

・EXTRACT-MIN(H):  remove and return an element with the smallest key.

・DECREASE-KEY(H, x, k):  decrease the key of element x to k.

The following operations are also useful:

・IS-EMPTY(H):  is the heap empty?

・FIND-MIN(H):  return an element with smallest key.

・DELETE(H, x):  delete element x from the heap.

・UNION(H1, H2):  replace heaps H1 and H2 with their union.

Note.  Each element contains a key (duplicate keys are permitted)

from a totally-ordered universe.
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Priority queue applications

Applications.

・A* search.

・Heapsort.

・Online median.

・Huffman encoding.

・Prim's MST algorithm.

・Discrete event-driven simulation.

・Network bandwidth management.

・Dijkstra's shortest-paths algorithm.

・...

http://younginc.site11.com/source/5895/fos0092.html
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Binary tree.  Empty or node with links to two disjoint binary trees.

Complete tree.  Perfectly balanced, except for bottom level.

Property.  Height of complete binary tree with n nodes is ⎣log2 n⎦.
Pf.  Height increases (by 1) only when n is a power of 2.  ▪
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Complete binary tree

complete tree with n = 16 nodes (height = 4)
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A complete binary tree in nature
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Binary heap

Binary heap.  Heap-ordered complete binary tree.

Heap-ordered.  For each child, the key in child  ≤  key in parent.
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Pointer representation.  Each node has a pointer to parent and two children.

・Maintain number of elements n.

・Maintain pointer to root node.

・Can find pointer to last node or next node in O(log n) time.
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Explicit binary heap
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Implicit binary heap

Array representation.  Indices start at 1.

・Take nodes in level order.

・Parent of node at k is at ⎣k / 2⎦.

・Children of node at k are at 2k and 2k + 1.
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Binary heap demo

heap ordered
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Insert.  Add element in new node at end; repeatedly exchange new element 

with element in its parent until heap order is restored. 

11

Binary heap:  insert
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Extract min.  Exchange element in root node with last node; repeatedly 

exchange element in root with its smaller child until heap order is restored.
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Binary heap:  extract the minimum
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Decrease key.  Given a handle to node, repeatedly exchange element with 

its parent until heap order is restored.
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Binary heap:  decrease key
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Theorem.  In an implicit binary heap, any sequence of m INSERT, EXTRACT-MIN, 

and DECREASE-KEY operations with n INSERT operations takes O(m log n) time.

Pf.

・Each heap op touches nodes only on a path from the root to a leaf;

the height of the tree is at most log2 n.

・The total cost of expanding and contracting the arrays is O(n).  ▪

Theorem.  In an explicit binary heap with n nodes, the operations INSERT, 

DECREASE-KEY, and EXTRACT-MIN take O(log n) time in the worst case.
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Binary heap:  analysis
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Binary heap:  find-min

Find the minimum.  Return element in the root node.
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Binary heap:  delete

Delete.  Given a handle to a node, exchange element in node with last node; 

either swim down or sink up the node until heap order is restored.
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Binary heap:  union

Union.  Given two binary heaps H1 and H2, merge into a single binary heap.

Observation.  No easy solution:  Ω(n) time apparently required.
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Binary heap:  heapify

Heapify.  Given n elements, construct a binary heap containing them.

Observation.  Can do in O(n log n) time by inserting each element.

Bottom-up method.  For i = n to 1, repeatedly exchange the element in node i 
with its smaller child until subtree rooted at i is heap-ordered.
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Theorem.  Given n elements, can construct a binary heap containing those n 

elements in O(n) time.

Pf.

・There are at most ⎡n / 2h+1⎤ nodes of height h.

・The amount of work to sink a node is proportional to its height h.

・Thus, the total work is bounded by:

Corollary.  Given two binary heaps H1 and H2 containing n elements in total, 

can implement UNION in O(n) time.  
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Binary heap:  heapify
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Priority queues performance cost summary

operation linked list binary heap

MAKE-HEAP O(1) O(1)

ISEMPTY O(1) O(1)

INSERT O(1) O(log n)

EXTRACT-MIN O(n) O(log n)

DECREASE-KEY O(1) O(log n)

DELETE O(1) O(log n)

UNION O(1) O(n)

FIND-MIN O(n) O(1)
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Q.  Reanalyze so that EXTRACT-MIN and DELETE take O(1) amortized time?

Priority queues performance cost summary

operation linked list binary heap binary heap †

MAKE-HEAP O(1) O(1) O(1)

ISEMPTY O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n)

EXTRACT-MIN O(n) O(log n) O(1) †

DECREASE-KEY O(1) O(log n) O(log n)

DELETE O(1) O(log n) O(1) †

UNION O(1) O(n) O(n)

FIND-MIN O(n) O(1) O(1)

†  amortized
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Binary tree.  Empty or node with links to d disjoint d-ary trees.

Complete tree.  Perfectly balanced, except for bottom level.

Fact.  The height of a complete d-ary tree with n nodes is ≤  ⎡logd n⎤.

23

Complete d-ary tree

Insert.  Add node at end; repeatedly exchange element in child with element 

in parent until heap order is restored. 

Running time.  Proportional to height = O(logd n).
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Multiway heap:  insert
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Extract min.  Exchange root node with last node; repeatedly exchange 

element in parent with element in largest child until heap order is restored.

Running time.  Proportional to d ⨉ height = O(d logd n).
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Multiway heap:  extract the minimum
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Decrease key.  Given a handle to an element x, repeatedly exchange it with 

its parent until heap order is restored.

Running time.  Proportional to height = O(logd n).
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Multiway heap:  decrease key
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Priority queues performance cost summary

operation linked list binary heap d-ary heap

MAKE-HEAP O(1) O(1) O(1)

ISEMPTY O(1) O(1) O(1)

INSERT O(1) O(log n) O(logd n)

EXTRACT-MIN O(n) O(log n) O(d logd n)

DECREASE-KEY O(1) O(log n) O(logd n)

DELETE O(1) O(log n) O(d logd n)

UNION O(1) O(n) O(n)

FIND-MIN O(n) O(1) O(1)

CHAPTER 6 (2ND EDITION)

PRIORITY QUEUES

‣ binary heaps

‣ d-ary heaps

‣ binomial heaps

‣ Fibonacci heaps
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Goal.  O(log n) INSERT, DECREASE-KEY, EXTRACT-MIN, and UNION.

Priority queues performance cost summary

operation linked list binary heap d-ary heap

MAKE-HEAP O(1) O(1) O(1)

ISEMPTY O(1) O(1) O(1)

INSERT O(1) O(log n) O(logd n)

EXTRACT-MIN O(n) O(log n) O(d logd n)

DECREASE-KEY O(1) O(log n) O(logd n)

DELETE O(1) O(log n) O(d logd n)

UNION O(1) O(n) O(n)

FIND-MIN O(n) O(1) O(1)

mergeable heap
30

Binomial heaps
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I. Introduction 

In order to design correct and efficient algorithms for 
solving a specific problem, it is often helpful to describe 
our first approach to a solution in a language close to 
that in which the problem is formulated. One such 
language is that of set theory, augmented by primitive 
set manipulation operations. Once the algorithm is out- 
lined in terms of  these set operations, one can then look 
for data structures most suitable for representing each of  
the sets involved. This choice depends only upon the 
collection of primitive operations required for each set. 
It is thus important to establish a good catalogue of  such 
data structures. A summary of  the state of  the art on this 
question can be found in [2]. In this paper, we add to 
this catalogue a data structure which allows efficient 
manipulation of  priority queues. 
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A priority queue is a set; each element of  such a set 
has a name, which is used to uniquely identify the 
element, and a label or priority drawn from a totally 
ordered set. Elements of  the priority queue can be 
thought of  as awaiting service, where the item with the ~ 
smallest label is always to be served next. Ordinary 
stacks and queues are special cases of  priority queues. 

A variety of  applications directly require using prior- 
ity queues: job scheduling, discrete simulation languages 
where labels represent the time at which events are to 
occur, as well as various sorting problems. These are 
discussed, for example, in [2, 3, 5, 11, 15, 17, 24]. Priority 
queues also play a central role in several good algorithms, 
such as optimal code constructions, Chartre's prime 
number generator, and Brown's power series multipli- 
cation (see [16] and [17]); applications have also been 
found in numerical analysis algorithms [10, 17, 19] and 
in graph algorithms for such problems as finding shortest 
paths [2, 13] and minimum cost spanning tree [2, 4, 25]. 

Typical applications require primitive operations 
among the following five: INSERT, DELETE, MIN, UP- 
DATE, and UNION. The operation INSERT (name, label, 
Q) adds an element to queue Q, while DELETE (name) 
removes the element having that name. Operation MIN 
(Q) returns the name of  the element in Q having the least 
label, and UPDATE (name, label) changes the label of  the 
element named. Finally, UNION (Q1, Q2, Q3) merges into 
Qa all elements of  Q1 and Q2; the sets Q1 and Q2 become 
empty. In what follows, we assume that names are 
handled in a separate dictionary [2, 17] such as a hash- 
table or a balanced tree. If  deletions are restricted to 
elements extracted by MIN, such an auxiliary symbol 
table is not needed. 1 

The heap, a truly elegant data structure discovered 
by J. W. Williams and R. W. Floyd, handles a sequence 
of  n primitives INSERT, DELETE, and MIN, and runs in 
O(nlogn) elementary operations using absolutely mini- 
mal storage [17]. For applications in which UNION is 
necessary, more sophisticated data structures have been 
devised, such as 2-3 trees [2, 17], leftist trees [5, 17], and 
binary heaps [9]. 

The data structure we present here handles an arbi- 
trary sequence of  n primitives, each drawn from the five 
described above, in O(nlogn) machine operations and 
O(n) memory cells. It also allows for an efficient treat- 
ment of  a large number of  updates, which is crucial in 
connection with spanning tree algorithms: Our data 
structure provides an implementation (described in 
[25]) of  the Cheriton-Tarjan-Yao [3] minimum cost span- 
ning tree algorithm which is much more straightforward 
than the original one. 

The proposed data structure uses less storage than 
leftist, AVL, or 2-3 trees; in addition, when the primitive 
operations are carefully machine coded from the pro- 
grams given in Section 4, they yield worst case running 
times which compare favorably with those of  their corn- 

We-g'gsume here that indexing through the symbol table is done 
in constant time. 

Communications April 1978 
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the ACM Number 4 
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Binomial tree

Def.  A binomial tree of order k is defined recursively:

・Order 0:  single node.

・Order k:  one binomial tree of order k – 1 linked to another of order k – 1.

B0 B1 B2 B3 B4

Bk-1

Bk-1

BkB0
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Binomial tree properties

Properties.  Given an order k binomial tree Bk,

・Its height is k.

・It has 2k nodes.

・It has       nodes at depth i.

・The degree of its root is k. 

・Deleting its root yields k binomial trees Bk–1, …, B0.

Pf.  [by induction on k]

B4

B1

Bk

Bk+1

B2

B0

(
k
i

)
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Binomial heap

Def.  A binomial heap is a sequence of binomial trees such that:

・Each tree is min-heap ordered.

・There is either 0 or 1 binomial tree of order k.
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Binomial heap representation

Binomial trees.  Represent trees using left-child, right-sibling pointers.

Roots of trees.  Connect with singly-linked list, with degrees decreasing 

from left to right.

50

48 31 17

4410

6

37

3 18

29

6

37

3 18

48

3150

10

4417

29

leftist power-of-2 heap representationbinomial heap

pa
ren

t

le
ft

right

root

35

Binomial heap properties

Properties.  Given a binomial heap with n nodes:

・The node containing the min element is a root of B0,  B1, …, or Bk. 

・It contains the binomial tree Bi iff bi = 1, where bk⋅ b2 b1 b0 is binary 

representation of n.

・It has ≤  ⎣log2 n⎦ + 1 binomial trees.

・Its height  ≤  ⎣log2 n⎦.
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n = 19
# trees = 3
height = 4

binary = 10011

Union operation.  Given two binomial heaps H1 and H2, (destructively)

replace with a binomial heap H that is the union of the two.

Warmup.  Easy if H1 and H2 are both binomial trees of order k.

・Connect roots of H1 and H2.

・Choose node with smaller key to be root of H. 
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Binomial heap:  union

55

45 32

30

24

23 22

50

48 31 17

448 29 10

6

H1 H2



37

55

45 32

30

24

23 22

50

48 31 17

448 29 10

6

37

3 18

41

3328

15

25

7 12

+

38

55

45 32

30

24

23 22

50

48 31 17

448 29 10

6

37

3

41

3328

15

25

7

12

18

18

12

+

39

55

45 32

30

24

23 22

50

48 31 17

448 29 10

6

37

3

41

3328

15

25

7

12

18

25

377

3

18

12

18

12

+

40

55

45 32

30

24

23 22

50

48 31 17

448 29 10

6

37

3

41

3328

15

25

7

12

18

25

377

3

41

28 33 25

3715 7

3

18

12

18

12

+



28

41

55

45 32

30

24

23 22

50

48 31 17

448 29 10

6

37

3

41

3328

15

25

7

18

12

41

33 25

3715 7

3

12

18

25

377

3

41

28 33 25

3715 7

3

18

12

+

42

55

45 32

30

24

23 22

50

48 31 17

448 29 10

6

37

3

41

3328

15

25

7

18

12

41

28 33 25

3715 7

3

3

55

45 32

30

24

23 22

50

48 31 17

448 29 10

18

12

12

18

25

377

41

28 33 25

3715 7

3

6

+

43

19 + 7 = 26
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Binomial heap:  union

Union operation.  Given two binomial heaps H1 and H2, (destructively)

replace with a binomial heap H that is the union of the two.

Solution.  Analogous to binary addition.

Running time.  O(log n).
Pf.  Proportional to number of trees in root lists  ≤  2 ( ⎣log2 n⎦ + 1).   ▪  

1 1 1

1 0 0 1 1

+ 0 0 1 1 1

1 1 0 1 0

19 + 7 = 26



Extract-min.  Delete the node with minimum key in binomial heap H.

・Find root x with min key in root list of H, and delete.
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Binomial heap:  extract the minimum

H

Extract-min.  Delete the node with minimum key in binomial heap H.

・Find root x with min key in root list of H, and delete.

・H' ←  broken binomial trees.

・H  ←  UNION(H', H).

Running time.  O(log n).
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Binomial heap:  extract the minimum

H

H'
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Binomial heap:  decrease key

Decrease key.  Given a handle to an element x in H, decrease its key to k.

・Suppose x is in binomial tree Bk.

・Repeatedly exchange x with its parent until heap order is restored.

Running time.  O(log n).
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Binomial heap:  delete

Delete.  Given a handle to an element x in a binomial heap, delete it.

・DECREASE-KEY(H, x, -∞).

・DELETE-MIN(H).

Running time.  O(log n).
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Binomial heap:  insert

Insert.  Given a binomial heap H, insert an element x.

・H' ←  MAKE-HEAP( ).

・H' ←  INSERT(H', x).

・H  ←  UNION(H', H).

Running time.  O(log n).
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Insert.  How much work to insert a new node x ?

・If n =  .......0, then only 1 credit.

・If n =  .......01, then only 2 credits.

・If n =  .......011, then only 3 credits.

・If n =  .......0111, then only 4 credits.

Observation.  Inserting one element can take Ω(log n) time.

Theorem.  Starting from an empty binomial heap, a sequence of n 

consecutive INSERT operations takes O(n) time.

Pf.  (n / 2) (1) + (n / 4)(2) + (n / 8)(3) + …   ≤  2 n.  ▪

50

Binomial heap:  sequence of insertions
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Theorem.  In a binomial heap, the amortized cost of INSERT is O(1) and the 

worst-case cost of EXTRACT-MIN and DECREASE-KEY is O(log n). 

Pf.  Define potential function Φ(Hi)  =  trees(Hi) = # trees in binomial heap Hi.

・Φ(H0)  =  0.

・Φ(Hi)  ≥  0 for each binomial heap Hi.

Case 1.  [INSERT]

・Actual cost ci   =  number of trees merged + 1.

・∆Φ  =  Φ(Hi) – Φ(Hi–1)  = number of trees merged – 1.

・Amortized cost = ĉi  =  ci  +  Φ(Hi)  –  Φ(Hi–1) = 2.
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Binomial heap:  amortized analysis

Theorem.  In a binomial heap, the amortized cost of INSERT is O(1) and the 

worst-case cost of EXTRACT-MIN and DECREASE-KEY is O(log n). 

Pf.  Define potential function Φ(Hi)  =  trees(Hi) = # trees in binomial heap Hi.

・Φ(H0)  =  0.

・Φ(Hi)  ≥  0 for each binomial heap Hi.

Case 2.  [ DECREASE-KEY ]

・Actual cost ci   =  O(log n).

・∆Φ  =  Φ(Hi) – Φ(Hi–1)  =  0.

・Amortized cost = ĉi  =  ci  =  O(log n).
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Binomial heap:  amortized analysis



Theorem.  In a binomial heap, the amortized cost of INSERT is O(1) and the 

worst-case cost of EXTRACT-MIN and DECREASE-KEY is O(log n). 

Pf.  Define potential function Φ(Hi)  =  trees(Hi) = # trees in binomial heap Hi.

・Φ(H0)  =  0.

・Φ(Hi)  ≥  0 for each binomial heap Hi.

Case 3.  [ EXTRACT-MIN or DELETE ]

・Actual cost ci   =  O(log n).

・∆Φ  =  Φ(Hi) – Φ(Hi–1)  ≤  ⎣log2 n⎦.

・Amortized cost = ĉi  =  ci  +  Φ(Hi)  –  Φ(Hi–1)  =  O(log n).   ▪
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Binomial heap:  amortized analysis

54

Hopeless challenge.  O(1) INSERT, DECREASE-KEY and EXTRACT-MIN. Why?

Challenge.  O(1) INSERT and DECREASE-KEY, O(log n) EXTRACT-MIN.

Priority queues performance cost summary

operation linked list binary heap binomial heap binomial heap

MAKE-HEAP O(1) O(1) O(1) O(1)

ISEMPTY O(1) O(1) O(1) O(1)

INSERT O(1) O(log n) O(log n) O(1) †

EXTRACT-MIN O(n) O(log n) O(log n) O(log n)

DECREASE-KEY O(1) O(log n) O(log n) O(log n)

DELETE O(1) O(log n) O(log n) O(log n)

UNION O(1) O(n) O(log n) O(1) †

FIND-MIN O(n) O(1) O(log n) O(1)

†  amortized

homework


