THOMAS H.CORMEN
CHARLES E. LEISERSON
RONALD L. RIVEST

CLIFFORD STEIN

INTRODUCTION TO

Lecture slides by Kevin Wayne

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

DATA STRUCTURES

» amortized analysis

» binomial heaps

» Fibonacci heaps

» union-find

Last updated on Apr 8, 2013 6:13 AM

Data structures

Static problems. Given an input, produce an output.
Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

Dynamic problems. Given a sequence of operations (given one at a time),
produce a sequence of outputs.
Ex. Stack, queue, priority queue, symbol table, union-find,

Algorithm. Step-by-step procedure to solve a problem.
Data structure. Way to store and organize data.
Ex. Array, linked list, binary heap, binary search tree, hash table, ...

1 2 3 4 5 6 7 8

33 22 55 23 16 63 86 9

Appetizer

Goal. Design a data structure to support all operations in O(1) time.
* INIT(n): create and return an initialized array (all zero) of length .
* READ(A, i): return i" element of array.
* WRITE(A, i, value): set i element of array to value.

true in C or C++, but not Java

Assumptions. o
* Can MALLOC an uninitialized array of length n in O(1) time.
* Given an array, can read or write i* element in O(1) time.

Remark. An array does INIT in O(n) time and READ and WRITE in O(1) time.

Appetizer

Data structure. Three arrays A[l..n], B[1..n], and C[1..n], and an integer k.
* A[i] stores the current value for READ (if initialized).
* k= number of initialized entries.
* C[j] = index of j” initialized entry for j=1, ..., k.
* If C[j] =i, then B[i]=j forj=1, ...,k

Theorem. A[i] is initialized iff both 1 <BJ[i{] <k and C[B[i]] = i.
Pf. Ahead.

All @ 2 22 55 99 7 33 7 ?

B[] ? 3 4 1 ? 2 ? ?

c[] 4 6 2 3 2?2 2 1 2

k=4

A[4]1=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

Appetizer

INIT (A, n) READ (A, i)

k < 0. IF (INITIALIZED (A[i]))
A < MALLOC(n). RETURN A[i].

B < MALLOC(n). ELSE

C < MALLOC(n). RETURN O.

s <= MALLOC(n).

INITIALIZED (A, i)

IF (1 <=BJli] < k) and (C[BJi]] = i)
RETURN true.
ELSE

RETURN false.

WRITE (A, i, value)

IF (INITIALIZED (A[i]))
Ali] <= value.
ELSE
k<—k+1.
Ali] <= value.
Bli] < k.
Clk] < i.

Appetizer

Theorem. A[i] is initialized iff both 1 < B[i] < kand C[B[{]] = i.
Pf. =

* Suppose A[i] is the j* entry to be initialized.

* Then C[j]l =i and B[i] =}.

* Thus, C[B[i]] = i.

A[l 2 22 55 99 ? 33 ? ?
Bl ? 3 4 1 2 2 72 72
c[] 4 6 2 3 ?2 2 7 2

k=4

A[4]1=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

Appetizer

Theorem. A[i] is initialized iff both 1 < B[i] < kand C[B[{]] = i.
Pf. =
* Suppose A[i] is uninitialized.
* If B[i] <1 or B[i] > k, then A[i] clearly uninitialized.
* If 1 < B[i] < k by coincidence, then we still can't have C[BJ[i]] = i
because none of the entries C[1.. k] can equal i. =

A[l 2 22 55 99 ? 33 2 ?
BI] ? 3 4 1 2?2 2 ? 2
c[] 4 6 2 3 2?2 2 1 2

k=4

A[4]1=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

AMORTIZED ANALYSIS

CHARLES E. LEISERSON

RONALD L. RIVEST

CLIFFORD STEIN

» binary counter

» multipop stack

» dynamic table

Lecture slides by Kevin Wayne

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on Apr 8, 2013 6:13 AM

Amortized analysis

Worst-case analysis. Determine worst-case running time of a data structure
operation as function of the input size. \

can be too pessimistic if the only way to
encounter an expensive operation is if there
were lots of previous cheap operations

Amortized analysis. Determine worst-case running time of a sequence of
data structure operations as a function of the input size.

Ex. Starting from an empty stack implemented with a dynamic table, any
sequence of n push and pop operations takes O(n) time in the worst case.

Amortized analysis: applications

* Splay trees.

 Dynamic table.

* Fibonacci heaps.

« Garbage collection.

« Move-to-front list updating.

* Push-relabel algorithm for max flow.

« Path compression for disjoint-set union.

« Structural modifications to red-black trees.

« Security, databases, distributed computing, ...

SIAM J. ALG. DISC. METH. © 1985 Society for Industrial and Applied Mathematics
Vol. 6, No. 2, April 1985 016

AMORTIZED COMPUTATIONAL COMPLEXITY*

ROBERT ENDRE TARJANT

Abstract. A powerful technique in the complexity analysis of data structures is amortization, or averaging
over time. Amortized running time is a realistic but robust complexity measure for which we can obtain
surprisingly tight upper and lower bounds on a variety of algorithms. By following the principle of designing
algorithms whose amortized complexity is low, we obtain “self-adjusting” data structures that are simple,
flexible and efficient. This paper surveys recent work by several researchers on amortized complexity.

ASM(MOS) subject classifications. 68C25, 68E05

10

< AMORTIZED ANALYSIS

CHARLES E. LEISERSON

RONALD L. RIVEST

\ CLIFFORD STEIN
B S

» binary counter

CHAPTER 17

Binary counter

Increment a k-bit binary counter (mod 2%).

Goal.

jh least significant bit of counter.

Representation. gq;

\b\%\v\\\%\g\

QAALE

W

Lol

N

Counter
value

= B) I S B S5 e (G [1G] (S [C5) e (G e 16
CO ——=HOK — 100 —— OO — = O
COOO O —— = 1O OO — — — = O
CO O OO OOO— v — v — v = O
SO OO OO OO OO O OO0 OO —
SO OO OO OO OO O OO0 OO0
SO OO OO OO OO O OO0 OO0
Do e e @9

S — ANtV O~ O NN <t n O
— — = — — —

o
o

Number of bits flipped.

Cost model.

12

Binary counter

Goal. Increment a k-bit binary counter (mod 2%).
Representation. a;=j least significant bit of counter.

e SSERSRNS
0 0000O0O0O00O
1 0000O0O001
2 0000O0O0T10
3 0000O00T11
4 0000O0T1O0®0
5 0000O0T101
6 0000O0T1T10
7 0000O0T1T11
8 00001000
9 00001001
10 00001010
11 00001011
12 00001100
13 00001101
14 00001110
15 00001111
16 00010000

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O k) bits.
Pf. At most k bits flipped per increment. =

13

Aggregate method (brute force)

Aggregate method. Sum up sequence of operations, weighted by their cost.

Total
cost

D ?V\Q/\

SN

Counter
value

BT EEGo 0 SO NG G
=010 12 0 = eer e
O —w HOBO —w O ——H O — = O
SO0 —— "0 OO O — — — O
SO OO0 — — — — — — — — O
QO OO OO OO OO OO0 OO —
eclolololololololchslslololeoh=lah)
SO OO0 OO O OO OO0 OO0

Do e e @9

S — ANtV O~ O NN <t n O
— — = — — —

o
o

14

Binary counter: aggregate method

Starting from the zero counter, in a sequence of n INCREMENT operations:
* Bit O flips n times.
* Bit 1 flips [n/2] times.
* Bit 2 flips | n/4] times.

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.
* Bitj flips [n/2/] times. -
: : : — | n =1
* The total number of bits flipped is) b—jJ < nE;Q—J
]:

7=0

= 2n =

Remark. Theorem may be false if initial counter is not zero.

15

Accounting method (banker's method)

Assign different charges to each operation.

* D = data structure after operation I. can be more or less
than actual cost

c; = actual cost of operation i.
* ¢ =amortized cost of operation i = amount we charge operation i.

* When é > c¢;, we store credits in data structure D; to pay for future ops.
Initial data structure D, starts with zero credits.

Key invariant. The total number of credits in the data structure > 0.

16

Accounting method (banker's method)

Assign different charges to each operation.

* D = data structure after operation I. can be more or less
than actual cost

c; = actual cost of operation i.

* ¢ =amortized cost of operation i = amount we charge operation i.

* When é > c¢;, we store credits in data structure D; to pay for future ops.
Initial data structure Dy starts with zero credits.

Key invariant. The total number of credits in the data structure > 0.

Zéz — ZCZ' Z 0
=1 =1

Theorem. Starting from the initial data structure Dy, the total actual cost of
any sequence of n operations is at most the sum of the amortized costs.
Pf. The amortized cost of the sequence of operations is: zn:c > f:c .

=1 1=1

Intuition. Measure running time in terms of credits (time = money).

17

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each bit that is set to 1 has one credit.

Accounting.
* Flip bit j from 0 to 1: charge two credits (use one and save one in bit j).

increment

18

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each bit that is set to 1 has one credit.

Accounting.
* Flip bit j from 0 to 1: charge two credits (use one and save one in bit j).

* Flip bit jfrom 1 to 0: pay for it with saved credit in bit j.

increment

19

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each bit that is set to 1 has one credit.

Accounting.
* Flip bit j from 0 to 1: charge two credits (use one and save one in bit j).

* Flip bit jfrom 1 to 0: pay for it with saved credit in bit j.

20

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each bit that is set to 1 has one credit.

Accounting.
* Flip bit j from 0 to 1: charge two credits (use one and save one in bit j).
* Flip bit jfrom 1 to 0: pay for it with saved credit in bit j.

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.

Pf. The algorithm maintains the invariant that any bit that is currently set to
1 has one credit = number of credits in each bit = 0. =

21

Potential method (physicist's method)

Potential function. ®(D;) maps each data structure D; to a real number s.t.:
« d(Dy) = 0.
* ®(D;) = 0 for each data structure D,.

Actual and amortized costs.
* ¢; = actual cost of i*» operation.
* & =ci+ D) — (D)) = amortized cost of i"» operation.

o

1
~

22

Potential method (physicist's method)

Potential function. ®(D;) maps each data structure D; to a real number s.t.:
« d(Dy) = 0.
* ®(D;) = 0 for each data structure D,.

Actual and amortized costs.
* ¢; = actual cost of i*» operation.
* & =ci+ D) — (D)) = amortized cost of i"» operation.

Theorem. Starting from the initial data structure Do, the total actual cost of
any sequence of n operations is at most the sum of the amortized costs.
Pf. The amortized cost of the sequence of operations is:

n

Zc = Z(Ci—I—CID(DZ-)—CI)(Di_l)

23

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
« ®(Dy) = 0.
* ®(D;) = 0 for each D..

increment

24

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
« ®(Dy) = 0.
* ®(D;) = 0 for each D..

increment
3 2 1 0 X
7 6 5 4 -8 72
o DL
o 1 0 1 0 ©0 0 o0 I A T4
S 7 <

25

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
« ®(Dy) = 0.
* ®(D;) = 0 for each D..

26

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
« d(Dy) = 0.

* ®(D;) = 0 for each D..

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

* Suppose that the i increment operation flips # bits from 1 to O.

* The actual cost ¢; < #; + 1. <«—— operation sets one bit to 1 (unless counter resets to zero)
* The amortized cost & = ¢; + ®(D)) — P(Diy)

ci+1— ¢

2. =

IA

IA

27

Famous potential functions

Fibonacci heaps. ®(H) = trees(H) + 2 marks(H).

Splay trees. &(T) = |log, size(x)]

xeTl

Move-to-front. ®(L) =2 x inversions(L, L*).

Preflow-push. @®(f) = Z height(v)

v:excess(v) >0

Red-black trees. &(T) =) w(z)

x€T

(0 if x is red

1 if x is black and has no red children
0 if z is black and has one red child
2

if 2 is black and has two red children

\

28

< AMORTIZED ANALYSIS

CHARLES E. LEISERSON

RONALD L. RIVEST

\ CLIFFORD STEIN
B S

» multipop stack

SECTION 17.4

Multipop stack

Goal. Support operations on a set of n elements:
* PUSH(S,x): push object x onto stack S.
* Popr(S): remove and return the most-recently added object.
* MULTIPOP(S, k): remove the most-recently added k objects.

MULTIPOP (S, k)

FOR i=1TO Kk

PoP ().

Exceptions. We assume Pop throws an exception if stack is empty.

30

Multipop stack

Goal. Support operations on a set of n elements:
* PUSH(S,x): push object x onto stack S.
* Popr(S): remove and return the most-recently added object.
* MULTIPOP(S, k): remove the most-recently added k objects.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MuULTIPOP operations takes O(#?) time.
Pf.
_ _ _ overly pessimistic
* Use a singly-linked list. upper bound
* Pop and PusH take O(1) time each.
* MuLTIPOP takes O(n) time. =

\ 4
AN
®
Y
—
®
Y
(99
[J

top e——| 1 °

31

Multipop stack: aggregate method

Goal. Support operations on a set of n elements:
* PUSH(S,x): push object x onto stack S.
* Popr(S): remove and return the most-recently added object.
* MULTIPOP(S, k): remove the most-recently added k objects.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MuULTIPOP operations takes O(n) time.
Pf.
* An object is popped at most once for each time it is pushed onto stack.
* There are < n PusH operations.
* Thus, there are < n POP operations
(including those made within MuLTIPOP). =

32

Multipop stack: accounting method

Credits. One credit pays for a push or pop.

Accounting.
* PUSH(S,x): charge two credits.
- use one credit to pay for pushing x now
- store one credit to pay for popping x at some point in the future
* No other operation is charged a credit.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MULTIPOP operations takes O(n) time.

Pf. The algorithm maintains the invariant that every object remaining on
the stack has 1 credit = number of credits in data structure > 0. =

33

Multipop stack: potential method

Potential function. Let ®(D) = number of objects currently on the stack.
« O(Dy) = 0.
* ®(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MuULTIPOP operations takes O(n) time.

Pf. [Case 1: push]
* Suppose that the i» operation is a PUSH.
* The actual cost ¢; =1.
* The amortized cost ¢ = ¢; +DPD;) — PDi) =1 + 1 = 2.

34

Multipop stack: potential method

Potential function. Let ®(D) = number of objects currently on the stack.
« O(Dy) = 0.
* ®(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MuULTIPOP operations takes O(n) time.

Pf. [Case 2: pop]
* Suppose that the i operation is a POP.
* The actual cost ¢; =1.
* The amortized cost ¢ = ¢ + (D) — PD) =1 -1 = 0.

35

Multipop stack: potential method

Potential function. Let ®(D) = number of objects currently on the stack.

« ®(Dy) = 0.
* ®(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MuULTIPOP operations takes O(n) time.

Pf. [Case 3: multipop]
* Suppose that the i"» operation is a MULTIPOP of k objects.
* The actual cost ¢; =k.
* The amortized cost ¢ = ¢i + ®(D) — PDi1) =k — k = 0. =

36

< AMORTIZED ANALYSIS

CHARLES E. LEISERSON

RONALD L. RIVEST

\ CLIFFORD STEIN
B S

» dynamic table

SECTION 17.4

Dynamic table

Goal. Store items in a table (e.g., for hash table, binary heap).
 Two operations: INSERT and DELETE.
- too many items inserted = expand table.
- too many items deleted = contract table.
* Requirement: if table contains m items, then space = O(m).

Theorem. Starting from an empty dynamic table, any intermixed sequence
of n INSERT and DELETE operations takes O(n?) time.

overly pessimistic

Pf. A single INSERT or DELETE takes O(n) time. = upper bound

38

Dynamic table: insert only

* Initialize table to be size 1.
» INSERT: if table is full, first copy all items to a table of twice the size.

insert old size new size cost
1 1 1 —
2 1 2 1
3 2 4 2
4 4 4 —
5 4 8 4
6 8 8 —
7 8 8 -
8 8 8 —
9 8 16 8

Cost model. Number of items that are copied.

Dynamic table: insert only

Theorem. [via aggregate method] Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ¢; denote the cost of the i insertion.

v if 2 — 1 is an exact power of 2
C; — .
1 otherwise

Starting from empty table, the cost of a sequence of n INSERT operations is:

n UgnJ '

St Y

i=1 §=0
< n+2n

40

Dynamic table: insert only

41

Dynamic table: insert only

Accounting.
* INSERT: charge 3 credits (use 1 credit to insert; save 2 with new item).

Theorem. [via accounting method] Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. The algorithm maintains the invariant that there are 2 credits with each
item in right half of table.

« When table doubles, one-half of the items in the table have 2 credits.

* This pays for the work needed to double the table. =

42

Dynamic table: insert only

Theorem. [via potential method] Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D)) =2 size(D;) — capacity(D;).

I 1

number of capacity of
elements array
b, 7~
(S
1 2 3 4 5 6 > . T4 &

43

Dynamic table: insert only

Theorem. [via potential method] Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D)) =2 size(D;) — capacity(D;).

I 1

number of capacity of
elements array

Case 1. [does not trigger expansion] size(D;) < capacity(Di-).
* Actual cost ¢;=1.
* ®(D) - DDy = 2.
* Amortized costs ¢ = ¢ + ®(D;)) — ®(Diy) =1+2=3.

Case 2. [triggers expansion] size(D;) =1 + capacity(Di1).
* Actual cost ¢; =1 + capacity(D;-1).
* O(D)— P(Di1) =2 — capacity(D;) + capacity(Di—1) = 2 — capacity(Di_1).
* Amortized costs ¢ = ¢i + ®(D)) — P(D;) =1+2=3. =

Dynamic table: doubling and halving

Thrashing.
* |nitialize table to be of fixed size, say 1.
« INSERT: if table is full, expand to a table of twice the size.
« DELETE: if table is J2-full, contract to a table of half the size.

Efficient solution.
 Initialize table to be of fixed size, say 1.
» INSERT: if table is full, expand to a table of twice the size.
o DEeLETE: if table is J4a-full, contract to a table of half the size.

Memory usage. A dynamic table uses O(n) memory to store n items.
Pf. Table is always at least Y4-full (provided it is not empty). =

45

Dynamic table: insert and delete

Theorem. [via aggregate method] Starting from an empty dynamic table,
any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

Pf.
* In between resizing events, each INSERT and DELETE takes O(1) time.

« Consider total amount of work between two resizing events.

Just after the table is doubled to size m, it contains m/2 items.

Just after the table is halved to size m, it contains m/2 items.

Just before the next resizing, it contains either m/4 or 2 m items.

After resizing to m, we must perform Q(m) operations before we resize

again (either = m insertions or > m/4 deletions).
* Resizing a table of size m requires O(m) time. =

46

Dynamic table: insert and delete

insert

delete

resize and delete

47

Dynamic table: insert and delete

Accounting.
« INSERT: charge 3 credits (1 credit for insert; save 2 with new item).
 DELETE: charge 2 credits (1 credit to delete, save l&n emptied slot).

discard any existing credits

Theorem. [via accounting method] Starting from an empty dynamic table,
any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

Pf. The algorithm maintains the invariant that there are 2 credits with each
item in the right half of table; 1 credit with each empty slot in the left half.
« When table doubles, each item in right half of table has 2 credits.
* When table halves, each empty slot in left half of table has 1 credit. =

48

Dynamic table: insert and delete

Theorem. [via potential method] Starting from an empty dynamic table,
any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

Pf sketch.
* Let a(D;) = size(D;) / capacity(D;).

L capacity(D;) — size(D;) if a <1/2

®(D;) = {QSiZG(Di) — capacity(D;) ifa>1/2
2

* When a(D) = 1/2, ®(D) =0. [zero potential after resizing]
* When a(D) = 1, ®(D) = size(D;). [can pay for expansion]
* When a(D) = 1/4, ®(D) = size(D;). [can pay for contraction]

49

