Data structures

Static problems. Given an input, produce an output.

prows weemn DATA STRUCTURES Ex. Sorting, FFT, edit distance, shortest paths, MST, max-flow, ...

RONALD L. RIVEST

CLIFFORD STEIN

» amortized ana/ysis Dynamic problems. Given a sequence of operations (given one at a time),

» binomial heaps produce a sequence of outputs.
Ex. Stack, queue, priority queue, symbol table, union-find,

» Fibonacci heaps

» union-find Algorithm. Step-by-step procedure to solve a problem.
Data structure. Way to store and organize data.
Ex. Array, linked list, binary heap, binary search tree, hash table, ...

1 2 3 4 5 6 7 8
Lecture slides by Kevin Wayne 33 22 55 23 16 63 86 9

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

| | \ [N
LV =4 [[3]
Last updated on Apr 8, 2013 6:13 AM
Appetizer Appetizer
Goal. Design a data structure to support all operations in O(1) time. Data structure. Three arrays A[l..n], B[1..n], and C[1..n], and an integer k.
* INIT(n): create and return an initialized array (all zero) of length n. * A[i] stores the current value for READ (if initialized).
* READ(A, i): return i” element of array. * k= number of initialized entries.
* WRITE(4, i, value): set i element of array to value. * C[jl = index of j* initialized entry for j=1, ..., k.

* If C[j1=1i, then Bli]=jforj=1,... k.
. true in C or C++, but not Java
Assumptions.

* Can MALLOC an uninitialized array of length »n in O(1) time. Theorem. A[i] is initialized iff both 1 < B[i] <k and C[B[i]] = i.
* Given an array, can read or write i element in O(1) time. Pf. Ahead.
1 2 3 4 5 6 7 8
Remark. An array does INIT in O(n) time and READ and WRITE in O(1) time. A[l 2 22 55 99 ? 33 ? 2

BIl] ? 3 4 1 2?2 2 2 2

c[] 4 6 2 3 7 2 7 7

k=4

A[4]=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

Appetizer Appetizer

Theorem. A[i] is initialized iff both 1 <B[i] < kand C[B[{]] = i.

Pf. =
INIT (A,) READ (4, i) WRITE (A, i, value) * Suppose A[i] is the ji entry to be initialized.
* Then C[jl=i and B[i] =}.
k < 0. IF (INITIALIZED (A[i])) IF (INITIALIZED (A[i])) . .
* Thus, C[B[i]] = i.
A < MALLOC(n). RETURN A[i]. Ali] <= value.
B < MALLOC(n). ELSE ELSE
C < MALLOC(n). RETURN 0. k<—k+1.
s < MALLOC(n). Ali] <= value. 12 3 4 s 6 7 8
Bli] < k. All ? 22 55 99 ? 33 ? ?
Clk] < i.

INITIALIZED (A, i)
BIl ? 3 4 1 ? 2 1?2 2
IrF (1 =BJ[i] < k) and (C[B[i]] = i)

RETURN true.
C 4 6 2 3 ? ? ? ?
ELSE L]

RETURN false. Koo

A[4]=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order

Appetizer

Theorem. A[{] is initialized iff both 1 <B[i] < kand C[B][i]] = i.

Pf. « AMORTIZED ANALYSIS
* Suppose A[i] is uninitialized. BemALRLLMEET
* If B[i] <1 or B[i] > k, then A[i] clearly uninitialized. — > binary counter

* If 1 < B[i] < k by coincidence, then we still can't have C[B[i]] = i
because none of the entries C[1.. k] can equal i. =

» multipop stack

» dynamic table

1 2 3 4 5 6 7 8 INTRODUCTION TO

Al 2 22 55 99 2 33 2?2 2 ALGORITHMS

uuuuuuuuu o

Lecture slides by Kevin Wayne

http://www.cs.princeton.edu/~wayne/kleinberg-tardos
c[1 4 6 2 3 ? 2 7 2
k=4

A[4]=99, A[6]=33, A[2]=22, and A[3]=55 initialized in that order
7 Last updated on Apr 8, 2013 6:13 AM

Amortized analysis Amortized analysis: applications

Worst-case analysis. Determine worst-case running time of a data structure » Splay trees.
operation as function of the input size. \ * Dynamic table.
can be too pessimistic if the only way to . .
encounter an expensive operation is if there * Fibonacci heaps.

were lots of previous cheap operations . Garbage collection

* Move-to-front list updating.

* Push-relabel algorithm for max flow.
Amortized analysis. Determine worst-case running time of a sequence of » Path compression for disjoint-set union.
data structure operations as a function of the input size. « Structural modifications to red-black trees.

» Security, databases, distributed computing, ...
Ex. Starting from an empty stack implemented with a dynamic table, any
sequence of n push and pop operations takes O(n) time in the worst case.

SIAM J. ALG. DISC. METH. © 1985 Society for Industrial and Applied Mathematics
Vol. 6, No. 2, April 1985 o6

AMORTIZED COMPUTATIONAL COMPLEXITY*

ROBERT ENDRE TARJAN{

Abstract. A powerful technique in ity analysis of data i ization, or averaging
over time. Amortized running time is a realistic but robust complexity measure for which we can obtain
surprisingly tight upper and lower bounds on a variety of algorithms. By following the principle of designing
algorithms whose amortized complexity is low, we obtain “self-adjusting” data structures that are simple,
flexible and efficient. This paper surveys recent work by several researchers on amortized complexity.

ASM(MOS) subject classifications. 68C25, 68E0S

Binary counter

Goal. Increment a k-bit binary counter (mod 2%).

AMORTIZED ANALYSIS Representation. a;=jih least significant bit of counter.
. Counter <
» binary counter SN CCCCLURS
0 00000O0O0O0
1 00000001
2 00000010
3 00000011
4 00000100
5 00000101
6 00000110
7 00000111
8 00001000
INTRODUCTION TO 9 00001001
ALGORITHMS D 0boEIDIL
11 00001011
12 00001100
13 00001 101
14 00001110
15 00001111
CHAPTER 17 16 00010000

Cost model. Number of bits flipped.

Binary counter Aggregate method (brute force)

Goal. Increment a k-bit binary counter (mod 2¥). Aggregate method. Sum up sequence of operations, weighted by their cost.
Representation. a; = j* least significant bit of counter.

C Ci Total
vl SOSRAANRS vie. SOORNANS con
0 00000O0O00 0 000000O00 0
1 00000001 1 00000001 1
2 00000010 2 0000O00O0T10 3
3 00000011 3 00000011 4
4 00000100 4 00000100 7
5 00000101 5 00000101 8
6 00000110 6 00000110 10
7 00000111 7 00000111 11
8 0000 0 010 00001000 15
9 00001001 9 00001001 16
10 00001010 10 00001010 18
11 00001011 11 00001011 19
12 00001100 12 00001100 22
13 00001101 13 00001101 23
14 00001110 14 00001110 25
15 00001111 15 00001111 26
16 00010000 16 00010000 31
Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O k) bits.
Pf. At most k bits flipped per increment. =
13
Binary counter: aggregate method Accounting method (banker's method)
Starting from the zero counter, in a sequence of n INCREMENT operations: Assign different charges to each operation.
* Bit O flips n times. * D; =data structure after operation i. can be more or less
. . . . than actual cost
* Bit 1 flips [n/2] times. * ¢; =actual cost of operation i.
* Bit 2 flips | n/4] times. * ¢ =amortized cost of operation i = amount we charge operation i.
. ... * When é > ¢;, we store credits in data structure D; to pay for future ops.

* Initial data structure Do starts with zero credits.
Theorem. Starting from the zero counter, a sequence of n INCREMENT

operations flips O(n) bits. Key invariant. The total number of credits in the data structure > 0.
Pf. b - e =0
* Bitj flips | n/2/] times. - =1 i=1
. . . — | n 2 1
+ The total number of bits flipped is ZO LQ—]J < "2%?
J= J=

=2n =

Remark. Theorem may be false if initial counter is not zero.

Accounting method (banker's method)

Assign different charges to each operation.

can be more or less
than actual cost

* D; =data structure after operation i.
* ¢; =actual cost of operation i.

* ¢ =amortized cost of operation i = amount we charge operation i.

* When ¢ > c;, we store credits in data structure D; to pay for future ops.
* Initial data structure Dy starts with zero credits.

Key invariant. The total number of credits in the data structure > 0.

Z& — ZCZ >0
i=1 i=1

Theorem. Starting from the initial data structure Dy, the total actual cost of
any sequence of n operations is at most the sum of the amortized costs.
Pf. The amortized cost of the sequence of operations is: Z(> icp .

i=1

i=1

Intuition. Measure running time in terms of credits (time = money).

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each bit that is set to 1 has one credit.

Accounting.
* Flip bit j from 0 to 1: charge two credits (use one and save one in bit j).
* Flip bit jfrom 1 to 0: pay for it with saved credit in bit j.

increment

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each bit that is set to 1 has one credit.

Accounting.
* Flip bit j from 0 to 1: charge two credits (use one and save one in bit j).

increment
7 6 5 4 3 2 1 0
0 1 0 0 1 1 1 1
.ﬂﬁ’\l 45\14.@‘\1;&?\\4§\1
< < < <

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each bit that is set to 1 has one credit.

Accounting.
* Flip bit j from 0 to 1: charge two credits (use one and save one in bit j).
* Flip bit jfrom 1 to 0: pay for it with saved credit in bit j.

Binary counter: accounting method

Credits. One credit pays for a bit flip.
Invariant. Each bit that is set to 1 has one credit.

Accounting.
* Flip bit j from 0 to 1: charge two credits (use one and save one in bit j).

* Flip bit jfrom 1 to 0: pay for it with saved credit in bit j.

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.

Pf. The algorithm maintains the invariant that any bit that is currently set to
1 has one credit = number of credits in each bit = 0. =

Potential method (physicist's method)

Potential function. ®(D;) maps each data structure D; to a real number s.t.:
s ®(Dy) = 0.
* ®(D;) = 0 for each data structure D;.

Actual and amortized costs.
* ¢; = actual cost of i operation.
* ¢ =ci + D)) — P(Di-1) = amortized cost of i operation.

Theorem. Starting from the initial data structure Dy, the total actual cost of
any sequence of n operations is at most the sum of the amortized costs.
Pf. The amortized cost of the sequence of operations is:

Z & = Z(ci + ®(D;) — ®(D;_1)

= ici aF (I)(Dn) - CI)(DU)
> ici []

i=1
23

Potential method (physicist's method)

Potential function. ®(D;) maps each data structure D; to a real number s.t.:

* ®(Do) = 0.
* ®(D;) = 0 for each data structure D..

Actual and amortized costs.
* ¢; = actual cost of i operation.
* ¢ =ci + ®D) - D) =amortized cost of i operation.

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
s ®(Dy) = 0.
* ®(D;) = 0 for each D;.

increment
7 6 5 4 3 2 1 0 =X
D TN
SN
0 1 0 0 1 1 1 1 AN A
S N~

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
* ®(Dg) = 0.
* ®(D;) = 0 for each D..

\

increment
7 6 5 4 3 2 0 ’ 4\.5‘9,.’-'? ‘.
KR e 0
0 1 0 1 0 0 0 0 INTPAMN A
S -~

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
s ®(Dy) = 0.
* ®(D;) = 0 for each D..

\

Theorem. Starting from the zero counter, a sequence of n INCREMENT
operations flips O(n) bits.
Pf.

* Suppose that the i" increment operation flips # bits from 1 to 0.

* The actual cost ¢c; < #; + . <«—— operation sets one bit to 1 (unless counter resets to zero)

* The amortized cost ¢; = ¢; + (D) — D(Diy1)

A

c+1—-1¢
2. =

IA

25

27

Binary counter: potential method

Potential function. Let ®(D) = number of 1 bits in the binary counter D.
* ®(Do) = 0.
* ®(D;) = 0 for each D;.

/;3,'(,’

Famous potential functions

Fibonacci heaps. ®(H) = trees(H) + 2 marks(H).

Splay trees. &(T) = " |log, size(z)]

aBEI
Move-to-front. ®(L) =2 x inversions(L, L*).

Preflow-push. &(f) = Z

v:excess(v) >0

height(v)

Red-black trees. &(T) = Y w(x)
z€T
0 ifzisred

if « is black and has no red children

if x is black and has one red child

N o =

if « is black and has two red children

ALGORITHMS

AMORTIZED ANALYSIS

SECTION 17.4

Multipop stack

» multipop stack

Goal. Support operations on a set of n elements:
* PUSH(S,x): push object x onto stack S.

* Pop(S): remove and return the most-recently added object.

* MULTIPOP(S,k): remove the most-recently added k objects.

Theorem. Starting from an empty stack, any intermixed sequence of n

PusH, Pop, and MuLTIPOP operations takes O(n?) time.

Pf.
* Use a singly-linked list.

overly pessimistic
upper bound

* Pop and PusH take O(1) time each.

* MuLTIPop takes O(n) time.

top ‘l“‘4‘

Multipop stack

Goal. Support operations on a set of n elements:
* PUSH(S,x): push object x onto stack S.
* Pop(S): remove and return the most-recently added object.
* MuLTIPOP(S, k): remove the most-recently added k objects.

MuLTIPOP (S, k)

FOrR i=1TOk

Por (S).

Exceptions. We assume Pop throws an exception if stack is empty.

Multipop stack: aggregate method

Goal. Support operations on a set of n elements:
* PUSH(S,x): push object x onto stack S.
* Pop(S): remove and return the most-recently added object.
* MULTIPOP(S,k): remove the most-recently added k objects.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MULTIPOP operations takes O(n) time.
Pf.
* An object is popped at most once for each time it is pushed onto stack.
* There are < n PUSH operations.
* Thus, there are < n POP operations
(including those made within MuULTIPOP). =

Multipop stack: accounting method

Credits. One credit pays for a push or pop.

Accounting.
* PUSH(S,x): charge two credits.
- use one credit to pay for pushing x now
- store one credit to pay for popping x at some point in the future
* No other operation is charged a credit.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MULTIPOP operations takes O(n) time.

Pf. The algorithm maintains the invariant that every object remaining on

the stack has 1 credit = number of credits in data structure = 0. =

Multipop stack: potential method

Potential function. Let ®(D) = number of objects currently on the stack.
s ®(Dy) = 0.
* ®(D;) = 0 for each D..

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MULTIPOP operations takes O(n) time.

Pf. [Case 2: pop]
* Suppose that the i*» operation is a Pop.
* The actual cost ¢; =1.
* The amortized cost é = ¢i +®(D)) — ®Di-) = 1 — 1 = 0.

Multipop stack: potential method

Potential function. Let ®(D) = number of objects currently on the stack.

* ®(Do) = 0.
* ®(D;) = 0 for each D;.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MULTIPOP operations takes O(n) time.

Pf. [Case 1: push]
* Suppose that the i” operation is a PUSH.
* The actual cost ¢; = 1.
* The amortized cost ¢ = ¢ci +®P(D) — PDi)) =1 + 1 = 2.

Multipop stack: potential method

Potential function. Let ®(D) = number of objects currently on the stack.

s ®(Dy) = 0.
* ®(D;) = 0 for each D;.

Theorem. Starting from an empty stack, any intermixed sequence of n
PusH, Pop, and MULTIPOP operations takes O(n) time.

Pf. [Case 3: multipop]
* Suppose that the i” operation is a MULTIPOP of k objects.
* The actual cost ¢; = k.
* The amortized cost ¢ = ¢i +®(D;) — PDi)) =k —k =0. =

AMORTIZED ANALYSIS

» dynamic table

INTRODUCTION TO

ALGORITHMS

SECTION 17.4

Dynamic table: insert only

* Initialize table to be size 1.
» INSERT: if table is full, first copy all items to a table of twice the size.

insert old size new size cost
1 1 1 -
2 1 2 1
3 2 4 2
4 4 4 =
5 4 8 4
6 8 8 =
7 8 8 -
8 8 8 -
9 8 16 8

Cost model. Number of items that are copied.

Dynamic table

Goal. Store items in a table (e.g., for hash table, binary heap).
* Two operations: INSERT and DELETE.
- too many items inserted = expand table.
- too many items deleted = contract table.
* Requirement: if table contains m items, then space = O(mn).

Theorem. Starting from an empty dynamic table, any intermixed sequence
of n INSERT and DELETE operations takes O(n?) time.

overly pessimistic

Pf. A single INSERT or DELETE takes O(n) time. = upper bound

Dynamic table: insert only

Theorem. [via aggregate method] Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ¢; denote the cost of the i insertion.

1
C; = 1

Starting from empty table, the cost of a sequence of n INSERT operations is:

if 7 — 1 is an exact power of 2
otherwise

n REX)
Secn+ 3
i=1 =0
< n—+2n
= 3n n

40

Dynamic table: insert only

Dynamic table: insert only

Theorem. [via potential method] Starting from an empty dynamic table,

any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(Di) — capacity(D;).

!

number of capacity of
elements array

43

Dynamic table: insert only

Accounting.
* INSERT: charge 3 credits (use 1 credit to insert; save 2 with new item).

Theorem. [via accounting method] Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. The algorithm maintains the invariant that there are 2 credits with each
item in right half of table.

* When table doubles, one-half of the items in the table have 2 credits.
* This pays for the work needed to double the table. =

42

Dynamic table: insert only

Theorem. [via potential method] Starting from an empty dynamic table,
any sequence of n INSERT operations takes O(n) time.

Pf. Let ®(D;) =2 size(D;) — capacity(D;).

!

number of capacity of
elements array

Case 1. [does not trigger expansion] size(D;) < capacity(Di1).
* Actual cost ¢;=1.
s OD) - DDiy) = 2.
* Amortized costs ¢; = ¢i + (D)) — (D) =1+2=3.

Case 2. [triggers expansion] size(Di) =1 + capacity(Di-1).
* Actual cost ¢; =1 + capacity(Di1).
* ®(Di) — D(Di-1) = 2 — capacity(D;) + capacity(Di-1) = 2 — capacity(Di-1).
* Amortized costs ¢ = ¢; + ®D) — D) =1+2=3. =

44

Dynamic table: doubling and halving

Thrashing.
« Initialize table to be of fixed size, say 1.
« INSERT: if table is full, expand to a table of twice the size.
» DELETE: if table is Y2-full, contract to a table of half the size.

Efficient solution.
« Initialize table to be of fixed size, say 1.
« INSERT: if table is full, expand to a table of twice the size.
» DEeLETE: if table is Y-full, contract to a table of half the size.

Memory usage. A dynamic table uses O(n) memory to store n items.
Pf. Table is always at least Y-full (provided it is not empty). =

45

Dynamic table: insert and delete

insert

delete

resize and delete

47

Dynamic table: insert and delete

Theorem. [via aggregate method] Starting from an empty dynamic table,
any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

Pf.
* In between resizing events, each INSERT and DELETE takes O(1) time.

« Consider total amount of work between two resizing events.
- Just after the table is doubled to size m, it contains m/2 items.
- Just after the table is halved to size m, it contains m/2 items.
- Just before the next resizing, it contains either m/4 or 2 m items.
- After resizing to m, we must perform Q(m) operations before we resize
again (either = m insertions or = m/4 deletions).
* Resizing a table of size m requires O(m) time. =

46

Dynamic table: insert and delete

Accounting.
* INSERT: charge 3 credits (1 credit for insert; save 2 with new item).

* DELETE: charge 2 credits (1 credit to delete, save 1\in emptied slot).

discard any existing credits

Theorem. [via accounting method] Starting from an empty dynamic table,
any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

Pf. The algorithm maintains the invariant that there are 2 credits with each
item in the right half of table; 1 credit with each empty slot in the left half.
* When table doubles, each item in right half of table has 2 credits.
* When table halves, each empty slot in left half of table has 1 credit. =

48

Dynamic table: insert and delete

Theorem. [via potential method] Starting from an empty dynamic table,
any intermixed sequence of n INSERT and DELETE operations takes O(n) time.

Pf sketch.
* Let a(D)) = size(D;) / capacity(D;).

o(D;) = 2size(D;) — capacity(D;) if a>1/2
v 1 capacity(D;) — size(D;) if o< 1/2

* When a(D) = 1/2, ®(D) =0. [zero potential after resizing]
* When a(D) = 1, ®(D) = size(D;). [can pay for expansion]
* When a(D) = 1/4, ®(D) = size(D;). [can pay for contraction]

49

