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Decision problems
Decision problem.
8. INTRACTABILITY I * Problem X is a set of strings.
* Instance s is one string.
» Pvs. NP + Algorithm A solves problem X: A(s) = yes iff s € X.

Def. Algorithm A runs in polynomial time if for every string s, A(s)
terminates in at most p(|s|) "steps"”, where p(-) is some polynomial.

\ Algortam Design

JON KLEINBERG - EVA TARDOS

Ex.
* Problem PRIMES={2,3,5,7,11,13,17,23,29,31,37, .... }.
* Instance s =1592335744548702854681.
* AKS algorithm PRIMES in O(|s|8) steps.
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Definition of P

P. Decision problems for which there is a poly-time algorithm.

Algorithm -

MULTIPLE Is x a multiple of y? grade-school division 51, 17
REL-PRIME Are x and y relatively prime ?  Euclid (300 BCE) 34, 39
PRIMES Is x prime ? AKS (2002) 53
corDsmce gt e e e
L-SOLVE Is there a vector x that Gauss-Edmonds (2’ : 721]

satisfies Ax=07 elimination

Is there a path between s depth-first search Cé
ST-CONN
and tin a graph G ? (Theseus) I:

Certifiers and certificates: composite

36

ComposITES. Given an integer s, is s composite?

Certificate. A nontrivial factor ¢ of 5. Such a certificate exists iff s is

composite. Moreover lfl<lsl.

Certifier. Check that 1 <t < s and that s is a multiple of .

instances 437669

Conclusion. COMPOSITES € NP.

certificatet 541 Or 809 | <«— 437,669 =541 x809

NP

Certification algorithm intuition.
« Certifier views things from "managerial” viewpoint.
* Certifier doesn't determine whether s € X on its own;
rather, it checks a proposed proof ¢ that s € X.

Def. Algorithm C(s, ) is a certifier for problem X if for every string s,
s € X iff there exists a string ¢ such that C(s, ¢) = yes.

"certificate” or "witness"

Def. NP is the set of problems for which there exists a poly-time certifier.
* C(s, 1) is a poly-time algorithm.
* Certificate tis of polynomial size: It1< p(lsl) for some polynomial p(-)

Remark. NP stands for nondeterministic polynomial time.

Certifiers and certificates: 3-satisfiability

3-SAT. Given a CNF formula @, is there a satisfying assignment?

Certificate. An assignment of truth values to the n boolean variables.

Certifier. Check that each clause in ® has at least one true literal.

instances @ = (xl vV X, vx3)/\(x, VX, vx3) /\()c1 vV X, vx4)

certificate t x| = frue, x2 = true, x3 = false, x4 = false

Conclusion. 3-SAT € NP.



Certifiers and certificates: Hamilton path

HAM-PATH. Given an undirected graph G =(V, E), does there exist a simple

path P that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once,

and that there is an edge between each pair of adjacent nodes.

instance s

Conclusion. HAM-PATH € NP.

Definition of NP

certificate t

NP. Decision problems for which there is a poly-time certifier.

“ NP captures vast domains of computational, scientific, and mathematical
endeavors, and seems to roughly delimit what mathematicians and scientists

have been aspiring to compute feasibly. ” — Christos Papadimitriou

“In an ideal world it would be renamed P vs VP. ”

— Clyde Kruskal

Definition of NP

NP. Decision problems for which there is a poly-time certifier.

Algorlthm --

Is there a vector x that Gauss-Edmonds
L-SoLvE
satisfies Ax=b? elimination
COMPOSITES Is x composite ? AKS (2002)
Does x have a nontrivial factor
FACTOR ?
less than y?
Is there a truth assignment that
SAT o 9 ?
satisfies the formula ?
3-COLOR Can the nodes. of a graph G be 2
colored with 3 colors?
Is there a simple path between
HAM-PATH perp ?

s and r that visits every node?

P, NP, and EXP

10 L) l
111
0 1 l

e

51 53
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(56159, 50) (55687, 50)

X2
XLV oX2
X1V X2

oLPo <K
THoe T

X1V X2
X1V X2

P. Decision problems for which there is a poly-time algorithm.
NP. Decision problems for which there is a poly-time certifier.
EXP. Decision problems for which there is an exponential-time algorithm.

Claim. P C NP.
Pf. Consider any problem X € P.

* By definition, there exists a poly-time algorithm A(s) that solves X.

* Certificate t=¢, certifier C(s, 1) = A(s). =

Claim. NP C EXP.
Pf. Consider any problem X € NP.

* By definition, there exists a poly-time certifier C(s, ) for X.
* To solve input s, run C(s,¢) on all strings ¢ with |7| =< p(|s)).
* Return yes if C(s, ?) returns yes for any of these potential certificates. =

Remark. Time-hierarchy theorem implies P £ EXP.



The main question: P vs. NP

Q. How to solve an instance of 3-SAT with » variables?
A. Exhaustive search: try all 27 truth assignments.

Q. Can we do anything substantially more clever?

Conjecture. No poly-time algorithm for 3-SAT.
\

Y
"intractable"

&

Congratulations,
it only ook you
65299 seconds /£

Possible outcomes

P+ NP.

“ I conjecture that there is no good algorithm for the traveling salesman
problem. My reasons are the same as for any mathematical conjecture:

(i) It is a legitimate mathematical possibility and (ii) I do not know.’
— Jack Edmonds 1966

The main question: P vs. NP

Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Godel]
Is the decision problem as easy as the certification problem?

If P=NP If P=NP

If yes. Efficient algorithms for 3-SAT, TSP, 3-COLOR, FACTOR, ...
If no. No efficient algorithms possible for 3-SAT, TSP, 3-COLOR, ...

Consensus opinion. Probably no.

Possible outcomes

P # NP.

“ In my view, there is no way to even make intelligent guesses about the
answer to any of these questions. If I had to bet now, I would bet that
P is not equal to NP. I estimate the half-life of this problem at 25—50
more years, but I wouldn t bet on it being solved before 2100. ”

— Bob Tarjan

“ We seem to be missing even the most basic understanding of the
nature of its difficulty.... All approaches tried so far probably (in
some cases, provably) have failed. In this sense P =NP is different
from many other major mathematical problems on which a gradual
progress was being constantly done (sometimes for centuries)

whereupon they yielded, either completely or partially. ’

— Alexander Razborov



Possible outcomes

P=NP

“ P = NP. In my opinion this shouldn t really be a hard problem; it just
that we came late to this theory, and haven t yet developed any
techniques for proving computations to be hard. Eventually, it will

Jjust be a footnote in the books. ”  — John Conway

Millennium prize

Millennium prize. $1 million for resolution of P = NP problem.

‘\\* Clay Mathematics Institute
[ & ®/ Dedicated to increasing and disseminating mathematical knowledge
L

HOME | ABOUTCMI | PROGRAMS | NEWSS&EVENTS | AWARDS | SCHOLARS | PUBLICATIONS

$1,000 , 000

il

Other possible outcomes

P = NP, but only Q(#'%) algorithm for 3-SAT.
P = NP, but with O(n'os*r) algorithm for 3-SAT.

P = NP is independent (of ZFC axiomatic set theory).

“ It will be solved by either 2048 or 4096. I am currently somewhat
pessimistic. The outcome will be the truly worst case scenario:
namely that someone will prove “P = NP because there are only
finitely many obstructions to the opposite hypothesis”’; hence there
will exists a polynomial time solution to SAT but we will never

know its complexity! ”  — Donald Knuth

Looking for a job?

Some writers for the Simpsons and Futurama.
* J. Steward Burns. M.S. in mathematics (Berkeley '93).
* David X. Cohen. M.S. in computer science (Berkeley '92).
* Al Jean. B.S.in mathematics. (Harvard '81).
* Ken Keeler. Ph.D.in applied mathematics (Harvard '90).
* Jeff Westbrook. Ph.D.in computer science (Princeton '89).

_
Copyright © 1990, Matt Groening

Copyright © 2000, Twentieth Century Fox
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Polynomial transformation

Def. Problem X polynomial (Cook) reduces to problem Y if arbitrary
instances of problem X can be solved using:

« Polynomial number of standard computational steps, plus

* Polynomial number of calls to oracle that solves problem Y.

Def. Problem X polynomial (Karp) transforms to problem Y if given any
input x to X, we can construct an input y such that x is a yes instance of X
iff y is a yes instance of Y. T

we require |y| to be of size polynomial in |x|

Note. Polynomial transformation is polynomial reduction with just one call
to oracle for v, exactly at the end of the algorithm for X. Almost all previous
reductions were of this form.

Open question. Are these two concepts the same with respect to NP?

we abuse notation < p and blur distinction



NP-complete

NP-complete. A problem Y & NP with the property that for every
problem X€ NP, X<, Y.

Theorem. Suppose Y € NP-complete. Then Y € P iff P = NP.

Pf. <= If P = NP, then Y € P because Y € NP.

Pf. = Suppose Y € P.
* Consider any problem X € NP. Since X<, Y, we have X € P.
* This implies NP C P.
* We already know P C NP. Thus P = NP. =

Fundamental question. Do there exist "natural" NP-complete problems?

25

The "first" NP-complete problem

Theorem. CIRCUIT-SAT & NP-complete. [Cook 1971, Levin 1973]

UPOBJEMBI NEPEJAYN HH®OPMAINI
Tox IX 973 Bun. 3

EPATEHE COOBHLEH I A
VK 519.44

VHIBEPCAIBHBIE 3AJAMI IEPEGOPA
.4
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Circuit satisfiability

CIRCUIT-SAT. Given a combinational circuit built from AND, OR, and NOT gates,

is there a way to set the circuit inputs so that the output is 1?

output

/\
/ /\

VA VANWAN

variable inputs

yes: 101

hard-coded inputs

The "first" NP-complete problem

Theorem. CIRCUIT-SAT & NP-complete.
Pf sketch.
* Clearly, CIRCUIT-SAT € NP.
* Any algorithm that takes a fixed number of bits »n as input and
produces a yes or no answer can be represented by such a circuit.
* Moreover, if algorithm takes poly-time, then circuit is of poly-size.

/

sketchy part of proof; fixing the number of bits is important,
and reflects basic distinction between algorithms and circuits

* Consider any problem X € NP. It has a poly-time certifier C(s, 1):
s € X iff there exists a certificate 7 of length p(|s|) such that C(s, 1) = yes.
* View C(s, 1) as an algorithm with |s| + p(|s|) input bits and convert it
into a poly-size circuit K.
- first |s| bits are hard-coded with s
- remaining p(|s|) bits represent (unknown) bits of ¢
* Circuit K is satisfiable iff C(s, £) = yes.



Example

Ex. Construction below creates a circuit K whose inputs can be set so that it
outputs 1 iff graph G has an independent set of size 2.

@ independent set of size 2?

independent set? @

both endpoints of some
edge have been chosen? @

@ @ set of size 2?

5 F B O @

OB OO
G=(V,E,n=3 @ @ @ @ (\? @:

0 1

n\ hard-coded inputs n inputs
( 2 ) (graph description) (nodes in independent set) 29

3-satisfiability is NP-complete

Theorem. 3-SAT & NP-complete.
Pf.
* Suffices to show that CIRCUIT-SAT <p 3-SAT since 3-SAT € NP.
* Given a combinational circuit K, we construct an instance ® of 3-SAT
that is satisfiable iff the inputs of K can be set so that it outputs 1.

Establishing NP-completeness

Remark. Once we establish first "natural® NP-complete problem,
others fall like dominoes.

Recipe. To prove that Y € NP-complete:
* Step 1. Show that Y € NP.
* Step 2. Choose an NP-complete problem X.
* Step 3. Prove that X<, Y.

Theorem. If X € NP-complete, ¥ € NP, and X <, ¥, then Y € NP-complete.

Pf. Consider any problem W& NP. Then, both W<, X and X<,7.

<,
* By transitivity, W<, Y. T T
* Hence Y € NP-complete. =

by definition of by assumption
NP-complete

3-satisfiability is NP-complete

Construction. Let K be any circuit.
Step 1. Create a 3-SAT variable x; for each circuit element i.

Step 2. Make circuit compute correct values at each node:
* x=-x3 = add 2 clauses: x,v x;, X,V x;
* xi=x4vxs = add 3 clauses: xvx,, x;vxs, VXV X

* xo=xiAx = add 3 clauses: x vx, x VX, XVxVx

Step 3. Hard-coded input values and output value.
* xs=0 = add 1 clause: x, X°

* xo=1 = add 1 clause: x, / \
X2
/ Y. i .

?



3-satisfiability is NP-complete

Construction. [continued]

Step 4. Turn clauses of length 1 or 2 into clauses of length 3.
* Create four new variables zi, 22, z3, and z.
* Add 8 clauses to force z1 = 2o = false:

(ZAV 2 Vo), mV 2 Vz), @VEVaa), (71 VaEsVa)
(Z2Vzs Vo), @VaeaVza), @VaEaVa), V@V 5

* Replace any clause with a single term (%) with (#iv zi1 v 22).
* Replace any clause with two terms (z v #) with (t;v 4 v z1).

Implications of Karp

CIRCUIT-SAT

e 3-SAT
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INDEPENDENT-SET DIR-HAM-CYCLE GRAPH-3-COLOR SUBSET-SUM
VERTEX-COVER HAM-CYCLE PLANAR-3-COLOR SCHEDULING
CIRCUIT-SAT poly-time reduces to all of
SET-COVER TSP

these problems (and many, many more)

3-satisfiability is NP-complete

Lemma. @ is satisfiable iff the inputs of K can be set so that it outputs 1.

Pf. —< Suppose there are inputs of K that make it output 1.
* Can propagate input values to create values at all nodes of K.
* This set of values satisfies ®.

Pf. = Suppose @ is satisfiable.
+ We claim that the set of values corresponding to the circuit inputs
constitutes a way to make circuit K output 1.
* The 3-SAT clauses were designed to ensure that the values
assigned to all node in K exactly match what the circuit
would compute for these nodes. = *o

@

/N
x,@ @x
XS/\:X4 lxg
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Implications of Cook-Levin

CIRCUIT-SAT

o :
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S
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INDEPENDENT-SET

AR-HAM-C/CIE GRAPH-3-COLOR

SUBSET-SUM
VERTEX-COVER‘ HAM-CYILE PLANAR-3-COLOR SCHEDULING
All of these problems (and many, many more)
SET-COVER TSP

poly-time reduce to CIRCUIT-SAT.




Implications of Karp + Cook-Levin
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INDEPENDENT-SET DIR-HAM-CYCLE GRAPH-3-COLOR SUBSET-SUM
VERTEX-COVER HAM-CYCLE PLANAR-3-COLOR SCHEDULING
All of these problems are NP-complete; they are
SET-COVER TSP manifestations of the same really hard problem.
37
.
More hard computational problems
Garey and Johnson. Computers and Intractability.
* Appendix includes over 300 NP-complete problems.
* Most cited reference in computer science literature.
Most Cited Computer Science Citations
This list is generated from documents in the CiteSeer* database as of January 17, 2013. This list is automatically generated and may contain errors. The list is generated in batch
mode and citation counts may differ from those currently in the CiteSeer* database, since the database is continuously updated.
All Years | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013
1. MR Garey, D S Johnson
Computers and Intractability. A Guide to the Theory of NP-Completeness 1979
8665
2. T Cormen, C E Leiserson, R Rivest
Introduction to Algorithms 1990
7210
3. VN Vapnik
The nature of statistical learning theory 1998 COMPUTERS AND INTRACTABILITY
6580 A Guide to the Theory of NP-Completeness
4. AP Dempster, N M Laird, D B Rubin
Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977
6082
5. T Cover, J Thomas
Elements of Information Theory 1991
6075
6. D E Goldberg
Genetic Algorithms in Search, Optimization, and Machine Learning, 1989
5998
7. J Pearl
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference 1988
5582
8. E Gamma, R Helm, R Johnson, J Viissides
Design Patterns: Elements of Reusable Object-Oriented Software 1995
4614
9. CE Shannon
‘A mathematical theory of communication Bell Syst. Tech. J, 1948
4118
10. J R Quinlan
C4.5: Programs for Machine Learning 1993
4018
39

Some NP-complete problems

Basic genres of NP-complete problems and paradigmatic examples.

» Packing + covering problems: SET-COVER, VERTEX-COVER,INDEPENDENT-SET.

» Constraint satisfaction problems: CIRCUIT-SAT, SAT, 3-SAT.
» Sequencing problems: HAM-CyCLE, TSP.

* Partitioning problems: 3D-MATCHING, 3-COLOR.

* Numerical problems: SUBSET-SUM, PARTITION.

Practice. Most NP problems are known to be either in P or NP-complete.

Notable exceptions. FACTOR, GRAPH-ISOMORPHISM, NASH-EQUILIBRIUM.

Theory. [Ladner 1975] Unless P = NP, there exist problems in NP that are

neither in P nor NP-complete.

More hard computational problems

Aerospace engineering. Optimal mesh partitioning for finite elements.
Biology. Phylogeny reconstruction.

Chemical engineering. Heat exchanger network synthesis.

Chemistry. Protein folding.

Civil engineering. Equilibrium of urban traffic flow.

Economics. Computation of arbitrage in financial markets with friction.
Electrical engineering. VLSI layout.

Environmental engineering. Optimal placement of contaminant sensors.
Financial engineering. Minimum risk portfolio of given return.

Game theory. Nash equilibrium that maximizes social welfare.
Mathematics. Given integer ay, ..., a,, COMpute ‘/:ﬁcos@ne)xcos(azmx---xcos(a,ﬁ) 9
Mechanical engineering. Structure of turbulence in sheared flows.
Medicine. Reconstructing 3d shape from biplane angiocardiogram.
Operations research. Traveling salesperson problem.

Physics. Partition function of 3d Ising model.

Politics. Shapley-Shubik voting power.

Recreation. Versions of Sudoko, Checkers, Minesweeper, Tetris.
Statistics. Optimal experimental design.

40



Extent and impact of NP-completeness

Extent of NP-completeness. [Papadimitriou 1995]
* Prime intellectual export of CS to other disciplines.

* 6,000 citations per year (more than "compiler”, "OS", "database").
« Broad applicability and classification power.

NP-completeness can guide scientific inquiry.
* 1926: Ising introduces simple model for phase transitions.
* 1944: Onsager finds closed-form solution to 2D-ISING in tour de force.
* 19xx: Feynman and other top minds seek solution to 3D-ISING.

e 2000: Istrail proves 3D-ISING € NP-complete. \ a holy grail of
\ statistical mechanics

search for closed formula appears doomed

41

You NP-complete me

You
NP-Complete
Me

43

P vs. NP revisited

Overwhelming consensus (still). P = NP.

NP
P = NP P=NP
Why we believe P = NP.
“ We admire Wiles' proof of Fermat's last theorem, the scientific theories of Newton,
Einstein, Darwin, Watson and Crick, the design of the Golden Gate bridge and the

Pyramids, precisely because they seem to require a leap which cannot be made by

everyone, let alone a by simple mechanical device. ” — Avi Wigderson

8. INTRACTABILITY Il

» co-NP
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Asymmetry of NP

Asymmetry of NP. We only need to have short proofs of yes instances.

Ex 1. SAT vs. TAUTOLOGY.
« Can prove a CNF formula is satisfiable by specifying an assignment.
* How could we prove that a formula is not satisfiable?

Ex 2. HAM-CyCLE vs. NO-HAM-CYCLE.
« Can prove a graph is Hamiltonian by specifying a permutation.
* How could we prove that a graph is not Hamiltonian?

Q. How to classify TAuToLOGY and NO-HAMILTON-CYCLE ?
* SAT € NP-complete and SAT = TAUTOLOGY.
* HAM-CYCLE € NP-complete and HAM-CYCLE = p NO-HAM-CYCLE.
* But neither TAUTOLOGY nor NO-HAM-CYCLE are known to be in NP.

NP = co-NP 2

Fundamental open question. Does NP = co-NP?
* Do yes instances have succinct certificates iff no instances do?
* Consensus opinion: no.

Theorem. If NP = co-NP, then P = NP.
Pf idea.
* Pis closed under complementation.
* If P= NP, then NP is closed under complementation.
* In other words, NP = co-NP.
* This is the contrapositive of the theorem.

45
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NP and co-NP

NP. Decision problems for which there is a poly-time certifier.
Ex. SAT, HAMILTON-CYCLE, and COMPOSITE.

Def. Given a decision problem X, its complement X is the same problem
with the yes and no answers reverse.

Ex. X={0,1,4,6,8,9,10,12,14,15,... }

X={2,3,5,7,11,13,17,23,29, ... }

co-NP. Complements of decision problems in NP.
Ex. TAUTOLOGY, NO-HAMILTON-CYCLE, and PRIMES.

46

Good characterizations

Good characterization. [Edmonds 1965] NP N co-NP.
* If problem X is in both NP and co-NP, then:
- for yes instance, there is a succinct certificate
- for no instance, there is a succinct disqualifier
« Provides conceptual leverage for reasoning about a problem.

Ex. Given a bipartite graph, is there a perfect matching.

« If yes, can exhibit a perfect matching.
* If no, can exhibit a set of nodes S such that IN(S)I < ISI.

JOURNAL OF RESEARCH of the National Bure
Vol

and Mathematical Physics

Minimum Partition of a Matroid Into Independent
Subsets'

Jack Edmonds

(December 1, 1964)
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Good characterizations

We seek a good characterization of the minimum
number of independent sets into which the columns
of a matrix of My can be partitioned. As the criterion
of “good” for the characterization we apply the “prin-
ciple of the absolute supervisor.” The good charac-
terization will describe certain information about the
matrix which the supervisor can require his assistant
to search out along with a minimum partition and
which the supervisor can then use with ease to verify
with mathematical certainty that the partition is in-
deed minimum. Having a good characterization does
not mean necessarily that there is a good algorithm.
The assistant might have to kill himself with work to
find the information and the partition.

Linear programming is in NP N co-NP

Linear programming. Given A€ %fimn, peRm, c € R», and a €N, does there
exist x € R such that Ax<b, x>0 and cTx=a?

Theorem. [Gale-Kuhn-Tucker 1948] LINEAR-PROGRAMMING € NP N co-NP.
Pf sketch. If (P) and (D) are nonempty, then max = min.

(D) miny'b
s.t. ATy
y

(P) maxc’x
s.t. Ax
X

A
N

v
o

v
=]

v

Cuarrer XIX

LINEAR PROGRAMMING AND THE THEORY OF GAMES!
By Davip Gaik, HaroLp W. KunN, AND ALeerT W. TUCKER *

The basic “scalar” problem of linear programming is to maximize (or
minimize) a linear function of several variables constrained by a system
of linear inequalities [Dantaig, IT]. A more general ‘“‘vector” problem
calls for maximizing (in a sense of partial order) a system of linear func-
tions of several variables subject to a system of linear inequalities and,
perhaps, linear equations [Koopmans, ITT]. The purpose of this chapter
is to establish theorems of duality and existence for general “matrix”
problems of linear programming which contain the ‘‘scalar” and “vector”
problems as special cases, and to relate these general problems to the
theory of zero-sum two-person games.

Good characterizations

Observation. PC NP N co-NP.
« Proof of max-flow min-cut theorem led to stronger result that max-flow
and min-cut are in P.
» Sometimes finding a good characterization seems easier than finding an
efficient algorithm.

Fundamental open question. Does P=NP N co-NP?
* Mixed opinions.

* Many examples where problem found to have a nontrivial good
characterization, but only years later discovered to be in P.

49

Linear programming is in NP N co-NP

Linear programming. Given A€ fmn p e Nm, c€Rn, and a €N, does there
exist x € N such that Ax<b, x>0 and cTx=a?

Theorem. [Khachiyan 1979] LINEAR-PROGRAMMING &€ P.

BBIYNMCIATEILHON MATEMATHKH H MATEMATHYECKOA OU3AKH
Tom 20 susaps 1980 ®espais N1

V]IK 519.852
TOJIMHOMHUAJIBHBIE AJITOPUTMbI B JIMHENHOM
IIPOTPAMMIPOBAHVHA
J.T. XATHAH
(Mocxea)

TloCTpOEHE! TOYHEIe AITOPHTMB! JIHHEHOTO IPOrPAMMEPOBARKS, TPYAOEM-
KOCTB KOTOPIX OTpAHWYeHa HOANHOMOM OT JVIMHE BONYHO BAIHCH 3ajadh.



Primality testing is in NP N co-NP

Theorem. [Pratt 1975] PRIMES € NP N co-NP.

SIAM J. Compur.
Vol. 4, No. 3, September 1975

EVERY PRIME HAS A SUCCINCT CERTIFICATE*
VAUGHAN R. PRATTY

Abstract. To prove that a number n is composite, it suffices to exhibit the working for the multiplica-
tion of a pair of factors. This working, represented as a string, is of length bounded by a polynomial
in log, n. We show that the same property holds for the primes. It is noteworthy that almost no other
set is known to have the property that short proofs for membership or nonmembership exist for all
candidates without being known to have the property that such proofs are easy to come by. It remains
an open problem whether a prime n can be recognized in only log} n operations of a Turing machine
for any fixed o.

The proof system used for certifying primes is as follows.

AxioM. (x, y, 1).

INFERENCE RULES.

Ry: (p,x,a), 4~ (p,x,qa) provided x?~'4 % 1 (mod p) and ql(p — 1).
R,: (p,x,p— 1)~ p provided x*~! = 1 (mod p).

THEOREM 1. p is a theorem = p is a prime.
THEOREM 2. p is a theorem > p has a proof of [4 log, p] lines.

Primality testing is in P

Theorem. [Agrawal-Kayal-Saxena 2004] PrIMES € P.

Annals of Mathematics, 160 (2004), 781-793

PRIMES is in P

By MANINDRA AGRAWAL, NEERAJ KAYAL, and NITIN SAXENA*

Abstract

‘We present an unconditional deterministic polynomial-time algorithm that
determines whether an input number is prime or composite.

Primality testing is in NP N co-NP

Theorem. [Pratt 1975] PRIMES € NP N co-NP.
Pf sketch. An odd integer s is prime iff there exists an integer 1 < ¢ < s s.t.

A 1 (mods)
SV % 1 (mods)

for all prime divisors p of s-1

instance s 437677 CERTIFIER (s)

certificatet 17, 22 x 3 x 36473 CHECK s—1=2%2 %3 x 36473.

1 CHECK 175! = 1 (mod s).
prime factorization of s-1 CHECK 176-D/2 = 437676 (mod S),
also need a recursive certificate
to assert that 3 and 36,473 are prime CHECK 176-D/3 =320415 (mod S).

CHECK 176-1/36473 = 305452 (mod s).

f

use repeated squaring

Factoring is in NP N co-NP

FACTORIZE. Given an integer x, find its prime factorization.
FAcTOR. Given two integers x and y, does x have a nontrivial factor < y?

Theorem. FACTOR = p FACTORIZE.
Pf.
e <, trivial.

* >, binary search to find a factor; divide out the factor and repeat. =

Theorem. FACTOR € NP N co-NP.
Pf.
* Certificate: a factor p of x that is less than y.
* Disqualifier: the prime factorization of x (where each prime factor is
less than y), along with a Pratt certificate that each factor is prime. =



Is factoring in P 2

Fundamental question. Is FACTOR € P.

Challenge. Factor this number.

74037563479561712828046796097429573142593188889231289
08493623263897276503402826627689199641962511784399589
43305021275853701189680982867331732731089309005525051
16877063299072396380786710086096962537934650563796359

RSA-704
($30,000 prize if you can factor)

Factoring on a quantum computer

Theorem. [Shor 1994] Can factor an n-bit integer in O(n3) steps
on a "quantum computer.”

1.No.2.pp. 303332

Polynomial-Time Algorithms for
Prime Factorization and
Discrete Logarithms on a
Quantum Computer*

Peter W. Shor’

2001. Factored 15 =3 x 5 (with high probability) on a quantum computer.
2012. Factored 21 =3 x7.

Fundamental question. Does P =BQP ?

Exploiting intractability

Modern cryptography.
* Ex. Send your credit card to Amazon.
» Ex. Digitally sign an e-document.
* Enables freedom of privacy, speech, press, political association.

RSA. Based on dichotomy between complexity of two problems.
* To use: generate two random n-bit primes and multiply.
* To break: suffices to factor a 2»-bit integer.

P ¢ @ PRVE
= PQ

£D = | mob (P-D@-h

C= M' AmoDN ®

M= C° pobw¥
The RSA algorithm Is the
most widely used method
of implementing public key
cryptography and has been
deployed in more than one
billion applications
worldwide.

RSA sold

RSA algorithm for $2.1 billion or design a t-shirt

8. INTRACTABILITY Il

» NP-hard



A note on terminology

Note. The term x does not necessarily imply that a problem is in NP,

SIGACT News 12

January 1974

A TERMINOLOGICAL PROPOSAL
D. F. Knuth

While preparing a book on combinatorial algorithms, I felt a strong
need for a new technical term, a word which is essentially a one-sided
version of polynomial complete. A great many problems of practical interest
have the property that they are at least as difficult to solve in polynomial
time as those of the Cook-Karp class NP. I needed an adjective to convey
such a degree of difficulty, both formally and informally; and since the
range of practical applications is so broad, I felt it would be best to
establish such a term as soon as possible.

The goal is to find an adjective x that sounds good in sentences

like this:

The covering problem is x .

It is x to decide whether a given graph has a Hamiltonian circuit.

It is unknown whether or not primality testing is an x problem.

just that every problem in NP poly-time reduces to x.

A note on terminology

Some English word write-ins.

Impractical.
Bad.

Heavy.
Tricky.
Intricate.
Prodigious.
Difficult.
Intractable.
Costly.
Obdurate.
Obstinate.
Exorbitant.
Interminable.
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A note on terminology

Knuth's original suggestions.

« Hard. so common that it is unclear whether
it is being used in a technical sense

+ Tough.

* Herculean.

» Formidable.

* Arduous.
X
X
x %
X X X X
¥ b x X % %
X X X _X X X X X bd
X X X X X X X X X X X X
XXX XXX XX X XXXXXX XXXX_ XX X
X X X XXX XXXX XXX XXXXXXXX XX XXXXX X X
01234567894 01234567894 01234567894
Herculean . formidable arduous

assign a real number between 0 and 1 to each choice

A note on terminology

Hard-boiled. [Ken Steiglitz] In honor of Cook.

Hard-ass. [Al Meyer] Hard as satisfiability.

Sisyphean. [Bob Floyd] Problem of Sisyphus was time-consuming.

Ulyssean. [Don Knuth] Ulysses was known for his persistence.

“ creative research workers are as full of ideas for new terminology
as they are empty of enthusiasm for adopting it. ”
— Donald Knuth
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A note on terminology: acronyms

PET. [Shen Lin] Probably exponential time.
* If P = NP, provably exponential time.
* If P = NP, previously exponential time.

GNP. [Al Meyer] Greater than or equal to NP in difficulty.
* And costing more than the GNP to solve.
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A note on terminology: consensus

NP-complete. A problem in NP such that every problem in NP poly-time
reduces to it.

NP-hard. [Bell Labs, Steve Cook, Ron Rivest, Sartaj Sahni]
A problem such that every problem in NP polynomial-time reduces to it.

One final criticism (which applies to all the terms suggested) was
stated nicely by Vaughan Pratt: "If the Martians know that P = NP for
Turing Machines and they kidnap me, I would lose face calling these
problems 'formidable'." Yes; if P = NP , there's no need for any term
at all. But I'm willing to risk such an embarrassment, and in fact I'm
willing to give a prize of one live turkey to the first person who proves
that P =NP .
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A note on terminology: made-up words

Exparent. [Mike Paterson] Exponential + apparent.

Perarduous. [Mike Paterson] Through (in space or time) + completely.

Supersat. [Al Meyer] Greater than or equal to satisfiability.

Polychronious. [Ed Reingold] Enduringly long; chronic.
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