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Algorithm design patterns and antipatterns Classify problems according to computational requirements
Algorithm design patterns. Q. Which problems will we be able to solve in practice?

* Greedy.

* Divide and conquer. A working definition. Those with polynomial-time algorithms.

* Dynamic programming.

* Duality.

» Reductions.

« Local search. =

* Randomization.

Cobham

von Neumann
(1953) (1955) (1964)
Algorithm design antipatterns.
* NP-completeness. O(n¥) algorithm unlikely.
* PSPACE-completeness. O(n¥) certification algorithm unlikely. Theory. Definition is broad and robust.
» Undecidability. No algorithm possible.

constants a and b tend to be small, e.g., 3 N2

Practice. Poly-time algorithms scale to huge problems.



Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

yes probably no

shortest path longest path
min cut max cut
2-satisfiability 3-satisfiability
planar 4-colorability planar 3-colorability
bipartite vertex cover vertex cover
matching 3d-matching
primality testing factoring
linear programming integer linear programming

Polynomialtime reductions

Desiderata'. Suppose we could solve X in polynomial-time.
What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if
arbitrary instances of problem X can be solved using:

« Polynomial number of standard computational steps, plus

* Polynomial number of calls to oracle that solves problem Y.

computational model supplemented by special piece
of hardware that solves instances of Y in a single step

i i : —> Algorithm —» : TS [
instance | ———> —> for Y ——— solution S to
(of X)

Algorithm for X

Classify problems

Desiderata. Classify problems according to those that can be solved in
polynomial time and those that cannot.
input size =c + Ig k
Provably requires exponential time. J/
* Given a constant-size program, does it halt in at most k steps?
* Given a board position in an n-by-n generalization of checkers,
can black guarantee a win? N

using forced capture rule

Frustrating news. Huge number of fundamental problems have defied
classification for decades.

Polynomialtime reductions

Desiderata'. Suppose we could solve X in polynomial-time.
What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if
arbitrary instances of problem X can be solved using:

« Polynomial number of standard computational steps, plus

* Polynomial number of calls to oracle that solves problem Y.

Notation. X=<,Y.

Note. We pay for time to write down instances sent to oracle =
instances of ¥ must be of polynomial size.

Caveat. Don't mistake X =<,Y with Y=<, X.



Polynomialtime reductions

Design algorithms. If X<, Y and Y can be solved in polynomial time,
then X can be solved in polynomial time.

Establish intractability. If X<, Y and X cannot be solved in polynomial time,
then Y cannot be solved in polynomial time.

Establish equivalence. If both X<, Y and Y=<, X, we use notation X=,Y.
In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

Independent set

INDEPENDENT-SET. Given a graph G =(V,E) and an integer k, is there a subset
of vertices S C V such that | S| > k, and for each edge at most one of its
endpoints isin §?

Ex. Is there an independent set of size >67?
Ex. Is there an independent set of size =77

=8

independent set of size 6
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Vertex cover

VERTEX-COVER. Given a graph G =(V, E) and an integer k, is there a subset of
vertices SC V such that I S| < k, and for each edge, at least one of its
endpoints isin §7?

Ex. Is there a vertex cover of size <4?
Ex. Is there a vertex cover of size <37

—

. independent set of size 6

O vertex cover of size 4




Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER =, INDEPENDENT-SET.
Pf. We show S is an independent set of size k iff V- S is a vertex cover

of size n—k.

—
7

@

Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER =, INDEPENDENT-SET.
Pf. We show S is an independent set of size k iff V- S is a vertex cover
of size n—k.

P

Let V- S be any vertex cover of size n—«.

S is of size k.

Consider two nodes u€ S and vES.

Observe that (u,v) € E since V- S is a vertex cover.

Thus, no two nodes in S are joined by an edge = S independent set. =

. independent set of size 6
O vertex cover of size 4

Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER =, INDEPENDENT-SET.
Pf. We show S is an independent set of size k iff V- S is a vertex cover
of size n—k.

=
* Let S be any independent set of size k.
* V-Sis of size n—k.
* Consider an arbitrary edge (u, v).
* Sindependent = eitheru& S or v¢& S (or both)
= eitherue V-Sorve V-S(or both).
* Thus, V- S covers (u,v).

Set cover

SET-COVER. Given a set U of elements, a collection S, S,, ..., S,, of subsets of
U, and an integer k, does there exist a collection of < k of these sets whose
union is equal to U?

Sample application.
* m available pieces of software.
* Set U of n capabilities that we would like our system to have.
* The i" piece of software provides the set S;C U of capabilities.
* Goal: achieve all n capabilities using fewest pieces of software.

U={1,2,3,4,5,6,7}
P o5={3,7} Sy={2,4}
(2=03.456)) 5={5}
S=(D)

k=2

a set cover instance



Vertex cover reduces to set cover

Theorem. VERTEX-COVER <, SET-COVER.
Pf. Given a VERTEX-COVER instance G = (V, E), we construct a SET-COVER
instance (U, S) that has a set cover of size k iff G has a vertex cover of size k.

Construction.
* Universe U=E.
* Include one set for each node vEV: S, ={e EE: eincidenttov }.

©) ®

e, e, e o

® . ®

U={1,2,3,4,5,6,7}
S,={3,7% S,={2.4}
S.={3,4,5,6} S$;={5}

k=2 e 5 S,={1} S ={1,2,6,7}
vertex cover instance set cover instance
(k =2) (k =2)

Vertex cover reduces to set cover

Lemma. G=(V,E)contains a vertex cover of size kiff (U, S) contains a set
cover of size k.

Pf. = LetY C S be a set cover of size k in (U, S).
* ThenX={v:S,€Y}is avertex cover of size kin G. =

e e o | U={1,2,3,4,56,7}
PoSs,=1{3,7} S,={2,4}
O & © L (5.=(3,4,5,6)) S;={5) :
k=2  ® & PoSs,={1) S, =1{1,2,6,7}) i

©) @

vertex cover instance set cover instance
(k =2) (k=2)

Vertex cover reduces to set cover

Lemma. G=(V,E)contains a vertex cover of size kiff (U, S) contains a set
cover of size k.

Pf. = Let X C V be a vertex cover of size kin G.
* ThenY={S,:vEX}is aset cover of size k. =

U={1,2,3,4,5,6,7}
bos,={3,7} S,={2,4}
P (8.={3,4,56}) S,={5}

S,={1}

e, e, o o

O c O
® @

vertex cover instance set cover instance
(k=2) k=2)

8. INTRACTABILITY |

5, =11,267}) |

» constraint satisfaction problems

/

JON KLEINBERG - EVA TARDOS

\‘\ Hgortm Desiy

SECTION 8.2



Satisfiability

Literal. A boolean variable or its negation. X;

Clause. A disjunction of literals. C,=xv Xy VX3

Conjunctive normal form. A propositional ® = CAC, A Cya C,

formula @ that is the conjunction of clauses.

SAT. Given CNF formula @, does it have a satisfying truth assignment?
3-SAT. SAT where each clause contains exactly 3 literals
(and each literal corresponds to a different variable).

...........................................................................................................

yes instance: x, = true, x, = true, x; = false, x, = false

Key application. Electronic design automation (EDA).

21

3-satisfiability reduces to independent set

Lemma. G contains independent set of size k=1®1 iff ® is satisfiable.

Pf. = Let S be independent set of size k.
* S must contain exactly one node in each triangle.
* Set these literals to true (and remaining variables consistently).
« Truth assignment is consistent and all clauses are satisfied.

Pf <= Given satisfying assignment, select one true literal from each
triangle. This is an independent set of size k. =

X X2 X

X, X3 X X3 X, X,

<I>=(x|vx2vx3)/\(x,vx2vx3) A(xlvxzvx4)
23

3-satisfiability reduces to independent set

Theorem. 3-SAT <p INDEPENDENT-SET.
Pf. Given an instance ® of 3-SAT, we construct an instance (G, k) of
INDEPENDENT-SET that has an independent set of size k iff @ is satisfiable.

Construction.
* G contains 3 nodes for each clause, one for each literal.
» Connect 3 literals in a clause in a triangle.
» Connect literal to each of its negations.

X2 X3 X X3 X Xy

<I>=(xlvx2vx3)/\(xlvx2vx3) A(xlvxzvx4)
22

Review

Basic reduction strategies.
» Simple equivalence: INDEPENDENT-SET =, VERTEX-COVER.
» Special case to general case: VERTEX-COVER =, SET-COVER.
» Encoding with gadgets: 3-SAT <, INDEPENDENT-SET.

Transitivity. If X<,Yand Y<,Z, then X<, Z.
Pf idea. Compose the two algorithms.

Ex. 3-SAT <p INDEPENDENT-SET <, VERTEX-COVER <, SET-COVER.

24



Search problems

Decision problem. Does there exist a vertex cover of size < k?
Search problem. Find a vertex cover of size < k.

Ex. To find a vertex cover of size < k:
* Determine if there exists a vertex cover of size < «.
» Find a vertex v such that G - {v} has a vertex cover of size < k- 1.
(any vertex in any vertex cover of size < k will have this property)
* Include v in the vertex cover.
« Recursively find a vertex cover of size < k—1in G- {v}.

delete v and all incident edges

Bottom line. VERTEX-COVER = , FIND-VERTEX-COVER.

25
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Optimization problems

Decision problem. Does there exist a vertex cover of size < k?
Search problem. Find a vertex cover of size < k.
Optimization problem. Find a vertex cover of minimum size.

Ex. To find vertex cover of minimum size:

* (Binary) search for size k* of min vertex cover.
» Solve corresponding search problem.

Bottom line. VERTEX-COVER = , FIND-VERTEX-COVER = , OPTIMAL-VERTEX-COVER.

26

Hamilton cycle

HAM-CyCLE. Given an undirected graph G = (V, E), does there exist a simple
cycle T that contains every node in V?

yes
28



Hamilton cycle

HAM-CycCLE. Given an undirected graph G = (V, E), does there exist a simple
cycle T that contains every node in V?

® © ©

@ ® © @ ©
®

no
29

Directed hamilton cycle reduces to hamilton cycle

Lemma. G has a directed Hamilton cycle iff G' has a Hamilton cycle.

Pf. =
* Suppose G has a directed Hamilton cycle T.
* Then G' has an undirected Hamilton cycle (same order).

Pf. <

* Suppose G' has an undirected Hamilton cycle I''.

* " must visit nodes in G' using one of following two orders:
....B,G,R,B,G,R,B,G,R,B, ...
....B,R,G,B,R,G,B,R,G,B, ...

* Blue nodes in I'" make up directed Hamilton cycle T in G,

or reverse of one. =

31

Directed hamilton cycle reduces to hamilton cycle

DIR-HAM-CyCLE: Given a digraph G = (V, E), does there exist a simple directed
cycle T that contains every node in V?

Theorem. DIR-HAM-CYCLE < , HAM-CYCLE.

Pf. Given a digraph G =(V, E), construct a graph G' with 3n nodes.

\ ©
/'

@ ® ®
©)

S
. Pt
(b /0 © @\e

G © ¢

30

3-satisfiability reduces to directed hamilton cycle

Theorem. 3-SAT <, DIR-HAM-CYCLE.

Pf. Given an instance ® of 3-SAT, we construct an instance of DIR-HAM-CYCLE
that has a Hamilton cycle iff @ is satisfiable.

Construction. First, create graph that has 2» Hamilton cycles which
correspond in a natural way to 27 possible truth assignments.

32



3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance ® with n variables x; and k clauses.
* Construct G to have 2" Hamilton cycles.
* Intuition: traverse path i from left to right < set variable x;= rrue.

3-satisfiability reduces to directed hamilton cycle

Lemma. @ is satisfiable iff G has a Hamilton cycle.

Pf. =
* Suppose 3-SAT instance has satisfying assignment x*.
* Then, define Hamilton cycle in G as follows:
- if x*, = true, traverse row i from left to right
- if x*, = false, traverse row i from right to left
- for each clause (0 there will be at least one row i in which we are
going in "correct” direction to splice clause node C;into cycle
(and we splice in C; exactly once)

35

3k + 3 ;33

3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance ® with n variables x; and k clauses.

* For each clause, add a node and 6 edges.

w clause node 1

/X1

& X2

) X3

3k + 3 g 34

3-satisfiability reduces to directed hamilton cycle

Lemma. @ is satisfiable iff G has a Hamilton cycle.

Pf. <

* Suppose G has a Hamilton cycle T.

* If T enters clause node C;, it must depart on mate edge.
- nodes immediately before and after C;are connected by an edge e€ E
- removing C; from cycle, and replacing it with edge e yields Hamilton

cycle on G-{C;}

* Continuing in this way, we are left with a Hamilton cycle I'"" in
G -{C;,Cy,..., Ci}.

* Set x*; = true iff T'' traverses row i left to right.

* Since I visits each clause node C;, at least one of the paths is traversed
in "correct" direction, and each clause is satisfied. =

36



3-satisfiability reduces to longest path Traveling salesperson problem

LONGEST-PATH. Given a directed graph G = (V, E), does there exists a simple TSP. Given a set of n cities and a pairwise distance function d(u, v),
path consisting of at least k edges? is there a tour of length<D?

Theorem. 3-SAT <, LONGEST-PATH.

Pf 1. Redo proof for DIR-HAM-CYCLE, ighoring back-edge from ¢ to s.
Pf 2. Show HAM-CYCLE < , LONGEST-PATH.

13,509 cities in the United States

% http://www.tsp.gatech.edu B
Traveling salesperson problem Traveling salesperson problem
TSP. Given a set of n cities and a pairwise distance function d(u, v), TSP. Given a set of « cities and a pairwise distance function d(u, v),
is there a tour of length <D? is there a tour of length <D?

optimal TSP tour
http://www.tsp.gatech.edu

11,849 holes to drill in a programmed logic array

0 http://www.tsp.gatech.edu B0



Traveling salesperson problem Hamilton cycle reduces to traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v), TSP. Given a set of n cities and a pairwise distance function d(u,v),
is there a tour of length<D? is there a tour of length<D?

% HAM-CycLE. Given an undirected graph G = (V, E), does there exist a simple
[73 cycle T that contains every node in V?
o y i very i

Theorem. HAM-CYCLE <, TSP.
Pf.
* Given instance G = (V, E) of HAM-CYCLE, create n cities with distance

=

function | # ) & 7

2 if(u,v) &€ E

%;g% 5 QW&M * TSP instance has tour of length < » iff G has a Hamilton cycle. =
%ﬁﬁfﬂ@%ﬁ%

Remark. TSP instance satisfies triangle inequality: d(u, w) < d(u, v) + d(v, w).

d(u, v) = {

optimal TSP tour
http://www.tsp.gatech.edu a

Polynomialtime reductions

constraint satisfaction
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3-dimensional matching

3D-MATCHING. Given n instructors, n courses, and n times, and a list of the
possible courses and times each instructor is willing to teach, is it possible
to make an assignment so that all courses are taught at different times?

InStrUCtor CONE

Wayne COS 226 TTh 11-12:20

Wayne COS 423 MW 11-12:20

Tardos COS 423 TTh 3-4:20

Kleinberg COS 226 TTh 3-4:20

Kleinberg COS 423 MW 11-12:20

45

3-dimensional matching

3D-MATCHING. Given 3 disjoint sets X, ¥, and Z, each of size n and a set
T C Xx YxZof triples, does there exist a set of n triples in T such that
each element of XU YU Z is in exactly one of these triples?

Theorem. 3-SAT <, 3D-MATCHING.

Pf. Given an instance ® of 3-SAT, we construct an instance of 3D-MATCHING
that has a perfect matching iff @ is satisfiable.

47

3-dimensional matching

3D-MATCHING. Given 3 disjoint sets X, ¥, and Z, each of size n and a set
T C X xYxZ of triples, does there exist a set of « triples in T such that
each element of XU YU Z is in exactly one of these triples?

X ={x,x2,x}, Y ={y,y2,y3}, Z={z1,22,23}

Ty={xi,y,z2}, Tr={xi,y,z1}, Ti={x1,y,22}
T,={x2,y2,2}, (Ts={x2,y3,23},
T7={-x39y19Z3}’ T8={x3’y1,11 }’ T9={x3sy2sZ1}

an instance of 3d-matching (with n = 3)

Remark. Generalization of bipartite matching.

46

3-satisfiability reduces to 3-dimensional matching

Construction. (part 1) number of clauses

* Create gadget for each variable x; with 2k core elements and 2k tip ones.

clause 2 tips

<\

clause 1 tips

clause 3 tips

a gadget for variable x; (k = 4)

48



3-satisfiability reduces to 3-dimensional matching

number of clauses

Construction. (part 1)
* Create gadget for each variable x; with 2k core elements and 2k tip ones.
* No other triples will use core elements.
* In gadget for x;, any perfect matching must use either all gray triples
(corresponding to x; = true) or all blue ones (corresponding to x; = false).

false

k = 2 clauses O/ «— clause 2 tips
n = 3 variables

X1 X2

3-satisfiability reduces to 3-dimensional matching

Construction. (part 3)
* There are 2nk tips: nk covered by blue/gray triples; k by clause triples.
* To cover remaining (n—1) k tips, create (n—1) k cleanup gadgets:
same as clause gadget but with 2k triples, connected to every tip.

clause 1 gadget

49

3-satisfiability reduces to 3-dimensional matching

Construction. (part 2)
* Create gadget for each clause C; with two elements and three triples.
» Exactly one of these triples will be used in any 3d-matching.
* Ensures any perfect matching uses either (i) grey core of x; or
(ii) blue core of x, or (iii) grey core of xs.

clause 1 gadget

each clause assigned
its own 2 adjacent tips

3-satisfiability reduces to 3-dimensional matching

Lemma. Instance (X, Y, Z) has a perfect matching iff ® is satisfiable.

Q. What are X, ¥, and Z?

clause 1 gadget




3-satisfiability reduces to 3-dimensional matching

Lemma. Instance (X, Y, Z) has a perfect matching iff ® is satisfiable.

Q. Whatare X, Y, and Z?
A. X=red, Y=green, and Z = blue.

clause 1 gadget

Ci= X VX, VX3

cleanup gadget

clause 1 tips —>

true

X1 X2 X3

53
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3-satisfiability reduces to 3-dimensional matching

Lemma. Instance (X, Y, Z) has a perfect matching iff ® is satisfiable.

Pf. = If 3d-matching, then assign x; according to gadget x;.
Pf. < If @ is satisfiable, use any true literal in C; to select gadget C; triple. =

clause 1 gadget

true

3-colorability

3-CoLor. Given an undirected graph G, can the nodes be colored red, green,
and blue so that no adjacent nodes have the same color?

yes instance



Application: register allocation 3-satisfiability reduces to 3-colorability

Register allocation. Assign program variables to machine register so that Theorem. 3-SAT <, 3-COLOR.
no more than k registers are used and no two program variables that are
needed at the same time are assigned to the same register. Pf. Given 3-SAT instance @, we construct an instance of 3-COLOR that is

3-colorable iff @ is satisfiable.
Interference graph. Nodes are program variables names; edge between
u and v if there exists an operation where both « and v are "live" at the
same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff
interference graph is k-colorable.

Fact. 3-COLOR =, K-REGISTER-ALLOCATION for any constant k > 3.

REGISTER ALLOCATION & SPILLING VIA GRAPH COLORING
G. . Chaitin

1BM Research
P.0.Box 218, Yorktown Heights, NY 10598

57

3-satisfiability reduces to 3-colorability 3-satisfiability reduces to 3-colorability
Construction. Lemma. Graph G is 3-colorable iff @ is satisfiable.
(i) Create a graph G with a node for each literal.
(ii) Connect each literal to its negation. Pf. = Suppose graph G is 3-colorable.
(iii) Create 3 new nodes T, F, and B; connect them in a triangle. * Consider assignment that sets all T literals to true.
(iv) Connect each literal to B. * (iv) ensures each literal is T or F.
(v) For each clause Cj, add a gadget of 6 nodes and 13 edges. * (ii) ensures a literal and its negation are opposites.

f

to be described later

59 60



3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff @ is satisfiable.

Pf. = Suppose graph G is 3-colorable.
* Consider assignment that sets all T literals to true.
* (iv) ensures each literal is T or F.

« (ii) ensures a literal and its negation are opposites.
* (v) ensures at least one literal in each clause is 7.

C =XV Xy VX

61

3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff @ is satisfiable.

Pf. —= Suppose 3-SAT instance @ is satisfiable.
* Color all true literals T.

* Color node below green node F, and node below that B.
* Color remaining middle row nodes B.

* Color remaining bottom nodes T or F as forced. =

a literal set to true
o in 3-SAT assignment

® ®

e

true T

63

3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff @ is satisfiable.

Pf. = Suppose graph G is 3-colorable.
* Consider assignment that sets all T literals to true.
(iv) ensures each literal is T or F.

(ii) ensures a literal and its negation are opposites.
(v) ensures at least one literal in each clause is 7.

G not 3-colorable if

e literal nodes all are red

C,=x VXV x

contradiction

L 2

true

62
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Subset sum

SUBSET-SUM. Given natural numbers w,, ...,w, and an integer W, is there a

8. INTRACTABILITY | subset that adds up to exactly W?

Ex. {1,4,16,64,256,1040,1041, 1093, 1284, 1344 }, W =23754.
Yes. 1+ 16+ 64 +256 + 1040 + 1093 + 1284 = 3754.

Remark. With arithmetic problems, input integers are encoded in binary.
Poly-time reduction must be polynomial in binary encoding.

Nwmmw

JON KLEINBERG - EVA TARDOS

» numerical problems

SECTION 8.8
66
Subset sum 3-satisfiability reduces to subset sum
Theorem. 3-SAT =<, SUBSET-SUM. Construction. Given 3-SAT instance ® with » variables and k clauses,
form 2n + 2k decimal integers, each of n + k digits:
Pf. Given an instance ® of 3-SAT, we construct an instance of SUBSET-SuM * Include one digit for each variable x; and for each clause C;.
that has solution iff @ is satisfiable. * Include two numbers for each variable x;.

* Include two numbers for each clause C;.
« Sum of each x, digit is 1;
1 0 0 0 1 0

A—fe R 100,010
sum of each C; digit is 4.

~x 1 0 0 1 0 1 100,101
» 0 1 0 1 0 0 10,100

Key property. No carries possible = =x» O 1 0 0 1 1 10,011
each digit yields one equation. xx 0 0 1 1 1 0 1,110
~xs 0 0 1 0 0 1 1,001

0 0 0 1 0 0 100

----------------------------------------------------- 00 0 2 0 0 200
Ci= = x1V xxV x3 O 0 o0 0 1 0 10
Ch= x1V 7 xV X3 0O 0 0 0 2 0 20

0 0 0 0 o0 1 1

CGi= =x1V 7xV 733 2 2

: 00 0 0 0
e  ENEEREENEEEE -+

67 SUBSET-SUM instance



3-satisfiability reduces to subset sum

Lemma. @ is satisfiable iff there exists a subset that sums to W.
Pf. = Suppose @ is satisfiable.
* Choose integers corresponding to each true literal.
* Since @ is satisfiable, each C; digit sums to at least 1 from x; rows.
* Choose dummy integers to make
clause digits sum to 4.

ol oo e
1 0 0 0 1 0

X1 100,010
= 1 0 0 1 0 1 100,101
x O 1 0 1 0 0 10,100
-x» 0 1 0 0 1 1 10,011
x3 O 0 1 1 1 0 1,110
-x 0 0 1 0 0 1 1,001
0 0 0 1 0 0 100
----------------------------------------------------- 0 0 0 2 0 0 200
Ci= "x1v Vv x dummies to get clause o 0 0 0 1 0 10
C, = X1V 2x2 Vv e columns to sum to 4 0 0 0 0 2 0 20
0 0 0 0 0 1 1
Lo Imy e 0 0 0 0 o0 2 :
3-SAT instance 14 -- 111,444
SUBSET-SUM instance
My hobby

MY HOBBY:
EVMBEDDING NP-(OMPLETE PROBLEMS IN RESTAURANT ORDERS

<« APPENZERS — | . EXACTLY? VA

MIYED FRUIT 2.15 HERE, THESE PAPERS ON THE KNAPSACK. )
PROBLEM MIGHT HELP YOU OUT.

FRENCH FRIES 275 \ LISTEN, T HAVE Six OTHER

SIDE SALAD 235 TABLES T0 GET T0 —
- A6 FRST AS POSSIBLE, (F (DURSE. WANT

HOT WINGS 3.55 SOMETHING ON TRAVELING SALESHAN? /

MOZZAREUA STICKS 420 \\

SAMPLER PLATE 5.80 % 0 %Ob

- SMWICHES ~— !

JLQAIZEEEL\F L BT

Randall Munro

http://xkcd.com/c287.html
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3-satisfiability reduces to subset sum

Lemma. @ is satisfiable iff there exists a subset that sums to W.

Pf. <= Suppose there is a subset that sums to W.
* Digit x; forces subset to select either row x; or -x; (but not both).
* Digit C; forces subset to select at least one literal in clause.

* Assign x; = true iff row x; selected. =

Ci= —x1V X2 V X3
C= x1V 7 xV X3
Cz3= =7x1 V 7 x2 V =713
3-SAT instance
Partition

X1
X2
X2

X3

dummies to get clause
columns to sum to 4

0 0 0 0 0 2
v NN

ool cll o]
1 0 0 0 1 0

1 0 0 1 0 1
0 1 0 1 0 0
0 1 0 0 1 1
0 0 1 1 1 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 2 0 0
0 0 0 0 1 0
0 0 0 0 2 0
0 0 0 0 0 1

SUBSET-SUM instance

100,010
100,101
10,100
10,011
1,110
1,001
100

200

10

20

1

2

SUBSET-SUM. Given natural numbers w,, ..

subset that adds up to exactly w?

PARTITION. Given natural numbers v, ...,

subsets that add up to the same value % =, v,?

Theorem. SUBSET-SUM < , PARTITION.
Pf. Let W, wy,...,w, be an instance of SUBSET-SuM.
* Create instance of PARTITION with m =n + 2 elements.

.,w, and an integer W, is there a

S VIEWLV S Wy, e, V=W, Vg =22w, W, v ,=Zw+ W

v,.,» €an they be partitioned into two

* Lemma: there exists a subset that sums to W iff there exists a partition

since elements v,,, and v,,, cannot be in the same partition. =

2 w;

w subset A

-w subset B
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Scheduling with release times

SCHEDULE. Given a set of n jobs with processing time 7, release time r;, and
deadline d,, is it possible to schedule all jobs on a single machine such that
job j is processed with a contiguous slot of 7 time units in the interval [r;,d;]?

Ex.

73

Polynomialtime reductions

constraint satisfaction

INDEPENDENT-SET DiR-HAM-CYCLE GRAPH-3-COLOR SUBSET-SUM
v v
VERTEX-COVER HAM-CYCLE SCHEDULING
y A
SET-COVER TSP
packing and covering sequencing partitioning numerical
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Scheduling with release times

Theorem. SUBSET-SUM < , SCHEDULE.
Pf. Given SUBSET-SUM instance w,, ...,w, and target W, construct an instance
of SCHEDULE that is feasible iff there exists a subset that sums to exactly w.

Construction.
+ Create n jobs with processing time r,=w, release time r,=0,
and no deadline (d;=1+Z;w;).
» Create job 0 with 7, =1, release time r,= W, and deadline d,= W+ 1.
* Lemma: subset that sums to W iff there exists a feasible schedule. =

must schedule

jobs 1ton
either here or here
0 l W W+l l 1+35w

f

must schedule job 0 here 74

Karp's 21 NP-complete problems

96

/ SATISFIABILI“\

0~1 INTEGER SATISFIABILITY WITH AT

CLIIQUE\ PROGRAMMING MOST 3 LITERALS PER CLAUSE

NODE _.. SET .
//COVER PACKING (‘HROMAT/IC NUMBER\
FEEDBACK FEEDBACK DIRECTED EXACT CLIQUE
NODE SET ARC SET  HAMILTON - COVER COVER
crrourr  COVERING
3-DIMENSTONAL HITTING STEINER
KNAPSACK
UNDIRECTED MATCHING SET TREE
HAMILTON

CIRCUIT
SEQUENCING PARTITION

MAX CUT

FIGURE 1 - Complete Problems

dUVY W QEVHOR

Dick Karp (1972)
1985 Turing Award
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