
Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on Apr 29, 2013 10:48 AM

8. INTRACTABILITY I

‣ poly-time reductions

‣ packing and covering problems

‣ constraint satisfaction problems

‣ sequencing problems

‣ partitioning problems

‣ graph coloring

‣ numerical problems
SECTION 8.1

8. INTRACTABILITY I

‣ poly-time reductions

‣ packing and covering problems

‣ constraint satisfaction problems

‣ sequencing problems

‣ partitioning problems

‣ graph coloring

‣ numerical problems

3

Algorithm design patterns and antipatterns

Algorithm design patterns.

・Greedy.

・Divide and conquer.

・Dynamic programming.

・Duality.

・Reductions.

・Local search.

・Randomization.

Algorithm design antipatterns.

・NP-completeness. O(nk) algorithm unlikely.

・PSPACE-completeness. O(nk) certification algorithm unlikely.

・Undecidability. No algorithm possible.

4

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

Theory. Definition is broad and robust.

Practice. Poly-time algorithms scale to huge problems.

von Neumann
(1953)

Gödel
(1956)

Edmonds
(1965)

Rabin
(1966)

Cobham
(1964)

Nash
(1955)

constants a and b tend to be small, e.g., 3 N 2

5

Classify problems according to computational requirements

Q. Which problems will we be able to solve in practice?

A working definition. Those with polynomial-time algorithms.

yes probably no

shortest path longest path

min cut max cut

2-satisfiability 3-satisfiability

planar 4-colorability planar 3-colorability

bipartite vertex cover vertex cover

matching 3d-matching

primality testing factoring

linear programming integer linear programming

6

Classify problems

Desiderata. Classify problems according to those that can be solved in

polynomial time and those that cannot.

Provably requires exponential time.

・Given a constant-size program, does it halt in at most k steps?

・Given a board position in an n-by-n generalization of checkers,

can black guarantee a win?

Frustrating news. Huge number of fundamental problems have defied

classification for decades.

input size = c + lg k

using forced capture rule

7

Polynomial-time reductions

Desiderata'. Suppose we could solve X in polynomial-time.

What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if

arbitrary instances of problem X can be solved using:

・Polynomial number of standard computational steps, plus

・Polynomial number of calls to oracle that solves problem Y.

computational model supplemented by special piece
of hardware that solves instances of Y in a single step

instance I
(of X)

solution S to I
Algorithm

for Y

Algorithm for X

8

Polynomial-time reductions

Desiderata'. Suppose we could solve X in polynomial-time.

What else could we solve in polynomial time?

Reduction. Problem X polynomial-time (Cook) reduces to problem Y if

arbitrary instances of problem X can be solved using:

・Polynomial number of standard computational steps, plus

・Polynomial number of calls to oracle that solves problem Y.

Notation. X ≤ P Y.

Note. We pay for time to write down instances sent to oracle ⇒

instances of Y must be of polynomial size.

Caveat. Don't mistake X ≤ P Y with Y ≤ P X.

9

Polynomial-time reductions

Design algorithms. If X ≤ P Y and Y can be solved in polynomial time,

then X can be solved in polynomial time.

Establish intractability. If X ≤ P Y and X cannot be solved in polynomial time,

then Y cannot be solved in polynomial time.

Establish equivalence. If both X ≤ P Y and Y ≤ P X, we use notation X ≡ P Y.

In this case, X can be solved in polynomial time iff Y can be.

Bottom line. Reductions classify problems according to relative difficulty.

SECTION 8.1

8. INTRACTABILITY I

‣ poly-time reductions

‣ packing and covering problems

‣ constraint satisfaction problems

‣ sequencing problems

‣ partitioning problems

‣ graph coloring

‣ numerical problems

11

Independent set

INDEPENDENT-SET. Given a graph G = (V, E) and an integer k, is there a subset

of vertices S ⊆ V such that | S | ≥ k, and for each edge at most one of its

endpoints is in S ?

Ex. Is there an independent set of size ≥ 6 ?
Ex. Is there an independent set of size ≥ 7 ?

independent set of size 6

12

Vertex cover

VERTEX-COVER. Given a graph G = (V, E) and an integer k, is there a subset of

vertices S ⊆ V such that | S | ≤ k, and for each edge, at least one of its

endpoints is in S ?

Ex. Is there a vertex cover of size ≤ 4 ?
Ex. Is there a vertex cover of size ≤ 3 ?

vertex cover of size 4

independent set of size 6

13

Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER ≡P INDEPENDENT-SET.

Pf. We show S is an independent set of size k iff V − S is a vertex cover

of size n – k.

independent set of size 6

vertex cover of size 4

14

Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER ≡P INDEPENDENT-SET.

Pf. We show S is an independent set of size k iff V − S is a vertex cover

of size n – k.

⇒

・Let S be any independent set of size k.

・V − S is of size n – k.

・Consider an arbitrary edge (u, v).

・S independent ⇒ either u ∉ S or v ∉ S (or both)

 ⇒ either u ∈ V − S or v ∈ V − S (or both).

・Thus, V − S covers (u, v).

15

Vertex cover and independent set reduce to one another

Theorem. VERTEX-COVER ≡P INDEPENDENT-SET.

Pf. We show S is an independent set of size k iff V − S is a vertex cover

of size n – k.

⇐

・Let V − S be any vertex cover of size n – k.

・S is of size k.

・Consider two nodes u ∈ S and v ∈ S.

・Observe that (u, v) ∉ E since V − S is a vertex cover.

・Thus, no two nodes in S are joined by an edge ⇒ S independent set. ▪

16

Set cover

SET-COVER. Given a set U of elements, a collection S1, S2, …, Sm of subsets of

U, and an integer k, does there exist a collection of ≤ k of these sets whose

union is equal to U ?

Sample application.

・m available pieces of software.

・Set U of n capabilities that we would like our system to have.

・The ith piece of software provides the set Si ⊆ U of capabilities.

・Goal: achieve all n capabilities using fewest pieces of software.

U = { 1, 2, 3, 4, 5, 6, 7 }
S1 = { 3, 7 } 	

 	

 S4 = { 2, 4 }
S2 = { 3, 4, 5, 6 }	

 S5 = { 5 }
S3 = { 1 }	

	

 	

 S6 = { 1, 2, 6, 7 }
k = 2

a set cover instance

Theorem. VERTEX-COVER ≤ P SET-COVER.

Pf. Given a VERTEX-COVER instance G = (V, E), we construct a SET-COVER

instance (U, S) that has a set cover of size k iff G has a vertex cover of size k.

Construction.

・Universe U = E.

・Include one set for each node v ∈ V : Sv = {e ∈ E : e incident to v }.

d

c

17

Vertex cover reduces to set cover

vertex cover instance
(k = 2)

k = 2 e1

e2 e3

e5

e4

e6

e7

a b

e

f

set cover instance
(k = 2)

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 } 	

 	

 Sb = { 2, 4 }
Sc = { 3, 4, 5, 6 }	

 Sd = { 5 }

Se = { 1 }	

 	

 	

 Sf = { 1, 2, 6, 7 }

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S) contains a set

cover of size k.

Pf. ⇒ Let X ⊆ V be a vertex cover of size k in G.

・Then Y = { Sv : v ∈ X } is a set cover of size k. ▪

18

Vertex cover reduces to set cover

vertex cover instance
(k = 2)

k = 2 e1

e2 e3

e5

e4

e6

e7

a

d

b

e

f c

set cover instance
(k = 2)

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 } 	

 	

 Sb = { 2, 4 }
Sc = { 3, 4, 5, 6 }	

 Sd = { 5 }

Se = { 1 }	

 	

 	

 Sf = { 1, 2, 6, 7 }

cf

Lemma. G = (V, E) contains a vertex cover of size k iff (U, S) contains a set

cover of size k.

Pf. ⇐ Let Y ⊆ S be a set cover of size k in (U, S).

・Then X = { v : Sv ∈ Y } is a vertex cover of size k in G. ▪

19

Vertex cover reduces to set cover

vertex cover instance
(k = 2)

k = 2 e1

e2 e3

e5

e4

e6

e7

set cover instance
(k = 2)

U = { 1, 2, 3, 4, 5, 6, 7 }
Sa = { 3, 7 } 	

 	

 Sb = { 2, 4 }
Sc = { 3, 4, 5, 6 }	

 Sd = { 5 }

Se = { 1 }	

 	

 	

 Sf = { 1, 2, 6, 7 }

a

d

b

e

f ccf SECTION 8.2

8. INTRACTABILITY I

‣ poly-time reductions

‣ packing and covering problems

‣ constraint satisfaction problems

‣ sequencing problems

‣ partitioning problems

‣ graph coloring

‣ numerical problems

Literal. A boolean variable or its negation.

Clause. A disjunction of literals.

Conjunctive normal form. A propositional

formula Φ that is the conjunction of clauses.

SAT. Given CNF formula Φ, does it have a satisfying truth assignment?

3-SAT. SAT where each clause contains exactly 3 literals

(and each literal corresponds to a different variable).

Key application. Electronic design automation (EDA).

21

Satisfiability

€

Cj = x1 ∨ x2 ∨ x3

€

xi or xi

€

Φ = C1 ∧C2 ∧ C3∧ C4

yes instance: x1 = true, x2 = true, x3 = false, x4 = false

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()

Theorem. 3-SAT ≤ P INDEPENDENT-SET.

Pf. Given an instance Φ of 3-SAT, we construct an instance (G, k) of

INDEPENDENT-SET that has an independent set of size k iff Φ is satisfiable.

Construction.

・G contains 3 nodes for each clause, one for each literal.

・Connect 3 literals in a clause in a triangle.

・Connect literal to each of its negations.

22

3-satisfiability reduces to independent set

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()
k = 3

G

23

3-satisfiability reduces to independent set

Lemma. G contains independent set of size k = | Φ | iff Φ is satisfiable.

Pf. ⇒ Let S be independent set of size k.

・S must contain exactly one node in each triangle.

・Set these literals to true (and remaining variables consistently).

・Truth assignment is consistent and all clauses are satisfied.

Pf ⇐ Given satisfying assignment, select one true literal from each

triangle. This is an independent set of size k. ▪

k = 3

G

€

Φ = x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4()
24

Review

Basic reduction strategies.

・Simple equivalence: INDEPENDENT-SET ≡ P VERTEX-COVER.

・Special case to general case: VERTEX-COVER ≤ P SET-COVER.

・Encoding with gadgets: 3-SAT ≤ P INDEPENDENT-SET.

Transitivity. If X ≤ P Y and Y ≤ P Z, then X ≤ P Z.

Pf idea. Compose the two algorithms.

Ex. 3-SAT ≤ P INDEPENDENT-SET ≤ P VERTEX-COVER ≤ P SET-COVER.

25

Search problems

Decision problem. Does there exist a vertex cover of size ≤ k ?
Search problem. Find a vertex cover of size ≤ k.

Ex. To find a vertex cover of size ≤ k :

・Determine if there exists a vertex cover of size ≤ k.

・Find a vertex v such that G − { v } has a vertex cover of size ≤ k − 1.

(any vertex in any vertex cover of size ≤ k will have this property)

・Include v in the vertex cover.

・Recursively find a vertex cover of size ≤ k − 1 in G − { v }.

Bottom line. VERTEX-COVER ≡ P FIND-VERTEX-COVER.

delete v and all incident edges

26

Optimization problems

Decision problem. Does there exist a vertex cover of size ≤ k ?
Search problem. Find a vertex cover of size ≤ k.
Optimization problem. Find a vertex cover of minimum size.

Ex. To find vertex cover of minimum size:

・(Binary) search for size k* of min vertex cover.

・Solve corresponding search problem.

Bottom line. VERTEX-COVER ≡ P FIND-VERTEX-COVER ≡ P OPTIMAL-VERTEX-COVER.

SECTION 8.5

‣ poly-time reductions

‣ packing and covering problems

‣ constraint satisfaction problems

‣ sequencing problems

‣ partitioning problems

‣ graph coloring

‣ numerical problems

8. INTRACTABILITY I
HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple

cycle Γ that contains every node in V ?

28

Hamilton cycle

yes

29

Hamilton cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple

cycle Γ that contains every node in V ?

no

1

3

5

1'

3'

2

4

2'

4'

DIR-HAM-CYCLE: Given a digraph G = (V, E), does there exist a simple directed

cycle Γ that contains every node in V ?

Theorem. DIR-HAM-CYCLE ≤ P HAM-CYCLE.

Pf. Given a digraph G = (V, E), construct a graph G' with 3n nodes.

vin

aout

bout

cout

ein

v vout

v

30

Directed hamilton cycle reduces to hamilton cycle

a

b

c

d

e

din

G G'

31

Directed hamilton cycle reduces to hamilton cycle

Lemma. G has a directed Hamilton cycle iff G' has a Hamilton cycle.

Pf. ⇒

・Suppose G has a directed Hamilton cycle Γ.

・Then G' has an undirected Hamilton cycle (same order).

Pf. ⇐

・Suppose G' has an undirected Hamilton cycle Γ'.

・Γ' must visit nodes in G' using one of following two orders:

 …, B, G, R, B, G, R, B, G, R, B, …

 …, B, R, G, B, R, G, B, R, G, B, …

・Blue nodes in Γ' make up directed Hamilton cycle Γ in G,

or reverse of one. ▪

32

3-satisfiability reduces to directed hamilton cycle

Theorem. 3-SAT ≤ P DIR-HAM-CYCLE.

Pf. Given an instance Φ of 3-SAT, we construct an instance of DIR-HAM-CYCLE

that has a Hamilton cycle iff Φ is satisfiable.

Construction. First, create graph that has 2n Hamilton cycles which

correspond in a natural way to 2n possible truth assignments.

33

3-satisfiability reduces to directed hamilton cycle

Construction. Given 3-SAT instance Φ with n variables xi and k clauses.

・Construct G to have 2n Hamilton cycles.

・Intuition: traverse path i from left to right ⇔ set variable xi = true.

s

t

3k + 3

x1

x2

x3

Construction. Given 3-SAT instance Φ with n variables xi and k clauses.

・For each clause, add a node and 6 edges.

clause node 2

34

3-satisfiability reduces to directed hamilton cycle

s

t

3k + 3

x1

x2

x3

clause node 1C1 = x1 � x2 � x3 C2 = x1 � x2 � x3

35

3-satisfiability reduces to directed hamilton cycle

Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. ⇒

・Suppose 3-SAT instance has satisfying assignment x*.

・Then, define Hamilton cycle in G as follows:

- if x*i = true, traverse row i from left to right

- if x*i = false, traverse row i from right to left
- for each clause Cj , there will be at least one row i in which we are

going in "correct" direction to splice clause node Cj into cycle

(and we splice in Cj exactly once)

36

3-satisfiability reduces to directed hamilton cycle

Lemma. Φ is satisfiable iff G has a Hamilton cycle.

Pf. ⇐

・Suppose G has a Hamilton cycle Γ.

・If Γ enters clause node Cj , it must depart on mate edge.
- nodes immediately before and after Cj are connected by an edge e ∈ E
- removing Cj from cycle, and replacing it with edge e yields Hamilton

cycle on G – { Cj }

・Continuing in this way, we are left with a Hamilton cycle Γ' in
G – { C1 , C2 , …, Ck }.

・Set x*i = true iff Γ' traverses row i left to right.

・Since Γ visits each clause node Cj , at least one of the paths is traversed

in "correct" direction, and each clause is satisfied. ▪

37

3-satisfiability reduces to longest path

LONGEST-PATH. Given a directed graph G = (V, E), does there exists a simple

path consisting of at least k edges?

Theorem. 3-SAT ≤ P LONGEST-PATH.

Pf 1. Redo proof for DIR-HAM-CYCLE, ignoring back-edge from t to s.
Pf 2. Show HAM-CYCLE ≤ P LONGEST-PATH.

38

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length ≤ D ?

13,509 cities in the United States
http://www.tsp.gatech.edu

39

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length ≤ D ?

optimal TSP tour
http://www.tsp.gatech.edu

40

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length ≤ D ?

11,849 holes to drill in a programmed logic array
http://www.tsp.gatech.edu

41

Traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length ≤ D ?

optimal TSP tour
http://www.tsp.gatech.edu

42

Hamilton cycle reduces to traveling salesperson problem

TSP. Given a set of n cities and a pairwise distance function d(u, v),
is there a tour of length ≤ D ?

HAM-CYCLE. Given an undirected graph G = (V, E), does there exist a simple

cycle Γ that contains every node in V ?

Theorem. HAM-CYCLE ≤ P TSP.

Pf.

・Given instance G = (V, E) of HAM-CYCLE, create n cities with distance

function

・TSP instance has tour of length ≤ n iff G has a Hamilton cycle. ▪

Remark. TSP instance satisfies triangle inequality: d(u, w) ≤ d(u, v) + d(v, w).

€

d(u, v) =
 1 if (u, v) ∈ E
 2 if (u, v) ∉ E
⎧
⎨
⎩

43

Polynomial-time reductions

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-SAT p
oly-tim

e r
ed

uces

to IN
DEPE

NDEN
T-S

ET

GRAPH-3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR-3-COLOR

SET-COVER

packing and covering sequencing partitioning numerical

constraint satisfaction

SECTION 8.6

‣ poly-time reductions

‣ packing and covering problems

‣ constraint satisfaction problems

‣ sequencing problems

‣ partitioning problems

‣ graph coloring

‣ numerical problems

8. INTRACTABILITY I

45

3-dimensional matching

3D-MATCHING. Given n instructors, n courses, and n times, and a list of the

possible courses and times each instructor is willing to teach, is it possible

to make an assignment so that all courses are taught at different times?

instructor course time

Wayne COS 226 TTh 11–12:20

Wayne COS 423 MW 11–12:20

Wayne COS 423 TTh 11–12:20

Tardos COS 423 TTh 3–4:20

Tardos COS 523 TTh 3–4:20

Kleinberg COS 226 TTh 3–4:20

Kleinberg COS 226 MW 11–12:20

Kleinberg COS 423 MW 11–12:20

46

3-dimensional matching

3D-MATCHING. Given 3 disjoint sets X, Y, and Z, each of size n and a set

T ⊆ X × Y × Z of triples, does there exist a set of n triples in T such that

each element of X ∪ Y ∪ Z is in exactly one of these triples?

Remark. Generalization of bipartite matching.

X = { x1, x2, x3 },	

	

 Y = { y1, y2, y3 },	

 	

 Z = { z1, z2, z3 }

T1 = { x1, y1, z2 },	

	

 T2 = { x1, y2, z1 },	

 	

 T3 = { x1, y2, z2 }
T4 = { x2, y2, z3 },	

	

 T5 = { x2, y3, z3 },
T7 = { x3, y1, z3 },	

	

 T8 = { x3, y1, z1 },	

 	

 T9 = { x3, y2, z1 }

an instance of 3d-matching (with n = 3)

47

3-dimensional matching

3D-MATCHING. Given 3 disjoint sets X, Y, and Z, each of size n and a set

T ⊆ X × Y × Z of triples, does there exist a set of n triples in T such that

each element of X ∪ Y ∪ Z is in exactly one of these triples?

Theorem. 3-SAT ≤ P 3D-MATCHING.

Pf. Given an instance Φ of 3-SAT, we construct an instance of 3D-MATCHING

that has a perfect matching iff Φ is satisfiable.

Construction. (part 1)

・Create gadget for each variable xi with 2k core elements and 2k tip ones.

48

3-satisfiability reduces to 3-dimensional matching

number of clauses

a gadget for variable xi (k = 4)

clause 1 tips

clause 2 tips

clause 3 tips

core
elements

Construction. (part 1)

・Create gadget for each variable xi with 2k core elements and 2k tip ones.

・No other triples will use core elements.

・In gadget for xi, any perfect matching must use either all gray triples

(corresponding to xi = true) or all blue ones (corresponding to xi = false).

49

3-satisfiability reduces to 3-dimensional matching

number of clauses

true

false

k = 2 clauses
n = 3 variables

x1 x3x2

clause 1 tips core

clause 2 tips

Construction. (part 2)

・Create gadget for each clause Cj with two elements and three triples.

・Exactly one of these triples will be used in any 3d-matching.

・Ensures any perfect matching uses either (i) grey core of x1 or

(ii) blue core of x2 or (iii) grey core of x3.

50

3-satisfiability reduces to 3-dimensional matching

x1 x3x2

clause 1 tips

true

false

each clause assigned
its own 2 adjacent tips

clause 1 gadget

C1

core

Construction. (part 3)

・There are 2 n k tips: n k covered by blue/gray triples; k by clause triples.

・To cover remaining (n – 1) k tips, create (n – 1) k cleanup gadgets:

same as clause gadget but with 2 n k triples, connected to every tip.

51

3-satisfiability reduces to 3-dimensional matching

x1 x3x2

clause 1 tips

clause 1 gadget

true

false

C1

core

cleanup gadget

···

Lemma. Instance (X, Y, Z) has a perfect matching iff Φ is satisfiable.

Q. What are X, Y, and Z ?

x1 x3x2

clause 1 tips

52

3-satisfiability reduces to 3-dimensional matching

clause 1 gadget

true

false

C1

core

cleanup gadget

···

Lemma. Instance (X, Y, Z) has a perfect matching iff Φ is satisfiable.

Q. What are X, Y, and Z ?
A. X = red, Y = green, and Z = blue.

53

3-satisfiability reduces to 3-dimensional matching

clause 1 gadget

true

false

x1 x3x2

clause 1 tips

C1

core

cleanup gadget

···

Lemma. Instance (X, Y, Z) has a perfect matching iff Φ is satisfiable.

Pf. ⇒ If 3d-matching, then assign xi according to gadget xi.

Pf. ⇐ If Φ is satisfiable, use any true literal in Cj to select gadget Cj triple. ▪

54

3-satisfiability reduces to 3-dimensional matching

clause 1 gadget

true

false

x1 x3x2

clause 1 tips

C1

core

cleanup gadget

···

SECTION 8.7

‣ poly-time reductions

‣ packing and covering problems

‣ constraint satisfaction problems

‣ sequencing problems

‣ partitioning problems

‣ graph coloring

‣ numerical problems

8. INTRACTABILITY I
3-COLOR. Given an undirected graph G, can the nodes be colored red, green,

and blue so that no adjacent nodes have the same color?

56

3-colorability

yes instance

57

Application: register allocation

Register allocation. Assign program variables to machine register so that

no more than k registers are used and no two program variables that are

needed at the same time are assigned to the same register.

Interference graph. Nodes are program variables names; edge between

u and v if there exists an operation where both u and v are "live" at the

same time.

Observation. [Chaitin 1982] Can solve register allocation problem iff

interference graph is k-colorable.

Fact. 3-COLOR ≤ P K-REGISTER-ALLOCATION for any constant k ≥ 3.

ACM SIGPLAN 67 Best of PLDI 1979-1999

58

3-satisfiability reduces to 3-colorability

Theorem. 3-SAT ≤ P 3-COLOR.

Pf. Given 3-SAT instance Φ, we construct an instance of 3-COLOR that is

3-colorable iff Φ is satisfiable.

59

3-satisfiability reduces to 3-colorability

Construction.

(i) Create a graph G with a node for each literal.

(ii) Connect each literal to its negation.

(iii) Create 3 new nodes T, F, and B; connect them in a triangle.

(iv) Connect each literal to B.

(v) For each clause Cj, add a gadget of 6 nodes and 13 edges.

T

B

F

true false

base

to be described later

60

3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. ⇒ Suppose graph G is 3-colorable.

・Consider assignment that sets all T literals to true.

・(iv) ensures each literal is T or F.

・(ii) ensures a literal and its negation are opposites.

T

B

F

true false

base

61

3-satisfiability reduces to 3-colorability

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. ⇒ Suppose graph G is 3-colorable.

・Consider assignment that sets all T literals to true.

・(iv) ensures each literal is T or F.

・(ii) ensures a literal and its negation are opposites.

・(v) ensures at least one literal in each clause is T.

T F

B

true false

6-node gadget

€

Cj = x1 ∨ x2 ∨ x3

contradiction

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. ⇒ Suppose graph G is 3-colorable.

・Consider assignment that sets all T literals to true.

・(iv) ensures each literal is T or F.

・(ii) ensures a literal and its negation are opposites.

・(v) ensures at least one literal in each clause is T.

62

3-satisfiability reduces to 3-colorability

T F

B

G not 3-colorable if
literal nodes all are red

true false

€

Cj = x1 ∨ x2 ∨ x3

Lemma. Graph G is 3-colorable iff Φ is satisfiable.

Pf. ⇐ Suppose 3-SAT instance Φ is satisfiable.

・Color all true literals T.

・Color node below green node F, and node below that B.

・Color remaining middle row nodes B.

・Color remaining bottom nodes T or F as forced. ▪

63

3-satisfiability reduces to 3-colorability

T F

B

a literal set to true
in 3-SAT assignment

true false

€

Cj = x1 ∨ x2 ∨ x3

64

Polynomial-time reductions

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-SAT p
oly-tim

e r
ed

uces

to IN
DEPE

NDEN
T-S

ET

GRAPH-3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR-3-COLOR

SET-COVER

packing and covering sequencing partitioning numerical

constraint satisfaction

SECTION 8.8

‣ poly-time reductions

‣ packing and covering problems

‣ constraint satisfaction problems

‣ sequencing problems

‣ partitioning problems

‣ graph coloring

‣ numerical problems

8. INTRACTABILITY I

66

Subset sum

SUBSET-SUM. Given natural numbers w1, …, wn and an integer W, is there a

subset that adds up to exactly W ?

Ex. { 1, 4, 16, 64, 256, 1040, 1041, 1093, 1284, 1344 }, W = 3754.

Yes. 1 + 16 + 64 + 256 + 1040 + 1093 + 1284 = 3754.

Remark. With arithmetic problems, input integers are encoded in binary.

Poly-time reduction must be polynomial in binary encoding.

67

Subset sum

Theorem. 3-SAT ≤ P SUBSET-SUM.

Pf. Given an instance Φ of 3-SAT, we construct an instance of SUBSET-SUM

that has solution iff Φ is satisfiable.

Construction. Given 3-SAT instance Φ with n variables and k clauses,

form 2n + 2k decimal integers, each of n + k digits:

・Include one digit for each variable xi and for each clause Cj.

・Include two numbers for each variable xi.

・Include two numbers for each clause Cj.

・Sum of each xi digit is 1;

sum of each Cj digit is 4.

Key property. No carries possible ⇒

each digit yields one equation.

3-satisfiability reduces to subset sum

3-SAT instance

SUBSET-SUM instance

x1 x2 x3 C1 C2 C3

x1 1 0 0 0 1 0 100,010

¬ x1 1 0 0 1 0 1 100,101

x2 0 1 0 1 0 0 10,100

¬ x2 0 1 0 0 1 1 10,011

x3 0 0 1 1 1 0 1,110

¬ x3 0 0 1 0 0 1 1,001

0 0 0 1 0 0 100

0 0 0 2 0 0 200

0 0 0 0 1 0 10

0 0 0 0 2 0 20

0 0 0 0 0 1 1

0 0 0 0 0 2 2

W 1 1 1 4 4 4 111,444

C1 = ¬ x1 ∨ x2 ∨ x3

C2 = x1 ∨ ¬ x2 ∨ x3

C3 = ¬ x1 ∨ ¬ x2 ∨ ¬ x3

Lemma. Φ is satisfiable iff there exists a subset that sums to W.

Pf. ⇒ Suppose Φ is satisfiable.

・Choose integers corresponding to each true literal.

・Since Φ is satisfiable, each Cj digit sums to at least 1 from xi rows.

・Choose dummy integers to make

clause digits sum to 4.

3-satisfiability reduces to subset sum

SUBSET-SUM instance

x1 x2 x3 C1 C2 C3

x1 1 0 0 0 1 0 100,010

¬ x1 1 0 0 1 0 1 100,101

x2 0 1 0 1 0 0 10,100

¬ x2 0 1 0 0 1 1 10,011

x3 0 0 1 1 1 0 1,110

¬ x3 0 0 1 0 0 1 1,001

0 0 0 1 0 0 100

0 0 0 2 0 0 200

0 0 0 0 1 0 10

0 0 0 0 2 0 20

0 0 0 0 0 1 1

0 0 0 0 0 2 2

W 1 1 1 4 4 4 111,4443-SAT instance

C1 = ¬ x1 ∨ x2 ∨ x3

C2 = x1 ∨ ¬ x2 ∨ x3

C3 = ¬ x1 ∨ ¬ x2 ∨ ¬ x3

dummies to get clause
columns to sum to 4

Lemma. Φ is satisfiable iff there exists a subset that sums to W.

Pf. ⇐ Suppose there is a subset that sums to W.

・Digit xi forces subset to select either row xi or ¬ xi (but not both).

・Digit Cj forces subset to select at least one literal in clause.

・Assign xi = true iff row xi selected. ▪
x1 x2 x3 C1 C2 C3

x1 1 0 0 0 1 0 100,010

¬ x1 1 0 0 1 0 1 100,101

x2 0 1 0 1 0 0 10,100

¬ x2 0 1 0 0 1 1 10,011

x3 0 0 1 1 1 0 1,110

¬ x3 0 0 1 0 0 1 1,001

0 0 0 1 0 0 100

0 0 0 2 0 0 200

0 0 0 0 1 0 10

0 0 0 0 2 0 20

0 0 0 0 0 1 1

0 0 0 0 0 2 2

W 1 1 1 4 4 4 111,444

3-satisfiability reduces to subset sum

dummies to get clause
columns to sum to 4

SUBSET-SUM instance

3-SAT instance

C1 = ¬ x1 ∨ x2 ∨ x3

C2 = x1 ∨ ¬ x2 ∨ x3

C3 = ¬ x1 ∨ ¬ x2 ∨ ¬ x3

71

My hobby

Randall Munro
http://xkcd.com/c287.html

72

Partition

SUBSET-SUM. Given natural numbers w1, …, wn and an integer W, is there a

subset that adds up to exactly W ?

PARTITION. Given natural numbers v1, …, vm , can they be partitioned into two

subsets that add up to the same value ½ Σi vi ?

Theorem. SUBSET-SUM ≤ P PARTITION.

Pf. Let W, w1, …, wn be an instance of SUBSET-SUM.

・Create instance of PARTITION with m = n + 2 elements.

- v1 = w1, v2 = w2, …, vn = wn, vn+1 = 2 Σi wi – W, vn+2 = Σi wi + W

・Lemma: there exists a subset that sums to W iff there exists a partition

since elements vn+1 and vn+2 cannot be in the same partition. ▪

vn+2 = Σi wi + W

vn+1 = 2 Σi wi – W

Σi wi – W

W subset A

subset B

73

Scheduling with release times

SCHEDULE. Given a set of n jobs with processing time tj, release time rj , and

deadline dj, is it possible to schedule all jobs on a single machine such that

job j is processed with a contiguous slot of tj time units in the interval [rj, dj]?

Ex.

1 + Σj wj0

74

Scheduling with release times

Theorem. SUBSET-SUM ≤ P SCHEDULE.

Pf. Given SUBSET-SUM instance w1, …, wn and target W, construct an instance

of SCHEDULE that is feasible iff there exists a subset that sums to exactly W.

Construction.

・Create n jobs with processing time tj = wj, release time rj = 0,

and no deadline (dj = 1 + Σj wj).

・Create job 0 with t0 = 1, release time r0 = W, and deadline d0 = W + 1.

・Lemma: subset that sums to W iff there exists a feasible schedule. ▪

W W+1

must schedule job 0 here

must schedule
jobs 1 to n
either here or here

75

Polynomial-time reductions

3-SAT

DIR-HAM-CYCLEINDEPENDENT-SET

VERTEX-COVER

3-SAT p
oly-tim

e r
ed

uces

to IN
DEPE

NDEN
T-S

ET

GRAPH-3-COLOR

HAM-CYCLE

TSP

SUBSET-SUM

SCHEDULINGPLANAR-3-COLOR

SET-COVER

numerical

constraint satisfaction

packing and covering sequencing partitioning

76

Karp's 21 NP-complete problems

Dick Karp (1972)
1985 Turing Award

