7. NETWORK FLow lll

PEARSON
g

Addison
Wesley

» assignment problem

» input-queuved switching

Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on Apr 3, 2013 6:16 PM

7. NETWORK FLow lll

» assignment problem

\A\qnul Jesiqr

I\ JON KLEINBERG - EVA TARDOS
\

SECTION 7.13

Assignment problem

Input. Weighted, complete bipartite graph G=(XU Y, E) with I XI=1Y]I.
Goal. Find a perfect matching of min weight.

Assignment problem

Input. Weighted, complete bipartite graph G=(XU Y, E) with I XI=1Y]I.
Goal. Find a perfect matching of min weight.

;)
7
min-cost perfect matching
5 M={0-2'1-0" 2-1"}
®/6 0 costM) =3 +5+4 =12

o &

Princeton writing seminars

Goal. Given m seminars and n = 12m students who rank their top 8 choices,
assign each student to one seminar so that:

* Each seminar is assigned exactly 12 students.

* Students tend to be "happy" with their assigned seminar.

Solution.
* Create one node for each student i and 12 nodes for each seminar j.
* Solve assignment problem where ¢; is some function of the ranks:

f(rank(i,j)) if i ranks j
Cii —
’ 00 if 4 does not rank j

Title Course # Professor Day/Time Location
1980s, The WRI 168 Scott, Andrea M/W 1:30pm-2:50pm Hargadon G002
America and the Melting Pot WRI 157 Skinazi, Karen T/TH 8:30am-9:50am Butler 026
America and the Melting Pot WRI 158 Skinazi, Karen T/TH 11:00am-12:20pm Hargadon G004
American Mysticism WRI 191 Laufenberg, George ' T/TH 7:30pm-8:50pm 99 Alexander 101
American Revolutions WRI 184 Grosghal, Dov M/W 8:30am-9:50am Butler 026
Animal Mind, The WRI 101 Gould, James M/W 8:30am-9:50am Blair T3

Art of Adventure, The WRI 151 Moffitt, Anne T/TH 11:00am-12:20pm Butler 027

Locating objects in space

Goal. Given n objects in 3d space, locate them with 2 sensors.

Solution.

* Each sensor computes line from it to each particle.

* Let ¢;=distance between line i from censor 1 and line j from sensor 2.
* Due to measurement errors, we might have ¢; > 0.
* Solve assignment problem to locate n objects.

VOL. 12, NOY 3, MAY-IUNE 1989 J. GUIDANCE 357

Algorithm for Ranked Assignments with Applications to
Multiobject Tracking

William L. 3rogan
Iiairersity of Nelvaska, Liicoln. Nebraska

A sequentisl algoritum s presenied or vbisising a cost-ranked st of solutions to the assignmea: problem.
Uoacarrantty, a coaservative bound can be calealsted that ilicates how maay of the ranked set are better than
ofher potential assignments thst may have teen missed. AppEcanions 1o owe Importan. sumtegic defeus: initiative
prcaswremen-assiznmen: prebloms, somely the cyele-to-oyclo aad the semsor-ta-seasor probléms, ars demonsizated.
The procedure is useful for intiztivg wew object tracks as well as for awigneg iscoming meassrements o
established tracking lilters Knaw'edpe af the ranked set of aslgmueets, & vpposed © 3 single opfimum, is
importaot becanse of messarament yncertainties. The predent cairss may he 1 inidare several tentutive tacks ia
vertain cdlose-call situations,

Kidney exchange

If a donor and recipient have a different blood type, they can exchange their
kidneys with another donor and recipient pair in a similar situation.

Can also be done among multiple pairs (or starting with an altruistic donor).

THEKIDNEYCHAIN (EB—&SR-

How a si gle organ donation changed 20 lives and
created the longest-running transplant chain
MATT JONES, 30 BARBARA RON ANGELA LAURIE
Petoskey, Mich. BUNNELL, 56 BUNNELL, 56 HECKMAN, 34 SARVO, 54
First donor Phoenix Phoenix Toledo, Ohio Toledo, Ohio

REYNALDO CLAUDIA JEAN RAYMOND AVA ROBY, 54 GEORGE LINDA CECILIA
ESPINOZA, 59 ALAS, 32 STAYLOR, 53 STAYLOR, 53 Marysville, Ohio LEOHNER, 51 JANISIESKI, 42 JANISIESKI, 71
Germantown, Md. Germantown, Md. Charleston, S.C. Charleston, S.C. Chillicothe, Ohio Miamisburg, Ohio Huber Heights, Ohio

.
married to donated to i « | [donatedto

ANONYMOUS ANONYMOUS TIMSHAIN, 43 LINLEY KATHERINE HELEENA
RECIPIENT DONOR CORAM, 55 Lincolnton, N.C. BLENKENSOPP, 51 BLENKENSOPP, 41 McKINNEY, 62 McKINNEY, 29
Lincolnton, N.C. Patchogue, N.Y. Patchogue, N.Y. Toledo, Ohio Cincinnati
Donor-in-waiting

Applications

Natural applications.
* Match jobs to machines.
* Match personnel to tasks.
* Match PU students to writing seminars.

Non-obvious applications.
* Vehicle routing.
* Kidney exchange.
* Signal processing.
* Multiple object tracking.
* Virtual output queueing.
* Handwriting recognition.
* Locating objects in space.
* Approximate string matching.
* Enhance accuracy of solving linear systems of equations.

Bipartite matching

Bipartite matching. Can solve via reduction to maximum flow.

Flow. During Ford-Fulkerson, all residual capacities and flows are 0-1;
flow corresponds to edges in a matching M.

Residual graph G,, simplifies to:
o If (x,y) & M, then (x,y) is in G,,.
e If (x,y) €M, then (y,x) is in G,,. ©

Q. O O O
~Q O O O

Augmenting path simplifies to:
* Edge from s to an unmatched node x € X,
* Alternating sequence of unmatched and matched edges,
* Edge from unmatched node ye Y to .

Alternating path

Def. An alternating path P with respect to a matching M is an alternating
sequence of unmatched and matched edges, starting from an unmatched
node x € X and going to an unmatched node y €Y.

Key property. Can use P to increase by one the cardinality of the matching.
Pf. SetM'= M® P.

AN

symmetric difference

matching M alternating path P matching M'

10

Assignment problem: successive shortest path algorithm

Cost of alternating path. Pay c(x, y) to match x-y; receive c(x, y) to unmatch.

P=2-2'"-1-1"
cost(P) =2-6+10=6

Shortest alternating path. Alternating path from any unmatched node x€ X
to any unmatched node y € Y with smallest cost.

Successive shortest path algorithm.
* Start with empty matching.
* Repeatedly augment along a shortest alternating path.

11

Finding the shortest alternating path

Shortest alternating path. Corresponds to minimum cost s~¢ path in G,,.

Concern. Edge costs can be negative.

Fact. If always choose shortest alternating path, then G,, contains no
negative cycles = can compute using Bellman-Ford.

Our plan. Use duality to avoid negative edge costs (and negative cycles)
=> can compute using Dijkstra.

12

Equivalent assignment problem

Duality intuition. Adding a constant p(x) to the cost of every edge
incident to node x € X does not change the min-cost perfect matching(s).

Pf. Every perfect matching uses exactly one edge incident to node x. =

original costs c(x, y) modified costs c'(x, y)

-3 @ 13 @

7 10

2 2 add 3 to all edges 6 p’

c o incident to node 0 o

DN D = TN O
2
* *

13

Equivalent assignment problem

Duality intuition. Subtracting a constant p(y) to the cost of every edge
incident to node y € Y does not change the min-cost perfect matching(s).

Pf. Every perfect matching uses exactly one edge incident to node y. =

original costs c(x, y) modified costs c'(x, y)
@ s @ 10
7
2 2 subtract 5 from all edges ”
c N incident to node 0' . "N
O O, —> O, \ O,
2
* -
9 > 4 >

14

Reduced costs

Reduced costs. ForxE X,y &Y, define cr(x,y) = p(x) + c(x,y) — p(y).

Observation 1. Finding a min-cost perfect matching with reduced costs is
equivalent to finding a min-cost perfect matching with original costs.

original costs c(x, y) reduced costs cP(x, y)
p@ =0 (0) 15 p(0") = 11 O
7 1
3 > 0 o
* *
5 0
p(l) =6 @ 6 N\ @ p(1') =6 @ N\ @
2 . - 5 .
9 g (1,2 = p(1) + 2 - p(2") 0 -~
4 0
p@=2 (2 1 @) e@)=3 @y o (2)
X Y X Y

15

Compatible prices

Compatible prices. For each node vE X U Y, maintain prices p(v) such that:
* cP(x,y)= 0 for all (x,y) & M.
* co(x,y)= 0 for all (x,y) €M.

Observation 2. If prices p are compatible with a perfect matching M,
then M is a min-cost perfect matching.

reduced costs cP(x, y)

O

1
0 >

Pf. Matching M has O cost. =

Successive shortest path algorithm

SUCCESSIVE-SHORTEST-PATH (X, ¥, ¢)

compatible with M

M <— . prices p are
FOREACHvE X U Y : p(V) < 0 I cP(x, y) = c(X, y) =0
WHILE (M i1s not a perfect matching)

d <— shortest path distances using costs c”.

P < shortest alternating path using costs c”.

M < updated matching after augmenting along P.

FOREACHvE X U Y: p(v) < p(v) + dv).

RETURN M.

17

Successive shortest path algorithm

Initialization.
° M=0a.
* ForeachveXUY:p®k) < 0.

original costs c(x, y)

18

Successive shortest path algorithm

Initialization.
° M=0a.
* ForeachveXUY:p®k) < 0.

reduced costs cP(x, y)

p(0) =0

19

Successive shortest path algorithm

Step 1.
* Compute shortest path distances d(v) from s to v using c?(x, y).
* Update matching M via shortest path from s to .
* ForeachveXUuY: p(v) < p®y) +dWv).

shortest path distances d(v)
d0) =0 d") =5

(O
7

3

d(s) = 0 d) = 0 d@’) = 4 d@ = 1

© 0= ® o

— h

) @

d2) =0 d2’) =1

20

Successive shortest path algorithm

Step 1.
* Compute shortest path distances d(v) from s to v using c?(x, y).
* Update matching M via shortest path from s to .
* ForeachveXUuY: p(v) < p®y) +dWv).

alternating path

d(©) =0 d©") =5
@
3
d(s) = 0 dn=0 d(1’) = 4 d(t) = 1
O @)

9 matching
4 2-2'

d2) =0 d2’) =1

21

Successive shortest path algorithm

Step 1.
* Compute shortest path distances d(v) from s to v using c?(x, y).
* Update matching M via shortest path from s to .
* ForeachveXUuY: p(v) < p®y) +dWv).

reduced costs cP(x, y)

p(0) =0 p(0") =5
o=
2
p(1) =0 p(1") = 4

()
=)

)

o

)

@

p(2) =0 p(2") =1

©

matching
2-2'

22

Successive shortest path algorithm

Step 2.
* Compute shortest path distances d(v) from s to v using c?(x, y).
* Update matching M via shortest path from s to .
* ForeachveXUuY: p(v) < p®y) +dWv).

shortest path distances d(v)
d0) =0 d0") =0

O
3

2

d(s) =0 d(1) =0 d(1) =1 d(t) =0

O, O,) O,

4 matching

@ @

d2) =1 d2") =1

o O

23

Successive shortest path algorithm

Step 2.
* Compute shortest path distances d(v) from s to v using c?(x, y).
* Update matching M via shortest path from s to .
* ForeachveXUuY: p(v) < p®y) +dWv).

shortest path distances d(v)
d(0) =0 d(0) =0

d(s) =0 d(1) =0 d(1) =1 d(t) =0

)

4 matching

2-2"' 1-0'
@

d2) =1 d2") =1

o

)

Successive shortest path algorithm

Step 2.
* Compute shortest path distances d(v) from s to v using c?(x, y).
* Update matching M via shortest path from s to .
* ForeachveXUuY: p(v) < p®y) +dWv).

reduced costs cP(x, y)
p(0) = 0 p(0’) =5

O

p(1)=0 0 p(1) =5

)

()
S,

)

@

p(2) =1 p(2") =2

©

matching
2-2' 1-0'

25

Successive shortest path algorithm

Step 3.
* Compute shortest path distances d(v) from s to v using c?(x, y).
* Update matching M via shortest path from s to .
* ForeachveXUuY: p(v) < p®y) +dWv).

shortest path distances d(v)
d0) =0 d(") =6

O

d(s) = 0 d(1) = 6) = 1 d@ = 1

) O,

()
S,

5 matching

2-2"' 1-0'
@

d2) =1 d2") =1

)

26

Successive shortest path algorithm

Step 3.
* Compute shortest path distances d(v) from s to v using c?(x, y).
* Update matching M via shortest path from s to .
* ForeachveXUuY: p(v) < p®y) +dWv).

shortest path distances d(v)
d(0) =0 d(0") = 6

d(1) =1 dit) =1

matching
1-0' 0-2' 2-1'

d2) =1 d2") =1

27

Successive shortest path algorithm

Step 3.
* Compute shortest path distances d(v) from s to v using c?(x, y).
* Update matching M via shortest path from s to .
* ForeachveXUuY: p(v) < p®y) +dWv).

reduced costs cP(x, y)

p(0) =0 p(0") =11
O~
0
p(1) =6 p(1) =6

o 0= ® o

0 matching

1-0' 0-2' 2-1'
@

p(2) =2 p(2) =3

o

)

28

Successive shortest path algorithm

Termination.
* M is a perfect matching.
* Prices p are compatible with .

reduced costs cP(x, y)

p(0) = 0 p(0") = 11
o= 0
1
0
p(1) = 6 p(1) = 6

o= Q

G &)

p(2) =2 p(2) =3

matching
1-0' 0-2' 2-1'

29

Maintaining compatible prices

Lemma 1. Let p be compatible prices for M. Let d be shortest path distances

in G,; with costs cr. All edges (x, y) on shortest path have cr+d(x, y) =0.

AN

forward or reverse edges

Pf. Let (x,y) be some edge on shortest path.

If (x,y) €M, then (y,x) on shortest path and d(x) = d(y) — c?(x, y);
If (x,y) & M, then (x,y) on shortest path and d(y) = d(x) + cr(x,y).
In either case, d(x) + cr(x,y) — d(y) = 0.

By definition, c?(x,y) = p(x) + c(x,y) — p(y).

Substituting for cr(x, y) yields (p(x) + d(x)) + c(x,y) — (p(y) + d(y)) = O.
In other words, cr+d(x,y)=0. =

Given prices p, the reduced cost of edge (x,y) is
cP(x,y) = plx) + c(x,y) — p(y).

30

Maintaining compatible prices

Lemma 2. Let p be compatible prices for M. Let d be shortest path distances
in G,, with costs ¢». Then p' =p +d are also compatible prices for M.

Pf. x,y)EM

* (v,x) is the only edge entering x in G,,. Thus, (y,x) on shortest path.
* By LEMMA 1, cr+d(x,y) =0.

Pf. (x,y)&EM
* (x,y)is an edge in G, = d(y) < d(x) + cr(x,).
e Substituting cr(x, y) = p(x) + c(x,y) — p(y) = 0 yields

(p(x) +d(x)) + c(x,y) — (p(y) +d(y)) = O.
* In other words, cr+d(x,y) = 0. =

Prices p are compatible with matching M:
e cr(x,y)= 0 for all (x,y) & M.
e cr(x,y)= 0 for all (x,y) € M.

31

Maintaining compatible prices

Lemma 3. Let p be compatible prices for M and let M' be matching obtained
by augmenting along a min cost path with respect to ¢»+4. Then p'=p +d are
compatible prices for M'.

Pf.

By LEMMA 2, the prices p + d are compatible for M.

Since we augment along a min-cost path, the only edges (x, y) that swap
into or out of the matching are on the min-cost path.

By LEMMA 1, these edges satisfy cr+d(x,y) = 0.

Thus, compatibility is maintained. =

Prices p are compatible with matching M:
e cr(x,y)= 0 for all (x,y) & M.
e cr(x,y)= 0 for all (x,y) € M.

Successive shortest path algorithm: analysis

Invariant. The algorithm maintains a matching M and compatible prices p.
Pf. Follows from LEMMA 2 and LEMMA 3 and initial choice of prices. =

Theorem. The algorithm returns a min-cost perfect matching.

Pf. Upon termination M is a perfect matching, and p are compatible prices.

Optimality follows from OBSERVATION 2. =

Theorem. The algorithm can be implemented in O(»3) time.
Pf.
* Each iteration increases the cardinality of M by 1 = n iterations.
* Bottleneck operation is computing shortest path distances d.
Since all costs are nonnegative, each iteration takes O(n?) time
using (dense) Dijkstra. =

33

Weighted bipartite matching

Weighted bipartite matching. Given a weighted bipartite graph with n nodes
and m edges, find a maximum cardinality matching of minimum weight.

Theorem. [Fredman-Tarjan 1987] The successive shortest path algorithm
solves the problem in O(n2 + mnlog n) time using Fibonacci heaps.

Theorem. [Gabow-Tarjan 1989] There exists an O(mn!”2 log(nC)) time
algorithm for the problem when the costs are integers between 0 and C.

SIAM J. COMPUT. (©1989 Society for Industrial and Applied Mathematics
Vol. 18, No. 5, pp. 1013-1036, October 1989 011

FASTER SCALING ALGORITHMS FOR NETWORK PROBLEMS*

HAROLD N. GABOW?{ AND ROBERT E. TARJAN{

Abstract. This paper presents algorithms for the assignment problem, the transportation
problem, and the minimum-cost flow problem of operations research. The algorithms find a minimum-
cost solution, yet run in time close to the best-known bounds for the corresponding problems without
costs. For example, the assignment problem (equivalently, minimum-cost matching in a bipartite
graph) can be solved in O(v/nmlog(nN)) time, where n, m, and N denote the number of vertices,
number of edges, and largest magnitude of a cost; costs are assumed to be integral. The algorithms
work by scaling. As in the work of Goldberg and Tarjan, in each scaled problem an approximate
optimum solution is found, rather than an exact optimum.

34

History

Thorndike 1950. Formulated in a modern way by a psychologist.

PSYCHOMETRIKA—VOL. 15, NO. 3
SEPTEMBER, 1350

THE PROBLEM OF CLASSIFICATION OF PERSONNEL*

ROBRERT L. ‘THORNDIKE
TEACHERS CCLLEGE, COLU.MB_L-\ UNIVERSITY

The personnel classification problem arises in its pure form
when all job applicants must be used, being divided among a num-
ber of job categories. The use of tests for classification involves
problems of two types: (1) problems concerning the design, choice,
and weighting of tests into a battery, and (2) problems of estab-
lishing the optimum administrative procedure of using test results

" for assignment. A consideration of the first pioblem emphasizes
the desirability of using simple, factorially pure tests which may
be expected to have a wide range of validities for different job
categories. In the use of test results for assignment, an initial
problem is that of expressing predictions of success in different jobs
in comparable score units. These units should take account of pre-
dictor validity and of job importance. Procedures are desccibed for
handling assivnment either in terms of dailvy guotas or in terms
of a stable predicted yield.

Assign individuals to jobs to maximize average success of all individuals.

History

Thorndike

1950. Formulated in a modern way by a psychologist.

"7 There are, as has been indicated, a finite number of permuta-

tions in the assignment of men to jobs. When the classification prob-

———

lem as formulated above was presented to a mathemat1c1an, he
pointed to this fact and said that from the point of view of the mathe-
matician there was no problem. Since the number of permutations

‘was finite, one had only to try them all and choose the best. He dis-

missed the problem at that point. This is rather cold comfort to the
psychologist, however, when one considers that only ten men and
ten jobs mean over three and a half million permutations! Trying

out all the permutations. may be a mathematmal so]utlon to the prob— -

fﬂs‘

lem, it is’ not a practlcal solutlon.

PR .’) e .
Fo €y el e et e

anticipated theory of computational complexity!

—

36

History

Kuhn 1955. First poly-time algorithm; named "Hungarian" algorithm to
honor two Hungarian mathematicians (Konig and Egervary).

Munkres 1957. Reviewed algorithm; observed O®n*) implementation.

Edmonds-Karp, Tomizawa 1971. Improved to O(#3).

THE HUNGARIAN METHOD FOR THE ASSIGNMENT PROBLEM!

H. W, Kuhn
Bryn Mawr College

Assuming that numerical scores are available for the perform-
ance of each of n persons on each of n jobs, the "assignment problem"
is the quest for an assignment of persons to jobs so that the sum of the
n scores so obtainedis aslarge as possible. It is shownthat ideas latent
in the work of two Hungarian mathematicians may be exploited to yield
a new method of solving this problem.

anticipated development of combinatorial optimization

37

History

Jacobi (1804-1851). Introduces a bound on the order of a system of m
ordinary differential equations in m unknowns and reduces it to....

De investigando ordine systematis aequationum
differentialium vulgarium cujuscunque.
(Ex. ill. C. G. J. Jacobi manuscriptis posthumis in medium protulit*) C. W, Borchardt.)

1.

Investigatio ad solvendum problema inaequalitatum reducitur.

Syslema aequationum differentialium vulgarium est non canonicum™*),
si aequaliones altissima variabilium dependentium differentialia tali modo con-
tinent, ut horum valores ex iis petere non liceal. Id quod fit, quoties aequationes
nonnullae altissimis illis differentialibus carentes in systemate proposito vel
ipsae inveniuntur vel eliminalione ex eo obtinentur. Eo casw numerus Con-
stantium Arbitrariarum, quas integratio completa inducit, sive ordo systematis
semper minor est summa altissimorum ordinum, ad quos differentialia singularum
variabilium in aequationibus differentialibus propositis ascendunt. Qui ordo
systemalis cognoscitur, si per differentiationes et eliminationes contingil systema
propositum redigere in aliud forma canonica gaudens eique aequivalens, ila ut
de syslemale canonico eliam ad propositum reditus pateal. Nom summa al-
tissimorum ordinum, ad quos in systemate canonico differentialia singularum
variabilium dependentium ascendunt. eliam systematis proposili non canonici
ordo erit. Ad quem ordinem investigandum non tamen opus est ea ad formam
canonicam reductione, sed res per consideraliones sequentes absolvi potest.

Ponamus inter variabilem independentem ¢ alque m variabiles depen-
dentes z,, x,, ... «, haberi n aequationes differentiales:

1) =0 =0, ... =0,
silque
q 3o

altissimus ordo, ad quem in aequatione u, =0 differentialia variabilis z, ascen-

Looking for the order of a system of arbitrary ordinary differential equations

History

Jacobi (1804-1851). The assignment problem! Moreover, he provides a

polynomial-time algorithm.

Problema.

Disponantur nn quantilates h® quaecunque in schema Quadrati, ila ut
habeantur n series horizonlales el n series verlicales quarum quaeque est n
terminorum. Ex illis quantitatibus eligantur n transversales i, e. in seriebus
horisontalibus simul alque verlicalibus diversis positae, quod fieri potest 1.2...n
modis; ex omnibus illis modis quaerendus est is qui summam n numerorum
electorum suppeditel maximam.)

Dispositis quantitatibus A{” in figuram quadraticam

KoK ... K
[T VR 14
T TR (O

earum systema appellabo schema propositum; omne schema inde orlum ad-
dendo singulis ejusdem seriei horizontalis terminis eandem quantilatem apellabo
schema derivatum. Sil
I8
quantitas addenda terminis i’ seriei horizontalis, quo facto singula 1.2...m
aggregatla transversalia, inter quae maximum eligendum est, eadem augebuntur
quanlitate
U4l 4o I = L,
quippe ad singula aggregala formanda e quaque serie horizontali unus eligendus
est terminus. Qua de re si statuitur
WO+ = pfd
atque aggregatum (ransversale maximum e terminis A{” formatum
Y4 A -+ A% = H,
fit valor aggregati transversalis maximi e terminis p{’ formati

PO+ P+t p” = HAL

Problem.

We dispose nn arbitrary quantities hg) in a square table in such a
way that we have n horizontal series and n vertical series having each
one n terms. Among these quantities, to chose n being transversal,
that is all disposed in different horizontal and vertical series, which
may be done in 1.2...n ways; and among these ways, to research one
that gives the maximum of the sum of the n chosen numbers.

W, W, ... H,
A VA
AR S O R

we can add to each term of the same horizontal series a same quantity, and
we call £ the quantity added to the terms of the 3" horizontal series. This
being done, each of the 1.2...n transversal sums among which we need to
find a maximum is increased by the same quantity

O 40"+ 40 =,

because, in order to form these sums, we need to pick a term in each hori-
zontal series. Hence, if we pose

B 4 0@ = p
and that the maximal transversal sum of the terms h,@ is
WY+ B2 4 h = |,
this makes that the value of the maximal sum formed with the p,(:) is

p s e = H A L

Jacobi formulated the assignment problem; proposed and analyzed the Hungarian algorithm

39

7. NETWORK FLow lll

» input-queuved switching

\A\qnul Jesiqr

I\ JON KLEINBERG - EVA TARDOS
\

SECTION

Input-queued switching

Input-queued switch.
* n input ports and n output ports in an n-by-n crossbar layout.
* At most one cell can depart an input at a time.
* At most one cell can arrive at an output at a time.
* Cell arrives at input x and must be routed to output y.

Application. High-bandwidth switches.

inputs

Y1 Y2 Y3

outputs

41

FIFO queuing

FIFO queueing. Each input x maintains one queue of cells to be routed.

Head-of-line blocking (HOL). A cell can be blocked by a cell queued ahead
of it that is destined for a different output.

Y2 Y1 ¥ X1 i — —0

FIFO 2 X2 f d)

Yi V3 V3 X3

Y1 Y2 Y3

outputs

FIFO queuing

FIFO queueing. Each input x maintains one queue of cells to be routed.

Head-of-line blocking (HOL). A cell can be blocked by a cell queued ahead
of it that is destined for a different output.

Fact. FIFO can limit throughput to 58% even when arrivals are uniform i.i.d.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-35, NO. 12, DECEMBER 1987 1347

Input Versus Output Queueing on a Space-Division
Packet Switch

MARK J. KAROL, MEMBER, IEEE, MICHAEL G. HLUCHY]J, MEMBER, IEEE, AND SAMUEL P. MORGAN, FELLOW, IEEE

Abstract—Two simple models of queueing on an N X N space-division
packet switch are examined. The switch operates synchronously with
fixed-length packets; during each time slot, packets may arrive on any
inputs addressed to any outputs. Because packet arrivals to the switch are
unscheduled, more than one packet may arrive for the same output
during the same time slot, making queueing unavoidable. Mean queue
lengths are always greater for queueing on inputs than for q g on
outputs, and the output queues saturate only as the utilization approaches
unity. Input queues, on the other hand, saturate at a utilization that
depends on /N, but is approximately (2 — \/5) = (0.586 when N is large. If
output trunk utilization is the primary consideration, it is possible to
slightly increase utilization of the output trunks—up.to (1 — e~!) = 0.632
as N — oco—by dropping interfering packets at the end of each time slot,
rather than storing them in the input queues. This improvement is
possible, however, only when the utilization of the input trunks exceeds a
second critical threshold—approximately In (1 + \'/5) = 0.881 for Jarge
N. .

43

Virtual output queueing

Virtual output queueing (VOQ). Each input x maintains n queues of cells,
one for each output y.

Maximum size matching. Find a max cardinality matching.
Fact. VOQ achieves 100% throughput when arrivals are uniform i.i.d.
but can starve input-queues when arrivals are nonuniform.

Y1

Y2 y2 ¥
VOQ Y2 V2 Y2 X2 f r)
Y3 y3 y3 .y3
X ¢ ¢)
Y2 y2 y2
Y3

Y1 Y2 Y3

outputs

Input-queued switching

Max weight matching. Find a min cost perfect matching between inputs x
and outputs y, where c(x, y) equals:
[LQF] The number of cells waiting to go from input x to output y.
[OCF] The waiting time of the cell at the head of VOQ from x to y.

Theorem. LQF and OCF achieve 100% throughput if arrivals are independent
(even if not uniform).

Achieving 100% Throughput
in an Input-Queued Switch
P ractice. Nick McKeown, Senior Member, IEEE, Adisak Mekkittikul, Member, IEEE,

Venkat Anantharam, Fellow, IEEE, and Jean Walrand, Fellow, IEEE

Assignment problem too slow in practice.

Abstract— 1t is well known that head-of-line blot k'ng limits
the throughput of an input-queued switch with first-in—first-out
(FIFO) queues. Under certain cond ti ons the th ghput can be

* Difficult to implement in hardware. ot e S5, e
be in sed. However, it ha: snotb p ly h vmth t f

sui tableq eueing poli cy and schedulin; galgo rithm are sed the
it is pos bl to achie 100/ thr l‘ ll

* Provides theoretical framework: e e e s e e

asmplel near p og -ammij ga gume ta dq ad atcLyap nov
function

cular, we assume that each input maintai
output a d that the switcl h
mwclg t bipartite matching algor thm.
weight matching algorithms: longest
queue first (l QF) an d oldest cell ﬁ st (OLF) Both algo thms
achieve 10 thr put for ll P arrival pro
LQF f queues with larger occupancy, ensuring that l g
queues w11| eventually be served. Howe ver, we ﬁ d that LQF can

In part
FIF

use maximal (weighted) matching.

lead to the permanent starvation of short queues. OCF overcomes
this limitation by favoring cells with large waiting times.

Index Terms — Arbitration, ATM, input-queued switch, input-
queueing, packet switch, queueing networks, scheduling algo-
rithm.

45

