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7.  NETWORK FLOW III

‣ assignment problem

‣ input-queued switching
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7.  NETWORK FLOW III

‣ assignment problem

‣ input-queued switching
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Assignment problem

Input. Weighted, complete bipartite graph G = (X ∪ Y, E) with | X | = | Y |.
Goal.  Find a perfect matching of min weight.
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Assignment problem

Input. Weighted, complete bipartite graph G = (X ∪ Y, E) with | X | = | Y |.
Goal.  Find a perfect matching of min weight.

min-cost perfect matching
M = { 0-2', 1-0', 2-1' }

cost(M) = 3 + 5 + 4 = 12
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Princeton writing seminars

Goal.  Given m seminars and n = 12m students who rank their top 8 choices, 

assign each student to one seminar so that:

・Each seminar is assigned exactly 12 students.

・Students tend to be "happy" with their assigned seminar.

Solution.

・Create one node for each student i and 12 nodes for each seminar j.

・Solve assignment problem where cij  is some function of the ranks:

cij =

�
f(rank(i, j)) i j

� i j
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Locating objects in space

Goal.  Given n objects in 3d space, locate them with 2 sensors.

Solution.

・Each sensor computes line from it to each particle.

・Let cij = distance between line i from censor 1 and line j from sensor 2.

・Due to measurement errors, we might have cij > 0.

・Solve assignment problem to locate n objects. 

If a donor and recipient have a different blood type, they can exchange their 

kidneys with another donor and recipient pair in a similar situation.

Can also be done among multiple pairs (or starting with an altruistic donor).
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Kidney exchange
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Applications

Natural applications.

・Match jobs to machines.

・Match personnel to tasks.

・Match PU students to writing seminars. 

Non-obvious applications.

・Vehicle routing.

・Kidney exchange.

・Signal processing.

・Multiple object tracking.

・Virtual output queueing. 

・Handwriting recognition.

・Locating objects in space.

・Approximate string matching.

・Enhance accuracy of solving linear systems of equations.



Bipartite matching.  Can solve via reduction to maximum flow.

Flow.  During Ford-Fulkerson, all residual capacities and flows are 0-1;

flow corresponds to edges in a matching M.

Residual graph GM simplifies to:

・If (x, y) ∉ M, then (x, y) is in GM.

・If (x, y) ∈ M, then (y, x) is in GM. 

Augmenting path simplifies to:

・Edge from s to an unmatched node x ∈ X,

・Alternating sequence of unmatched and matched edges,

・Edge from unmatched node y ∈ Y to t.

s t
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Bipartite matching

1 1

1

YX

Def.  An alternating path P with respect to a matching M is an alternating 

sequence of unmatched and matched edges, starting from an unmatched 

node x ∈ X and going to an unmatched node y ∈ Y.

Key property.  Can use P to increase by one the cardinality of the matching.

Pf.  Set M ' =  M ⊕  P.
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Alternating path

matching M alternating path P matching M'

x

y

x

y

x

y

symmetric difference

Cost of alternating path.  Pay c(x, y) to match x-y; receive c(x, y) to unmatch. 

Shortest alternating path.  Alternating path from any unmatched node x ∈ X
to any unmatched node y ∈ Y with smallest cost.

Successive shortest path algorithm.

・Start with empty matching.

・Repeatedly augment along a shortest alternating path.
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Assignment problem:  successive shortest path algorithm
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P = 2 → 2' → 1 → 1'
cost(P) = 2 - 6 + 10 = 6

6

Shortest alternating path.  Corresponds to minimum cost s↝t path in GM.

Concern.  Edge costs can be negative. 

Fact.  If always choose shortest alternating path, then GM contains no 

negative cycles  ⇒  can compute using Bellman-Ford.

Our plan.  Use duality to avoid negative edge costs (and negative cycles)

⇒  can compute using Dijkstra.
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Finding the shortest alternating path
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Duality intuition.  Adding a constant p(x) to the cost of every edge

incident to node x ∈ X does not change the min-cost perfect matching(s).

Pf.  Every perfect matching uses exactly one edge incident to node x.  ▪

Equivalent assignment problem

0

1

2

0'

1'

2'

original costs c(x, y)

0

1

2

0'

1'

2'

15

7

3

9

4

1

5

6

2

add 3 to all edges

incident to node 0

p(0) = 3 18

10

9

4

1

5

6

2

X Y

modified costs c'(x, y)

6

X Y
14

Duality intuition.  Subtracting a constant p(y) to the cost of every edge 

incident to node y ∈ Y does not change the min-cost perfect matching(s).

Pf.  Every perfect matching uses exactly one edge incident to node y.  ▪

Equivalent assignment problem

0

1

2

0'

1'

2'

10

7

4

4

1

0

6

2

X Y

original costs c(x, y)

0

1

2

0'

1'

2'

15

7

3

9

4

1

5

6

2

subtract 5 from all edges

incident to node 0'

p(0') = 5

modified costs c'(x, y)

3

X Y

15

Reduced costs.  For x ∈ X, y ∈ Y, define cp(x, y) =  p(x)  +  c(x, y)  –  p(y).

Observation 1.  Finding a min-cost perfect matching with reduced costs is 

equivalent to finding a min-cost perfect matching with original costs.

Reduced costs

original costs c(x, y)
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p(0) = 0

p(1) = 6

p(2) = 2

p(0') = 11

p(1') = 6

p(2') = 3

cp(1, 2') = p(1) + 2 – p(2')

reduced costs cp(x, y)
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Compatible prices.  For each node v ∈ X ∪ Y, maintain prices p(v) such that:

・cp(x, y) ≥  0 for all (x, y) ∉ M.

・cp(x, y) =  0 for all (x, y) ∈ M.

Observation 2.  If prices p are compatible with a perfect matching M,

then M is a min-cost perfect matching.

Pf.  Matching M has 0 cost.  ▪

Compatible prices

reduced costs cp(x, y)
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SUCCESSIVE-SHORTEST-PATH (X, Y, c)                          


M  ← ∅.

FOREACH v ∈ X ∪ Y : p(v) ← 0.

WHILE (M is not a perfect matching)

d ← shortest path distances using costs cp.

P ← shortest alternating path using costs cp.

M ← updated matching after augmenting along P.

FOREACH v ∈ X ∪ Y : p(v) ←  p(v)  +  d(v).

RETURN  M.
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Successive shortest path algorithm

prices p are

compatible with M

cp(x, y) = c(x, y)  ≥ 0

Initialization.

・M = ∅.

・For each v ∈ X ∪ Y : p(v) ← 0.
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Successive shortest path algorithm

original costs c(x, y)
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p(0) = 0

p(1) = 0

p(2) = 0

p(0') = 0

p(1') = 0

p(2') = 0

Initialization.

・M = ∅.

・For each v ∈ X ∪ Y : p(v) ← 0.
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Successive shortest path algorithm

reduced costs cp(x, y)

0

1

2

0'

1'

2'

p(0) = 0

p(1) = 0

p(2) = 0

p(0') = 0

p(1') = 0

p(2') = 0

s t

15

7

3

9

4

1

5

6
2

Step 1.

・Compute shortest path distances d(v) from s to v using cp(x, y). 

・Update matching M via shortest path from s to t.

・For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v).
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Successive shortest path algorithm
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Step 1.

・Compute shortest path distances d(v) from s to v using cp(x, y). 

・Update matching M via shortest path from s to t.

・For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v).
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Successive shortest path algorithm

alternating path

0

1

2

0'

1'

2'

d(0) = 0

d(1) = 0

d(2) = 0

d(0') = 5

d(1') = 4

d(2') = 1

s t

d(t) = 1d(s) = 0

matching
2-2'

15

7

3

9

4

1

5

6
2

Step 1.

・Compute shortest path distances d(v) from s to v using cp(x, y). 

・Update matching M via shortest path from s to t.

・For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v).
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Successive shortest path algorithm

reduced costs cp(x, y)
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Step 2.

・Compute shortest path distances d(v) from s to v using cp(x, y). 

・Update matching M via shortest path from s to t.

・For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v).
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Successive shortest path algorithm
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Step 2.

・Compute shortest path distances d(v) from s to v using cp(x, y). 

・Update matching M via shortest path from s to t.

・For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v).
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Successive shortest path algorithm
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Step 2.

・Compute shortest path distances d(v) from s to v using cp(x, y). 

・Update matching M via shortest path from s to t.

・For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v).
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Successive shortest path algorithm
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Step 3.

・Compute shortest path distances d(v) from s to v using cp(x, y). 

・Update matching M via shortest path from s to t.

・For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v).
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Successive shortest path algorithm
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Step 3.

・Compute shortest path distances d(v) from s to v using cp(x, y). 

・Update matching M via shortest path from s to t.

・For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v).
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Successive shortest path algorithm
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Step 3.

・Compute shortest path distances d(v) from s to v using cp(x, y). 

・Update matching M via shortest path from s to t.

・For each v ∈ X ∪ Y:  p(v)  ← p(v) + d(v).
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Successive shortest path algorithm
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Termination.

・M is a perfect matching.

・Prices p are compatible with M.
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Successive shortest path algorithm
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Lemma 1.  Let p be compatible prices for M.  Let d be shortest path distances 

in GM with costs cp. All edges (x, y) on shortest path have cp+d(x, y) = 0.

Pf.  Let (x, y) be some edge on shortest path.

・If (x, y) ∈ M, then (y, x) on shortest path and d(x)  =  d(y)  –  cp(x, y);
       If (x, y) ∉ M, then (x, y) on shortest path and d(y)  =  d(x)  +  cp(x, y).

・In either case, d(x)  +  cp(x, y)  –  d(y)  =  0.

・By definition, cp(x, y)  =  p(x)  +  c(x, y)  –  p(y).

・Substituting for cp(x, y) yields (p(x) + d(x)) + c(x, y) – (p(y) + d(y)) = 0.

・In other words, cp+d(x, y) = 0.   ▪

Maintaining compatible prices

forward or reverse edges

Given prices p, the reduced cost of edge (x, y) is
 cp(x, y)  =  p(x)  +  c(x, y)  –  p(y).
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Lemma 2.  Let p be compatible prices for M.  Let d be shortest path distances 

in GM with costs cp. Then p' = p + d are also compatible prices for M.

Pf.  (x, y) ∈ M  

・(y, x) is the only edge entering x in GM. Thus, (y, x) on shortest path.

・By LEMMA 1,  cp+d(x, y) = 0.

Pf.  (x, y) ∉ M 

・(x, y) is an edge in GM  ⇒  d(y)  ≤  d(x)  +  cp(x, y).

・Substituting cp(x, y) = p(x) + c(x, y) –  p(y)  ≥  0 yields

(p(x) + d(x))  +  c(x, y)  –  (p(y) + d(y))  ≥  0.

・In other words, cp+d(x, y)  ≥  0.   ▪

Maintaining compatible prices

Prices p are compatible with matching M: 

・cp(x, y) ≥  0 for all (x, y) ∉ M.

・cp(x, y) =  0 for all (x, y) ∈ M.
32

Lemma 3.  Let p be compatible prices for M and let M ' be matching obtained 

by augmenting along a min cost path with respect to cp+d.  Then p' = p + d are 

compatible prices for M'.

Pf.

・By LEMMA 2, the prices p + d are compatible for M.

・Since we augment along a min-cost path, the only edges (x, y) that swap 

into or out of the matching are on the min-cost path.

・By LEMMA 1, these edges satisfy cp+d(x, y)  =  0.

・Thus, compatibility is maintained.   ▪

Maintaining compatible prices

Prices p are compatible with matching M: 

・cp(x, y) ≥  0 for all (x, y) ∉ M.

・cp(x, y) =  0 for all (x, y) ∈ M.
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Invariant.  The algorithm maintains a matching M and compatible prices p.

Pf.  Follows from LEMMA 2 and LEMMA 3 and initial choice of prices.   ▪

Theorem.  The algorithm returns a min-cost perfect matching.

Pf.  Upon termination M is a perfect matching, and p are compatible prices.  

Optimality follows from OBSERVATION 2.   ▪

Theorem.  The algorithm can be implemented in O(n3) time.

Pf.

・Each iteration increases the cardinality of M by 1  ⇒  n iterations.

・Bottleneck operation is computing shortest path distances d.

Since all costs are nonnegative, each iteration takes O(n2) time

using (dense) Dijkstra.   ▪

Successive shortest path algorithm:  analysis
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Weighted bipartite matching.  Given a weighted bipartite graph with n nodes 

and m edges, find a maximum cardinality matching of minimum weight.

Theorem.  [Fredman-Tarjan 1987] The successive shortest path algorithm 

solves the problem in O(n2 + m n log n) time using Fibonacci heaps.

Theorem. [Gabow-Tarjan 1989] There exists an O(m n1/2 log(nC)) time 

algorithm for the problem when the costs are integers between 0 and C.

Weighted bipartite matching

SIAM J. COMPUT.
Vol. 18, No. 5, pp. 1013-1036, October 1989

()1989 Society for Industrial and Applied Mathematics
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FASTER SCALING ALGORITHMS FOR NETWORK PROBLEMS*
HAROLD N. GABOW AND ROBERT E. TARJAN$

Abstract. This paper presents algorithms for the assignment problem, the transportation
problem, and the minimum-cost flow problem of operations research. The algorithms find a minimum-
cost solution, yet run in time close to the best-known bounds for the corresponding problems without
costs. For example, the assignment problem (equivalently, minimum-cost matching in a bipartite
graph) can be solved in O(v/’rn log(nN)) time, where n, m, and N denote the number of vertices,
number of edges, and largest magnitude of a cost; costs are assumed to be integral. The algorithms
work by scaling. As in the work of Goldberg and Tarjan, in each scaled problem an approximate
optimum solution is found, rather than an exact optimum.

Key words, graph theory, networks, assignment problem, matching, scaling

AMS(MOS) subject classifications. 68Q20, 68Q25, 68R10, 05C70

1. Introduction. Many problems in operations research involve minimizing a
cost function defined on a bipartite or directed graph. A simple but fundamental
example is the assignment problem. This paper gives algorithms for such problems
that run almost as fast as the best-known algorithms for the corresponding problems
without costs. For the assignment problem, the corresponding problem without costs
is maximum cardinality bipartite matching.

The results are achieved by scaling the costs. This requires the costs to be
integral-valued. Further, for the algorithms to be efficient, costs should be polynomi-
ally bounded in the number of vertices, i.e., at most n(1). These requirements are
satisfied by a large number of problems in both theoretical and practical applications.

Table 1 summarizes the results of the paper. The parameters describing the input
are specified in the caption and defined more precisely below. The first column gives
the problem and the best-known strongly polynomial time bound. Such a bound
comes from an algorithm with running time independent of the size of the numbers
(assuming the uniform cost model of computation [AHU]). The second column gives
the time bounds achieved in this paper by scaling. The table shows that significant
speedups can be achieved through scaling. Further, it will be seen that the scaling
algorithms are simple to program. Now we discuss the specific results.

The assignment problem is to find a minimum-cost perfect matching in a bipartite
graph. The strongly polynomial algorithm is the Hungarian algorithm [K55], [K56]
implemented with Fibonacci heaps [FT]. This algorithm can be improved significantly
when all costs are zero. Then the problem amounts to finding a perfect matching in a
bipartite graph. The best-known cardinality matching algorithm, due to Hopcroft and
Sarp, runs in time O(v/-m) [HK]. The new time bound for the assignment problem is

*Received by the editors August 18, 1987; accepted for publication (in revised form) November
4, 1988.

Department of Computer Science, University of Colorado, Boulder, Colorado 80309. The
research of this author was supported in part by National Science Foundation grant DCR-851191 and
AT&T Bell Laboratories.

:[:Computer Science Department, Princeton University, Princeton, New Jersey 08544 and AT&T
Bell Laboratories, Murray Hill, New Jersey 07974. The research of this author was supported in
part by National Science Foundation grant DCR-8605962 and Office of Naval Research contract
N00014-87-K-0467.
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Thorndike 1950.  Formulated in a modern way by a psychologist.
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History

Assign individuals to jobs to maximize average success of all individuals.

Thorndike 1950.  Formulated in a modern way by a psychologist.

36

History

anticipated theory of computational complexity!



Kuhn 1955. First poly-time algorithm; named "Hungarian" algorithm to 

honor two Hungarian mathematicians (Kőnig and Egerváry).

Munkres 1957. Reviewed algorithm; observed O(n4) implementation.

Edmonds-Karp, Tomizawa 1971. Improved to O(n3).
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History

anticipated development of combinatorial optimization

Jacobi (1804-1851).  Introduces a bound on the order of a system of m 

ordinary differential equations in m unknowns and reduces it to….

38

History

Looking for the order of a system of arbitrary ordinary differential equations

Jacobi (1804-1851).  The assignment problem! Moreover, he provides a 

polynomial-time algorithm.

39

History

Jacobi formulated the assignment problem; proposed and analyzed the Hungarian algorithm

16 C.G.J. Jacobi

[§. 3.]

About the resolution of the problem of inequalities on
which the research of the order of the system of arbi-
trary di↵erential equations is supported4. [Considering
a table, we define a canon. An arbitrary canon being

given, we find a simplest one.]

B y what precedes, the research of the order of a system of ordinary
di↵erential equations is reduced to the following problem of inequalities,

which is also worth to be considered for itself:

Problem.

We dispose nn arbitrary quantities h
(i)
k in a square table in such a

way that we have n horizontal series and n vertical series having each
one n terms. Among these quantities, to chose n being transversal,
that is all disposed in di↵erent horizontal and vertical series, which
may be done in 1.2 . . . n ways; and among these ways, to research one
that gives the maximum of the sum of the n chosen numbers.

[. . . it may occur that all combinations lead to the same sum. For example if, as it
happens for the isoperimetrical problem, this table

2m1 m1 + m2 . . . m1 + mn

m2 + m1 2m2 . . . m2 + mn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
mn + m1 mn + m2 . . . 2mn,

is given. If m1 is the greatest of the quantities m1, m2, . . . , mn, the terms of each

verticals will be made equal by increasing respectively the lines of the horizontal

series by the positive values 0, m1 � m2, . . . , m1 � mn, . . . ]5

6The quantities h
(i)
k being disposed in a square figure

4This was a § 23 in the manuscript.
5The remaining of [II/13 b) fo 2200] has been ruled out by Jacobi. I extract this part

which shows how the ideas developped in the last section of the paper could have arisen
from his work on the isoperimetrical problem. T.N.

6Cohn’s transcription continues here with a second fragment of a § 19 entitled by Jacobi
About the di↵erentiations and eliminations by which the shortest reduction (see [Jacobi 2])
to canonical form is done. A problem of inequalities that must be solved to perform this
reduction. T.N.

Looking for the order of a system of arbitrary ordinary di↵erential equations 17

h0
1 h0

2 . . . h0
n

h00
1 h00

2 . . . h00
n

. . . . . . . . . . . . . . . . .

h
(n)
1 h

(n)
2 . . . h(n)

n ,

we can add to each term of the same horizontal series a same quantity, and
we call `(i) the quantity added to the terms of the ith horizontal series. This
being done, each of the 1.2 . . . n transversal sums among which we need to
find a maximum is increased by the same quantity

`0 + `00 + · · · + `(n) = L,

because, in order to form these sums, we need to pick a term in each hori-
zontal series. Hence, if we pose

h
(i)
k + `(i) = p

(i)
k

and that the maximal transversal sum of the terms h
(i)
k is

h
(i1)
1 + h

(i2)
2 + · · · + h(in)

n = H,

this makes that the value of the maximal sum formed with the p
(i)
k is

p
(i1)
1 + p

(i2)
2 + · · · + p(in)

n = H + L,

and reciprocally. So that finding the proposed maximum for the quanti-
ties h

(i)
k or p

(i)
k is equivalent.

Let us bring it about that the quantities `0, `00, . . . , `(n) be determined in
such a way that, the quantities p

(i)
k being disposed in square in the same

way as the quantities h
(i)
k and chosing a maximum in each vertical series,

these maxima be placed in all di↵erent horizontal series. If we call p
(ik)
k the

maximum of terms

p0k, p
00
k, . . . , p

(n)
k ,

the sum

p
(i1)
1 + p

(i2)
2 + · · · + p(in)

n

will be the maximum among all the transversal sums formed with the quan-
tities p

(i)
k . [. . . ] Indeed, in this case, we have without trouble the maximal

transversal sum formed with the proposed quantities h
(i)
k

h
(i1)
1 + h

(i2)
2 + · · · + h(in)

n .

So that we solve the proposed problem when we find quantities `0, `00, . . . , `(n)

[satisfying the given condition].

SECTION

7.  NETWORK FLOW III

‣ assignment problem

‣ input-queued switching
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Input-queued switching

Input-queued switch.

・n input ports and n output ports in an n-by-n crossbar layout.

・At most one cell can depart an input at a time.

・At most one cell can arrive at an output at a time.

・Cell arrives at input x and must be routed to output y.

Application.  High-bandwidth switches.

x3

x2

x1

y1 y2 y3

outputs

inputs

FIFO queueing.  Each input x maintains one queue of cells to be routed. 

Head-of-line blocking (HOL).  A cell can be blocked by a cell queued ahead 

of it that is destined for a different output.
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FIFO queuing

x3

x2

x1

y1 y2 y3

outputs

FIFO

y2 y1 y2

y2

y1 y3 y3

FIFO queueing.  Each input x maintains one queue of cells to be routed. 

Head-of-line blocking (HOL).  A cell can be blocked by a cell queued ahead 

of it that is destined for a different output.

Fact.  FIFO can limit throughput to 58% even when arrivals are uniform i.i.d.
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FIFO queuing

Input Versus Output Queueing on a Space-Division 
Pack& Switch 

Abstract-Two simple models of queueing on an N X N space-division 
packet  switch  are examined. The switch operates synchronously with 
fixed-length packets; during each time slot, packets may  arrive on any 
inputs addressed to any outputs. Because packet arrivals to the switch are 
unscheduled, more than one packet may  arrive for the same output 
during  the same time slot, making queueing unavoidable. Mean queue 
lengths are always greater for queueing on inputs than for queueing on 
outputs, and the output queues saturate only as the utilization approaches 
unity. Input queues, on the other hand, saturate at a utilization that 
depends on N, but is approximately (2 - &) = 0.586 when N i s  large. If 
output trunk utilization is the primary consideration, it  is possible to 
slightly increase utilization of the output trunks-up to (1 - e - ’ )  = 0.632 
as N --t --by dropping interfering packets at the end of each time slot, 
rather  than storing them in the input queues. This improvement is 
possible, however, only when the utilization of the input trunks exceeds a 
second critical threshold-approximately In (1 + A) = 0.881 for large 
N. 

I. INTRODUCTION 

S PACE-DIVISION  packet  switching  is  emerging as a key 
component in the  trend  toward  high-performance 

integrated communication  networks for data,  voice,  image, 
and video [l], 121 and  multiprocessor  interconnects for 
building highly parallel  computer  systems [3], [4]. Unlike 
present-day packet  switch  architectures with throughputs 
measured in 1’s or  at most 10’s of Mbits/s, a space-division 
packet switch can have  throughputs  measured in l’s, lo’s, or 
even 100’s of Gbitsls.  These capacities are attained  through 
the use of  a highly parallel  switch  fabric  coupled with simple 
per packet processing  distributed  among many high-speed 
VLSI  circuits. 

Conceptually,  a  space-division  packet  switch  is  a box with 
N inputs and N outputs that routes  the  packets  arriving on its 
inputs to  the appropriate  outputs. At any  given  time,  internal 
switch points can be  set to establish  certain  paths from inputs 
to outputs;  the  routing  information  used to establish input- 
output paths  is  often  contained in the header  of  each  arriving 
packet.  Packets may have  to be  buffered within the  switch 
until appropriate  connections are available; the location of the 
buffers  and the amount  of  buffering  required  depend on  the 
switch architecture  and the statistics  of the offered  traffic. 

Clearly, congestion  can occur if the switch is  a  blocking 
network, that is, if there are not enough  switch  points to 
provide  simultaneous,  independent  paths between arbitrary 
pairs  of  inputs and outputs.  A Banyan switch [3]-[5], for 
example, is a  blocking  network. In a Banyan switch,  even 
when every input i s  assigned to a  different  output, as many as 
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f i  connections may be  contending for use of the same  center 
link. The use of a  blocking  network as a  packet switch is 
feasible only under light  loads or, alternatively, if it  is  possible 
to run the switch substantially faster than the input and output 
trunks. 

In  this  .paper, we consider only nonblocking networks.  A 
simple  example of a  nonblocking  switch  fabric  is the crossbar 
interconnect with switch  points (Fig.  1).  Here it  is  always 
possible to establish a connection  between any idle input- 
output pair. Examples  of other nonblocking switch fabrics are 
given in [3]. Even with a  nonblocking  interconnect,  some 
queueing in a  packet  switch is unavoidable, simply because the 
switch acts as a statistical multiplexor; that is, packet arrivals 
to  the switch are unscheduled. If more than one packet arrives 
for the same output at a given time,  queueing  is  required. 
Depending on  the speed of the switch fabric and its particular 
architecture,  there may be  a choice  as  to where  the  queueing  is 
done: for  example,  on the  input  trunk, on  the output trunk,  or 
at an internal  node. 

We assume  that  the  switch  operates  synchronously with 
fixed-length packets, and that  during  each  time s1ot;packets 
may arrive  on any inputs  addressed to any outputs (Fig. 2 ) .  If 
the  switch  fabric  runs N times as fast as the  input and output 
trunks, all the packets  that arrive during  a  particular  input  time 
slot can traverse the switch  before the next input slot, but there 
will still be  queueing at the  outputs  [Fig. l(a)]. This queueing 
really has nothing to  do with the switch architecture, but is due 
to the  simultaneous arrival of more than one input packet for 
the same output. If,  on  the other  hand,  the  switch  fabric  runs at 
the  same speed as the  inputs and outputs, only one packet can 
be  accepted by any  given  output  line  during  a  time  slot, and 
other packets addressed to  the same output must queue on the 
input lines  [Fig. l(b)].  For simplicity, we do not consider  the 
intermediate case where  some packets can  be  queued at 
internal nodes, as in the Banyan topology. 

It seems intuitively reasonable  that the mean queue  lengths, 
and hence the mean waiting times, will be  greater for queueing 
on inputs than for queueing on outputs.  When  queueing  is  done 
on inputs,  a  packet that could  traverse  the .switch to  an idle 
output during  the current time  slot may have to wait in queue 
behind a packet whose  output  is  currently  busy. The intuition 
that, if possible, it is  better to queue on the  outputs than the 
inputs of a space-division packet switch also  pertains to  the 
following situation.  Consider  a  single road leading to both a 
spot-@ arena and  a store [Fig. 3(a)]. Even if there are no 
customers  waiting for service in the  store, some  shoppers 
might be stuck in  stadium  traffic.  A  simple  bypass road around 
the stadium is  the  obvious solution [Fig. 3(b)]. 

This  paper  quantifies the performance  improvements pro- 
vided by output  queueing for the  following  simple  model. 
Independent, statistically identical traffic arrives  on each input 
trunk. In any  given  time slot, the probability that  a packet will 
arrive  on a  particular  input  is p .  Thus, p represents the average 
utilization of  each  input.  Each  packet  has  equal probability 1/ 
N of being  addressed to- any  given  output, and successive 
packets are independent. 

With  output  queueing,  all arriving packets  in  a  time  slot are 
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Virtual output queueing

Virtual output queueing (VOQ).  Each input x maintains n queues of cells,

one for each output y. 

Maximum size matching.  Find a max cardinality matching.

Fact.  VOQ achieves 100% throughput when arrivals are uniform i.i.d.

but can starve input-queues when arrivals are nonuniform.

x3

x2

x1

y1 y2 y3

outputs

VOQ

y1

y2 y2 y2

y3 y3

y2 y2 y2

y3 y3 y3 y3

y2 y2 y2

y3



45

Input-queued switching

Max weight matching.  Find a min cost perfect matching between inputs x 
and outputs y, where c(x, y) equals:

・[LQF]  The number of cells waiting to go from input x to output y. 

・[OCF]  The waiting time of the cell at the head of VOQ from x to y.

Theorem.  LQF and OCF achieve 100% throughput if arrivals are independent 

(even if not uniform).

Practice.

・Assignment problem too slow in practice.

・Difficult to implement in hardware.

・Provides theoretical framework:

use maximal (weighted) matching.
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Achieving 100% Throughput
in an Input-Queued Switch

Nick McKeown, Senior Member, IEEE, Adisak Mekkittikul, Member, IEEE,
Venkat Anantharam, Fellow, IEEE, and Jean Walrand, Fellow, IEEE

Abstract— It is well known that head-of-line blocking limits
the throughput of an input-queued switch with first-in–first-out
(FIFO) queues. Under certain conditions, the throughput can be
shown to be limited to approximately 58.6%. It is also known
that if non-FIFO queueing policies are used, the throughput can
be increased. However, it has not been previously shown that if a
suitable queueing policy and scheduling algorithm are used, then
it is possible to achieve 100% throughput for all independent
arrival processes. In this paper we prove this to be the case using
a simple linear programming argument and quadratic Lyapunov
function. In particular, we assume that each input maintains
a separate FIFO queue for each output and that the switch is
scheduled using a maximum weight bipartite matching algorithm.
We introduce two maximum weight matching algorithms: longest
queue first (LQF) and oldest cell first (OCF). Both algorithms
achieve 100% throughput for all independent arrival processes.
LQF favors queues with larger occupancy, ensuring that larger
queues will eventually be served. However, we find that LQF can
lead to the permanent starvation of short queues. OCF overcomes
this limitation by favoring cells with large waiting times.

Index Terms—Arbitration, ATM, input-queued switch, input-
queueing, packet switch, queueing networks, scheduling algo-
rithm.

I. INTRODUCTION

SINCE Karol et al.’s paper was published in 1986 [11], it
has become well known that an port input-queued

switch with first-input–first-output (FIFO) queues can have a
throughput limited to just %. The conditions
for this to be true are that:
1) arrivals at each input are independent and identically
distributed (i.i.d.);

2) arrival processes at each input are independent of ar-
rivals at other inputs;

3) all arrival processes have the same arrival rate and
destinations are uniformly distributed over all outputs;
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Fig. 1. Components of an input-queued cell-switch.

4) arriving packets are of fixed and equal length, called
cells;

5) is large.
When conditions 1) and 2) are true we shall say that arrivals

are independent, and when condition 3) is true we shall say
that arrivals are uniform.
The throughput is limited because a cell can be held up by

another cell ahead of it in line that is destined for a different
output. This phenomenon is known as head-of-line (HOL)
blocking.
It is well documented that this result applies only to input-

queued switches with FIFO queues. And so many techniques
have been suggested for reducing HOL blocking using non-
FIFO queues, for example, by examining the first cells
in a FIFO queue, where [5], [8], [10]. In fact, HOL
blocking can be eliminated entirely by using a simple buffering
strategy at each input port. Rather than maintain a single FIFO
queue for all cells, each input maintains a separate queue
for each output [1], [9], [16]–[19], as shown in Fig. 1. This
queuing discipline is often referred to as virtual output queuing
(VOQ). HOL blocking is eliminated because a cell cannot be
held up by a cell queued ahead of it that is destined for a
different output. The implementation of VOQ is slightly more
complex, requiring FIFO’s to be maintained by each input
buffer. But no additional speedup is required; at most one cell
can arrive and depart from each input in a slot. During each
slot, a scheduling algorithm decides the configuration of the
switch by finding a matching on a bipartite graph (described
below). A number of different techniques have been used for
finding such a matching, for example, using neural networks
[2], [4], [22] or iterative algorithms [1], [14], [15]. These algo-
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