7. NETWORK FLow Il 7. NETWORK FLow Il

PEARSON

Addison
Wesley

» assignment problem

» assignment problem

» input-queued switching

Mgt sy

JON KLEINBERG - EVA TARDOS

\ U S 5 = U

\\ JON KLEINBERG - EVA TARDOS
\

|

SECTION 7.13
Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
http://www.cs.princeton.edu/~wayne/kleinberg-tardos
Last updated on Apr 3, 2013 6:16 PM
Assignment problem Assignment problem
Input. Weighted, complete bipartite graph G=(XU Y, E) with IXI=1Yl. Input. Weighted, complete bipartite graph G=(XU Y, E) with IXI=1Y]I.
Goal. Find a perfect matching of min weight. Goal. Find a perfect matching of min weight.

min-cost perfect matching
M={0-2',1-0',2-1"}
costM) =3 +5+4 =12

Princeton writing seminars Locating objects in space

Goal. Given m seminars and n = 12m students who rank their top 8 choices, Goal. Given n objects in 3d space, locate them with 2 sensors.
assign each student to one seminar so that:
* Each seminar is assigned exactly 12 students. Solution.
* Students tend to be "happy" with their assigned seminar. * Each sensor computes line from it to each particle.
* Let ¢;=distance between line i from censor 1 and line j from sensor 2.
Solution. * Due to measurement errors, we might have ¢; > 0.
* Create one node for each student i and 12 nodes for each seminar j. * Solve assignment problem to locate n objects.

* Solve assignment problem where ¢; is some function of the ranks:
f(rank(i,j)) if i ranks j
Cii = om o . VOL. 12, NO. 3, MAY-TUNE 1989 J. GUIDANCE 357
: 00 if ¢ does not rank j

Algorithm for Ranked Assignments with Applications to
Multiobject Tracking

Title Course # Professor Day/Time Location
William L Brogan
1980s, The WRI 168 Scott, Andrea M/W 1:30pm-2:50pm Hargadon G002 Iinirersity of Netvaska, Lincols, Nebraska
America and the Melting Pot WRI 157 Skinazi, Karen T/TH 8:30am-9:50am Butler 026 . . .
A sequentisl algoritam s presewied T g A an!-unltd st of slutions 10 the assiznaes
America and the Melting Pot WRI158 Skinazi, Karen T/TH 11:00am-12:20pm Hargadon G004 sy o o ooy -rdpployebusdmmratap
i b =
American Mysticism WRI 191 Laufenberg, George T/TH 7:30pm-8:50pm 99 Alexander 101 The peocedere s umad '}'.,,M
e e i b
American Revolutions WRI 184 Grosghal, Dov M/W 8:30am-9:50am Butler 026 important becase of mes o inidare several tentutive vacks i
vertain dose-call situations.
Animal Mind, The WRI 101 Gould, James M/W 8:30am-9:50am Blair T3
Art of Adventure, The WRI 151 Moffitt, Anne T/TH 11:00am-12:20pm Butler 027
5
Kidney exchange Applications
If a donor and recipient have a different blood type, they can exchange their Natural applications.
kidneys with another donor and recipient pair in a similar situation. * Match jobs to machines.

* Match personnel to tasks.
* Match PU students to writing seminars.
Can also be done among multiple pairs (or starting with an altruistic donor).
Non-obvious applications.

* Vehicle routing.

THEKIDNEYCHAIN (EB—&=-&=0-{=-{ &)~ I

Howa smgle organ donation changed 20 lives and
the longest-running transplant chain

create

e A * Signal processing.

* Multiple object tracking.
* Virtual output queueing.
* Handwriting recognition.

ESPINOZA, 59 2 STAYLOR, 53
Germantown, Md. ermantown, Charleston, 5.C.

* Locating objects in space.
* Approximate string matching.
* Enhance accuracy of solving linear systems of equations.

ANONYMOUS ANONYMOUS KURT HELEENA
RECIPIENT DONOR Lincolnton, N.C. BLENKENSOPP, 41 MCKINNEY, 62 MCKINNEY, 29
inton,N. Patchogue, N.Y. i i

Bipartite matching

Bipartite matching. Can solve via reduction to maximum flow.

Flow. During Ford-Fulkerson, all residual capacities and flows are 0-1;
flow corresponds to edges in a matching M.

Residual graph G,, simplifies to: O L @
o If (x,y) € M, then (x,y) is in G,,. o ! O O !
e If (x,y) EM, then (y,x) is in G,,.
X,y y x) M O O
O O
X Y

Augmenting path simplifies to:
* Edge from s to an unmatched node x € X,
* Alternating sequence of unmatched and matched edges,
* Edge from unmatched nodeyeYtot.

Assignment problem: successive shortest path algorithm

Cost of alternating path. Pay c(x,y) to match x-y; receive c(x,y) to unmatch.

P=2-2"21-1'
costP)=2-6+10=6

Shortest alternating path. Alternating path from any unmatched node xe X
to any unmatched node y € Y with smallest cost.

Successive shortest path algorithm.
* Start with empty matching.
* Repeatedly augment along a shortest alternating path.

Alternating path

Def. An alternating path P with respect to a matching M is an alternating
sequence of unmatched and matched edges, starting from an unmatched
node x € X and going to an unmatched node y Y.

Key property. Can use P to increase by one the cardinality of the matching.
Pf. SetM'= M® P.

N

symmetric difference

matching M

alternating path P matching M'

Finding the shortest alternating path

Shortest alternating path. Corresponds to minimum cost s~z path in G,,.

Concern. Edge costs can be negative.

Fact. If always choose shortest alternating path, then G,, contains no
negative cycles = can compute using Bellman-Ford.

Our plan. Use duality to avoid negative edge costs (and negative cycles)
= can compute using Dijkstra.

Equivalent assignment problem

Duality intuition. Adding a constant p(x) to the cost of every edge
incident to node x € X does not change the min-cost perfect matching(s).

Pf. Every perfect matching uses exactly one edge incident to node x. =

p@ =3 (0)

@

@

X

original costs c(x, y)

Reduced costs

modified costs c'(x, y)
(@) 18
10

add 3 to all edges 6 ”
incident to node 0 "

—> @ \ ®

@ ®

Reduced costs. For x X,y €Y, define c7(x,y) = p(x) + c(x,y) — p®).

Observation 1. Finding a min-cost perfect matching with reduced costs is

equivalent to finding a min-cost perfect matching with original costs.

p@=0 (0)

p=6 (1)

=2 (2)

X

original costs c(x, y)

reduced costs cP(x, y)

p(0) = 11 @) 4
1
0 -
>
0
p(1) =6 6 N ()

cP(1, 2) =p(1) + 2 - p(2)

p(2) =3

x @ \@

Equivalent assignment problem

Duality intuition. Subtracting a constant p(y) to the cost of every edge
incident to node y € Y does not change the min-cost perfect matching(s).

Pf. Every perfect matching uses exactly one edge incident to node y. =

modified costs c'(x, y)

@ o

original costs c(x, y)

p(©) =5

subtract 5 from all edges o
5 o incident to node 0' 0 -
@ &N ® — @ \ ®
2 v _
9 2 4 -~
4
@ @ @ @
X Y X Y

Compatible prices

Compatible prices. For each node v E X U Y, maintain prices p(v) such that:
e cor(x,y)= 0 for all (x,y) & M.
e cor(x,y)= 0 forall (x,y) €EM.

Observation 2. If prices p are compatible with a perfect matching M,
then M is a min-cost perfect matching.
reduced costs cP(x, y)

O

1
0 -

e N ®

Pf. Matching M has 0 cost. =

Successive shortest path algorithm

SUCCESSIVE-SHORTEST-PATH (X, Y, ¢)

M < J. prices p are
compatible with M
FOREACHvE XU Y: p(V) — 0. (X, y) = c(x,y) =0
WHILE (M is not a perfect matching)
d < shortest path distances using costs c?.
P < shortest alternating path using costs c?.
M < updated matching after augmenting along P.

FOREACHVvE X U Y: p(v) < p(v) + d(v).

RETURN M.

Successive shortest path algorithm

Initialization.
* M=g@.
* ForeachveXUY:p®) <0.

Successive shortest path algorithm

Initialization.
* M=@.
* ForeachvEXUY:pv) < 0.

p(2) =0

Successive shortest path algorithm

Step 1.
* Compute shortest path distances d(v) from s to v using c?(x, y).
* Update matching M via shortest path from s to t.
* ForeachvEXUY: p(v) < p(») +d©v).

shortest path distances d(v)

d") =5

Successive shortest path algorithm

Step 1.
* Compute shortest path distances d(v) from s to v using c»(x, y).
* Update matching M via shortest path from s to .
* ForeachveEXUY: p(v) < p()+d®v).

alternating path

d0) =0 do) =5
@
3
d(s) =0 d(1)=0 d(1") =4 dv =1

0= ®

9 matching
4 2-2'

d(2) =0 d2) =1 .

Successive shortest path algorithm

Step 2.
* Compute shortest path distances d(v) from s to v using c»(x, y).
* Update matching M via shortest path from s to .
* ForeachvEXUY: p(v) < p()+d©v).

shortest path distances d(v)

d(0) =0 d") =0
@
2
d(s) =0 d(1) =0 o d(1) =1 d@®)=0
@ 0= ® ©

4 matching
0 2-2'
0

d(2) 9 CZ?Z') =1

23

Successive shortest path algorithm

Step 1.
* Compute shortest path distances d(v) from s to v using c?(x, y).
* Update matching M via shortest path from s to .
* ForeachvEXUY: p(v) < p()+dv).

reduced costs cP(x, y)
p0) =0 p(0) =5

@

p(1) =0 0 p(1) =4
@ o= ® ©
4 matching
0 2-2'
@ @)
p(2) =0 p2) =1

Successive shortest path algorithm

Step 2.
* Compute shortest path distances d(v) from s to v using c?(x, y).
* Update matching M via shortest path from s to .
* ForeachvEXUY: p(v) < p(») +d©v).

shortest path distances d(v)
d) =0 d0") =0

4 matching

0 2-2' 1-0'
@

d2)=1 d2h) =1

@

Successive shortest path algorithm

Step 2.
* Compute shortest path distances d(v) from s to v using c»(x, y).
* Update matching M via shortest path from s to .
* ForeachveEXUY: p(v) < p()+d®v).

reduced costs cP(x, y)
p(0) = 0 PO =3

ON
2

p(1) =0 0 p(1) =5
@ @< ® ©
5 matching
0 2-2' 1-0'
O @
p2) =1 p2) =2

25

Successive shortest path algorithm

Step 3.
* Compute shortest path distances d(v) from s to v using c»(x, y).
* Update matching M via shortest path from s to .
* ForeachvEXUY: p(v) < p()+d©v).

shortest path distances d(v)
d0) =0 d(0’) =6

10

dv =1

o = O

matching
1-0' 0-2' 2-1'

d@2)=1 d2) =1 %

Successive shortest path algorithm

Step 3.
* Compute shortest path distances d(v) from s to v using c?(x, y).
* Update matching M via shortest path from s to .
* ForeachvEXUY: p(v) < p()+dv).

shortest path distances d(v)
d0) =0 d(0') =6

@
2

d(s) =0 d) =6 da) =1 dm =1

® oS ® ®

5 matching

@ g @ 2-2' 1-0'

d@2) =1 d2) =1

Successive shortest path algorithm

Step 3.
* Compute shortest path distances d(v) from s to v using c?(x, y).
* Update matching M via shortest path from s to .
* ForeachvEXUY: p(v) < p(») +d©v).

reduced costs cP(x, y)
p(0) =0 p(0) = 11

©)

p(1) =6 p(1) =6

G 0= ® ©

0 matching

1-0' 0-2' 2-1'
)

p(2) =2 p2) =3

o

®

Successive shortest path algorithm

Termination.
* M is a perfect matching.
* Prices p are compatible with M.

reduced costs cP(x, y)

p(0) =0 p(0’) =11
O (o)
1
0
p(1) =6 p(1) =6
0

O ®

0 matching

GD/S e 1-0' 0-2' 2-1'

p2) =2 p2) =3 x5

Maintaining compatible prices

Lemma 2. Let p be compatible prices for M. Let d be shortest path distances
in G,, with costs c¢». Then p' =p +d are also compatible prices for M.

Pf. (x,y)EM
* (y,x) is the only edge entering x in G,,. Thus, (y,x) on shortest path.
* By LEMMA 1, c¢r+d(x,y) =0.

Pf. (x,y) &M
* (x,y)is an edge in G, = d(y) < d(x) + cP(x,y).
* Substituting cr(x, y) = p(x) + c(x,y) — p(y) = 0 yields
(Pp(x) +dx) + clx,y) = (p(y) +d(y)) = 0.

* In other words, cr*d(x,y) = 0. =

Prices p are compatible with matching M:
e cr(x,y)= 0 for all (x,y) & M.
* cr(x,y)= 0 for all (x,y) EM.

Maintaining compatible prices

Lemma 1. Let p be compatible prices for M. Let d be shortest path distances
in G,, with costs cr. All edges (x,y) on shortest path have cr+d(x, y) = 0.

forward or reverse edges

Pf. Let (x,y) be some edge on shortest path.
* If (x,y) €M, then (y,x) on shortest path and d(x) = d(y) — c?(x,y);
If (x,y) & M, then (x,y) on shortest path and d(y) = d(x) + c?(x,y).
* In either case, d(x) + cr(x,y) — d(y) = 0.
* By definition, c?(x,y) = p(x) + c(x,y) — p().
* Substituting for cr(x, y) yields (p(x) + d(x)) + c(x,y) — (p(y) + d(y)) = 0.
* In other words, c»*d(x,y)=0. =

Given prices p, the reduced cost of edge (x,y) is
er(x,y) = p(x) + c(x,y) = p().

Maintaining compatible prices

Lemma 3. Let p be compatible prices for M and let M' be matching obtained
by augmenting along a min cost path with respect to c¢»+4. Then p'=p +d are
compatible prices for M.

Pf.
* By LEMMA 2, the prices p + d are compatible for M.
* Since we augment along a min-cost path, the only edges (x,y) that swap
into or out of the matching are on the min-cost path.
* By LEMMA 1, these edges satisfy cr+d(x,y) = 0.
* Thus, compatibility is maintained. =

Prices p are compatible with matching m:
e cr(x,y)= 0 forall (x,y) & M.
s c(x,y)= 0 for all (x,y) EM.

Successive shortest path algorithm: analysis

Invariant. The algorithm maintains a matching M and compatible prices p.
Pf. Follows from LEMMA 2 and LEMMA 3 and initial choice of prices. =

Theorem. The algorithm returns a min-cost perfect matching.
Pf. Upon termination M is a perfect matching, and p are compatible prices.
Optimality follows from OBSERVATION 2. =

Theorem. The algorithm can be implemented in O#3) time.
Pf.
* Each iteration increases the cardinality of M by 1 = n iterations.
* Bottleneck operation is computing shortest path distances d.
Since all costs are nonnegative, each iteration takes O(n?) time
using (dense) Dijkstra. =

History

Thorndike 1950. Formulated in a modern way by a psychologist.

PSYCHOMETRIKA—VOL. 15, N0O. 3
SEPTEMBER, 1050

THE PROBLEM OF CLASSIFICATION OF PERSONNEL*

ROBERT L. THORNDIKE
TEACHERS COLLEGE, COLUMBIA UNIVERSITY

The personnel classification problem arises in its pure form
when all job applicants must be used, being divided among a num-
ber of job categories. The use of tests for classification involves
problems of two types: (1) problems concerning the design, choice,
and weighting of tests into a battery, and (2) problems of estub-
lishing the optimum administrative procedure of using test results
for assignment. A consideration of the first pioblem emphasizes
the desirability of using simple, factorially pure tests which may
be expected to have a wide range of validities for different job
categories. In the use of test results for assignment, an initial
problem is that of expressing predictions of success in different jobs
in comparable score units. These units gshould take account of pre-
dictor validity and of job importance. Procedures are desciibed for
handling assienment either in terms of daily guotas or in terms
of a stable predicted yield.

Assign individuals to jobs to maximize average success of all individuals.

Weighted bipartite matching

Weighted bipartite matching. Given a weighted bipartite graph with n» nodes
and m edges, find a maximum cardinality matching of minimum weight.

Theorem. [Fredman-Tarjan 1987] The successive shortest path algorithm
solves the problem in O(n? + mnlog n) time using Fibonacci heaps.

Theorem. [Gabow-Tarjan 1989] There exists an O(mn'2 log(nC)) time
algorithm for the problem when the costs are integers between 0 and C.

SIAM J. ComMPUT. (©1989 Society for Industrial and Applied Mathematics
Vol. 18, No. 5, pp. 1013-1036, October 1989 011

FASTER SCALING ALGORITHMS FOR NETWORK PROBLEMS*
HAROLD N. GABOW{ AxD ROBERT E. TARJAN{

Abstract. This paper presents algorithms for the assignment problem, the transportation

problem, and the mini t flow problem of operations research. The 2 sfinda
cost solution, yet run in time clnee to the best-| knr)wn bounds for lhe corresponding problems without
costs. For example, the assij problem ly, st matching in a bipartite

graph) can be solved in O(y/nm log(nN)) time, where n, m, and N denote the number of vertices,
number of edges, and largest magnitude of a cost; costs are assumed to be integral. The algorithms
work by scaling. As in the work of Goldberg and Tarjan, in cach scaled problem an approximate
optimum solution is found, rather than an exact optimum.

History

Thorndike 1950. Formulated in a modern way by a psychologist.

There are, as has been indicated, a finite number of permuta-
tions in the assignment of men to jobs. When the classification prob-
lem as formulated above was presented to a mathematician, he
pointed to this fact and said that from the point of view of the mathe-

\ matician there was no problem. Since the number of permutations
was finite, one had only to try them all and choose the best. He dis-
- missed the problem at that point. This is rather cold comfort to the
psychologist, however, when one considers that only ten men and
ten jobs mean over three and a half million permutations! Trying
out all the permutations may be a mathematical so]utxou to the _prob-
= 7lem," it is ot A ‘practical solution.

anticipated theory of computational complexity!

History History

Kuhn 1955. First poly-time algorithm; named "Hungarian" algorithm to Jacobi (1804-1851). Introduces a bound on the order of a system of m
honor two Hungarian mathematicians (Kénig and Egervary). ordinary differential equations in m unknowns and reduces it to....

Munkres 1957. Reviewed algorithm; observed O(n*) implementation. De investigando ordine systematis acquationum

differentialium vulgarium cujuscunque.
(Ex. ill. C. G. J. Jacobi manuscriptis posthumis in medium protulit®) C. W. Borchard.)

Edmonds-Karp, Tomizawa 1971. Improved to O(n3). .

Investigatio ad solvendum problema inacqualitatum reducitar.

Systema sequationum differentialium valgarium est non canonicum**),
si aequationes altissima variabilium dependentivm differentialia tali modo con-
tinent, ut horum valores ex iis petere non liceal. Id quod fit, quoties aequationes
nonnullae altissimis illis differentialibus carentes in systemate proposito vel

ipsae i i vel eliminati ex eo obti Eo casu numerus Con-

stantium Arbitrariarum, quas integratio completa inducit, sice ordo systematis

THE HUNGARIAN METHOD FOR THE ASSIGNMENT PROBLEM! semper minor est summa. altissimorum ordinum, ad quos differentialia singularum

iabilium in ioni i ialibus propositis ascendunt. Qui ordo

systematis cognoscitur, si per differentiationes et eliminationes contingit systema

propositum redigere in aliud forma canonica gaudens eique aequivalens, ita ut

de systemale canonico eliam ad propositum reditus pateal. Nom summa al-

tissimorum ordinum, ad quos in systemate canonico differentialia singularum

variabilium dependentium ascendunt. eliam systematis proposili non canonici

ordo erit. Ad quem ordinem investigandum non tamen opus est ea ad formam
i i sed res per iderali sequentes absolvi potest.

Ponamus inter variabilem independentem ¢ atque n variabiles depen-

H. W. Kuhn
Bryn Mawr College

Assuming that numerical scores are available for the perform-
ance of each of n persons on each of n jobs, the "assignment problem"
is the quest for an assignment of persons to jobs so that the sum of the
n scores so obtainedis as large as possible. It is shownthat ideas latent

in the work of two Hungarian mathematicians may be exploited to yield dentes @,, ,, ... , haberi n aequationes differentiales:
a new method of solving this problem. 1) w=0, 5=0, ... u=0,
silque
K
altissimus ordo, ad quem in sequatione ,= 0 differentialia variabilis =, ascen—
anticipated development of combinatorial optimization Looking for the order of a system of arbitrary ordinary differential equations
37
o
History
Jacobi (1804-1851). The assignment problem! Moreover, he provides a
polynomial-time algorithm. 7. NETWORK FLow Il
Problema.
p nn i A in schema Quadrati, ila ut Problem.
habeantur n series horisonlales el m series cerlicales quarum quacque est n We dispose nn arbitrary quantities h{ in a square table in such a
terminorum. Ex illis quantitalibus cligantur n transversales i. . in sericbus ! \ ! ‘ !
wmorum. m oTgener 8 " way that we have n horizontal series and n vertical series having each . . .
:,’;:7;"‘:"’:' m:'l'":: ’:I‘L“”::;:‘“;Z':'Z::'" zz""‘ﬂh q-ﬁll'"’" /‘”: P:‘:‘ ’-20 n: one n terms. Among these quantities, to chose n being transversal, » I npuf-queued swi fch ,ng
electorum suppeditet mazimam. .
Dispositis ibus 4" in figuram

Y .

BOOK R W R,

......... : BB

AOORD LA T
earum systema appellabo schema propositum; omne schema inde orlum ad- nYong h
dendo singulis ejusdem seriei horizontalis terminis eandem quontitatem apellabo we can add to each term of the same horizontal series a same quantity, and
schema_ derioatum. Sit we call £¢) the quantity added to the terms of the i** horizontal

© being done, each of the 1.2...n transversal sums among which we nee

quantitas addenda terminis #** seriei horizontalis, quo facto singula 1.2...n find a maximum is increased by the same quantity i
aggregala transversalia, inter quae maximum oligendum est, eadem augebuntur Gl gt JON KLEINBERG - EVA TARDOS
quanlitate

Pl 8 = I, because, in order to form these sums, we need to pick a term in each hori-

zontal series. Hence, if we pose

quippe ad singula aggregata formanda e quaque serie horizontali unus eligendus
ost torminus. Qua de re si stotuitur A 4 (0 0 SECTION
AO+1O = pd
alque aggregatum fransversale maximum e terminis A{" formatum
KOGt Y = H,
6t valor aggrogati transversalis maximi e terminis p{® formati
PO+ p™ = HAL P i = H 4 L

and that the maximal transversal sum of the terms h{’ is

B S e n) = |,

this makes that the value of the maximal sum formed with the p{’ is

Jacobi formulated the assignment problem; proposed and analyzed the Hungarian algorithm

Input-queued switching

Input-queued switch.
* ninput ports and n output ports in an n-by-n crossbar layout.
* At most one cell can depart an input at a time.
* At most one cell can arrive at an output at a time.
* Cell arrives at input x and must be routed to output y.

Application. High-bandwidth switches.

X3 o)

inputs
X2

X3

Y1 Y2 Y3

outputs
41

FIFO queuing

FIFO queueing. Each input x maintains one queue of cells to be routed.

Head-of-line blocking (HOL). A cell can be blocked by a cell queued ahead
of it that is destined for a different output.

Fact. FIFO can limit throughput to 58% even when arrivals are uniform i.i.d.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-35, NO. 12, DECEMBER 1957 1347

Input Versus Output Queueing on a Space-Division
Packet Switch

MARK J. KAROL, MevtseR, 1xee, MICHAEL G. HLUCHYJ, MEMBER, 155, AND SAMUEL P. MORGAN, FELLOV, IEEE

Abstract—Two simple models of queueing on an N x N space-division
packet switch are examined. The switch operates synchronously with
fixed-length packets; during each time slot, packets may arrive on any
inputs addressed to any outputs. Because packet arrivals to the switch are
unscheduled, more than one packet may arrive for the same output
during the same time slot, making queueing unavoidable. Mean queue
lengths are always greater for queueing on inputs than for queueing on
outputs, and the output queues saturate only as the utilization approaches
unity. Input queues, on the other hand, saturate at a utilization that
depends on N, but is approximately (2 — v2) = 0.586 when N is large. If
output trunk utilization is the primary consideration, it is possible to
slightly increase utilization of the output trunks—up.to (1 — e-') = 0.632
as N~ co—by dropping interfering packets at the end of each time slot,
rather than storing them in the input queues. This improvement is
possible, however, only when the utilization of the input trunks exceeds a
second critical (hreshold—approximately In (1 + v/2) = 0.881 for large
N.

43

FIFO queuing

FIFO queueing. Each input x maintains one queue of cells to be routed.

Head-of-line blocking (HOL). A cell can be blocked by a cell queued ahead
of it that is destined for a different output.

y2 0 X3 O

FIFO »2 X2

yioy3 y3 X3

Y1 Y2 Y3

outputs
42

Virtual output queueing

Virtual output queueing (VOQ). Each input x maintains n queues of cells,
one for each output y.

Maximum size matching. Find a max cardinality matching.
Fact. VOQ achieves 100% throughput when arrivals are uniform i.i.d.
but can starve input-queues when arrivals are nonuniform.

i 3 Xy O

voQ Y2 v » X3
Y3 ¥3 Y3 oy

X3

y3

Y1 Y2 Y3

outputs
44

Input-queued switching

Max weight matching. Find a min cost perfect matching between inputs x
and outputs y, where c(x,y) equals:

* [LQF] The number of cells waiting to go from input x to output y.

* [OCF] The waiting time of the cell at the head of VOQ from x to y.

Theorem. LQF and OCF achieve 100% throughput if arrivals are independent
(even if not uniform).

Achieving 100% Throughput
in an Input-Queued Switch

Practice.
* Assignment problem too slow in practice.
* Difficult to implement in hardware.
* Provides theoretical framework:
use maximal (weighted) matching.

45

