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Max-flow and min-cut applications

Max-flow and min-cut are widely applicable problem-solving model.

Data mining.

Open-pit mining.

Bipartite matching.
Network reliability.

Baseball elimination.

Image segmentation.
Network connectivity.
Distributed computing.
Security of statistical data.
Egalitarian stable matching.
Network intrusion detection.

liver and hepatic vascularization segmentation

Multi-camera scene reconstruction.
Sensor placement for homeland security.
Many, many, more.

Soviet rail network (1950s)

"Free world" goal. Cut supplies (if cold war turns into real war).

J BUACK § ~5 AT

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.

7. NETWORK FLow I

» bipartite matching

" Myt D

* JON KLEINBERG - EVA TARDOS



Matching Bipartite matching

Def. Given an undirected graph G =(V, E) a subset of edges MCE is Def. A graph Gis bipartite if the nodes can be partitioned into two subsets
a matching if each node appears in at most one edge in M. L and R such that every edge connects a node in L to one in R.
Max matching. Given a graph, find a max cardinality matching. Bipartite matching. Given a bipartite graph G = (L UR, E), find a max

cardinality matching.
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matching: 1-2',3-1', 4-5'

Bipartite matching Bipartite matching: max flow formulation

Def. A graph Gis bipartite if the nodes can be partitioned into two subsets * Create digraph G'=(LURU {s,1}, E'").

L and R such that every edge connects a node in L to one in R. * Direct all edges from L to R, and assign infinite (or unit) capacity.
* Add source s, and unit capacity edges from s to each node in L.

Bipartite matching. Given a bipartite graph G=(L UR, E), find a max * Add sink ¢, and unit capacity edges from each node in R to .

cardinality matching.

matching: 1-1', 2-2', 3-4', 4-5' L
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Max flow formulation: proof of correctness Max flow formulation: proof of correctness

Theorem. Max cardinality of a matching in G = value of max flow in G'. Theorem. Max cardinality of a matching in G = value of max flow in G'.
Pf. < Pf. =

* Given a max matching M of cardinality k. * Let fbe a max flow in G' of value «.

* Consider flow fthat sends 1 unit along each of k paths. * Integrality theorem = ks integral and can assume fis 0-1.

* fis a flow, and has value k. = * Consider M = set of edges from L to R with f(e) =1.

- each node in L and R participates in at most one edge in M
- IMl=k: consider cut (LUs,RU? =
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Perfect matching in a bipartite graph Perfect matching in a bipartite graph

Def. Given a graph G=(V,E) a subset of edges M CE is a perfect matching Notation. Let S be a subset of nodes, and let N(S) be the set of nodes

if each node appears in exactly one edge in M. adjacent to nodes in S.

Q. When does a bipartite graph have a perfect matching? Observation. If a bipartite graph G=(L U R, E) has a perfect matching,
then IN(S)| = ISI for all subsets SCL.

Structure of bipartite graphs with perfect matchings. Pf. Each node in S has to be matched to a different node in N(S). =

* Clearly we must have ILI=IRI.

* What other conditions are necessary? @ 1
* What conditions are sufficient?
S={2,4,5} e
NGS) = {2', 5"}
@

no perfect matching 12



Hall's theorem

Theorem. Let G=(L UR,E) be a bipartite graph with ILI=IRI.
G has a perfect matching iff IN(S)| = IS| for all subsets SCL.

Pf. = This was the previous observation.

@ :

$=1{2,4,5}
N@S) ={2,5"}

no perfect matching
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Bipartite matching running time
Theorem. The Ford-Fulkerson algorithm solves the bipartite matching
problem in O(m n) time.
Theorem. [Hopcroft-Karp 1973] The bipartite matching problem can be
solved in O(m n'/2) time.
SIAM J. Compur.
Vol. 2, No. 4, December 1973
AN n*2 ALGORITHM FOR MAXIMUM MATCHINGS
IN BIPARTITE GRAPHS*
JOHN E. HOPCROFT} anp RICHARD M. KARPi
Abstract. The present paper shows how to construct a maximum matching in a bipartite graph
with n vertices and m edges in a number of computation steps proportional to (m + n)ﬁ‘
Key words. algorithm, algorithmic analysis, bipartite graphs, computational complexity, graphs,
matching
15

Proof of Hall's theorem

Pf. —« Suppose G does not have a perfect matching.
* Formulate as a max flow problem and let (4, B) be min cut in G'.
* By max-flow min-cut theorem, cap(A, B) <|LlI.
* DefineL,=LNA, Lg=LNB, Ry=RNA.

* cap(A,B) = |Lgl+1R4I.

* Since min cut can't use « edges: N(L,) C R,.
© IN(LY! < IRyl = cap(A,B) — | Lgl < ILI = 1Ll = I L,I.

* Choose S=L,. =

@ La  =1{2,4,5}
Le = {1, 3}
Ra = {2', 5"

N(La) = {2', 5}

Nonbipartite matching

Nonbipartite matching. Given an undirected graph (not necessarily
bipartite), find a matching of maximum cardinality.
* Structure of nonbipartite graphs is more complicated.

* But well-understood.
* Blossom algorithm: O®n?).
* Best known: O(@m n!/2).

PATHS, TREES, AND FLOWERS
JACK EDMONDS

1. Introduction. A graph G for purposes here is a finite set of elements

called vertices and a finite set of elements called edges such that each edge
meets exactly two vertices, called the end-points of the edge. An edge is said
to join its end-pa

A matching in
vertex. We descri
ing of maximi
C. Berge; see

set of its edges such that no two meet the same
algorithm for finding in a given graph a match-
. This problem was posed and partly solved by
nd 3.8,

[Tutte-Berge, Edmonds-Galail
[Edmonds 1965]
[Micali-Vazirani 1980, Vazirani 1994]

COMBINATORICA CoMBINATORICA 14 (1) (1994) T1-109
Aladémiai Kiadé —

16 - Springer-Verlag

A THEORY OF ALTERNATING PATHS AND BLOSSOMS FOR
PROVING CORRECTNESS OF THE O(vVE) GENERAL GRAPH
MAXIMUM MATCHING ALGORITHM

VIJAY V. VAZIRANT®




Historical significance (Jack Edmonds 1965)

2. Digression. An explanation is due on the use of the words “‘efticient
algorithm.” First, what I present is a conceptual description of an algorithm
and not a particular formalized algorithm or “‘code.”

For practical purposes computational details are vital. However. my
purpose is only to show as attractively as I can that there is an efficient
algorithm. According to the dictionary, “efficient” means ‘‘adequate in opera-
tion or performance.” This is roughly the meaning I want—in the sense that
it is conceivable for maximum matching to have no efficient algorithm. Perhaps
a better word is ‘‘good.”

I am claiming, as a mathematical result, the existence of a good algorithm
for finding a maximum cardinality matching in a graph.

There is an obvious finite algorithm, but that algorithm increases in ditticulty
exponentially with the size of the graph. It is by no means obvious whether
or not there exists an algorithm whose difficulty increases only’ algebraically
with the size of the graph.

k-regular bipartite graphs have perfect matchings

Theorem. Every k-regular bipartite graph G has a perfect matching.
Pf.
* Size of max matching = value of max flow in G'.

* Consider flow
1/k if (u,v)€EE

flu,v)y = {1 if u=s or v=t¢
0 otherwise

* fis a flow in G' and its value = n = perfect matching. =

a feasible flow f of value n

k-regular bipartite graphs

Dancing problem.
* Exclusive Ivy league party attended by » men and » women.
* Each man knows exactly k women; each woman knows exactly kK men.
* Acquaintances are mutual.
* Is it possible to arrange a dance so that each woman dances
with a different man that she knows?

Mathematical reformulation. Does every k-regular 2-regular bipartite graph

bipartite graph have a perfect matching?

©
©)

Ex. Boolean hypercube. () (2)
© (3)

O, )

women men
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Edge-disjoint paths

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and ¢,
find the max number of edge-disjoint s~¢ paths.

©, ® ® ©)

digraph G

21

Edge-disjoint paths

Max flow formulation. Assign unit capacity to every edge.

Theorem. Max number edge-disjoint s~¢ paths equals value of max flow.
Pf. <

* Suppose there are k edge-disjoint s~ paths Py, ..., P;.

* Set f(e) =1 if e participates in some path P;; else set f(e) =0.

* Since paths are edge-disjoint, fis a flow of value k. =

Edge-disjoint paths

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem. Given a digraph G = (V, E) and two nodes s and ¢,
find the max number of edge-disjoint s~¢ paths.

Ex. Communication networks.

digraph G
2 edge-disjoint paths 4 o

Edge-disjoint paths

Max flow formulation. Assign unit capacity to every edge.

Theorem. Max number edge-disjoint s~t paths equals value of max flow.
Pf. =
* Suppose max flow value is k.
* Integrality theorem = there exists 0-1 flow f of value k.
* Consider edge (s, u) with f(s, u) = 1.
- by conservation, there exists an edge (u, v) with flu,v) =1
- continue until reach ¢, always choosing a new edge
* Produces k (not necessarily simple) edge-disjoint paths. =

AN

can eliminate cycles

O O to get simple paths
in O(mn) time if desired

(flow decomposition)

©; 1 O O 1 ©



Network connectivity

Def. A set of edges FC E disconnects 7 from s if every s~ path uses at least
one edge in F.

Network connectivity. Given a digraph G =(V, E) and two nodes s and ¢,
find min number of edges whose removal disconnects 7 from s.

Menger's theorem

Theorem. [Menger 1927] The max number of edge-disjoint s~ paths
equals the min number of edges whose removal disconnects ¢ from s.

Pf. >
* Suppose max number of edge-disjoint paths is k.
* Then value of max flow = «%.
* Max-flow min-cut theorem = there exists a cut (4, B) of capacity k.
* Let F be set of edges going from A to B.
* |Fl=k and disconnects ¢t from s. =

27

Menger's theorem

Theorem. [Menger 1927] The max number of edge-disjoint s~ paths
is equal to the min number of edges whose removal disconnects ¢ from s.

Pf. <
* Suppose the removal of F C E disconnects ¢ from s, and | F| = k.
* Every s~t path uses at least one edge in F.
* Hence, the number of edge-disjoint paths is < k. =

Edge-disjoint paths in undirected graphs

Def. Two paths are edge-disjoint if they have no edge in common.

Disjoint path problem in undirected graphs. Given a graph G=(V,E) and
two nodes s and ¢, find the max number of edge-disjoint s-z paths.

©, ©) ® ©)

digraph G



Edge-disjoint paths in undirected graphs Edge-disjoint paths in undirected graphs

Def. Two paths are edge-disjoint if they have no edge in common. Def. Two paths are edge-disjoint if they have no edge in common.
Disjoint path problem in undirected graphs. Given a graph G =(V, E) and Disjoint path problem in undirected graphs. Given a graph G =(V,E) and
two nodes s and ¢, find the max number of edge-disjoint s-¢ paths. two nodes s and ¢, find the max number of edge-disjoint s-¢ paths.

digraph G digraph G
(2 edge-disjoint paths) G/ (3 edge-disjoint paths)
29 30
Edge-disjoint paths in undirected graphs Edge-disjoint paths in undirected graphs
Max flow formulation. Replace edge edge with two antiparallel edges and Max flow formulation. Replace edge edge with two antiparallel edges and
assign unit capacity to every edge. assign unit capacity to every edge.
Observation. Two paths P, and P, may be edge-disjoint in the digraph but Lemma. In any flow network, there exists a maximum flow fin which for
not edge-disjoint in the undirected graph. each pair of antiparallel edges e and e', either f(e) =0 or f(e') =0 or both.
\ Moreover, integrality theorem still holds.
if Py uses edge (u, v) Pf. [ by induction on number of such pairs of antiparallel edges ]

and P uses its antiparallel edge (v, u)

* Suppose f(e) >0 and f(e') > 0 for a pair of antiparallel edges ¢ and ¢'.
* Set f(e) =f(e)— & and f(e") = f(e") — &, where & = min { f(e), f(e") }.
* fis still a flow of the same value but has one fewer such pair. =

@ O @ O



Edge-disjoint paths in undirected graphs

Max flow formulation. Replace edge edge with two antiparallel edges and
assign unit capacity to every edge.

Lemma. In any flow network, there exists a maximum flow fin which for
each pair of antiparallel edges ¢ and ¢', either f(e) =0 or f(e') = 0 or both.

Moreover, integrality theorem still holds.

Theorem. Max number edge-disjoint s~¢ paths equals value of max flow.
Pf. Similar to proof in digraphs; use lemma.

€T
b g
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Menger's theorems

Theorem. Given an undirected graph with two nodes s and ¢,
the max number of edge-disjoint s-t paths equals the min number of edges
whose removal disconnects s and ¢.

Theorem. Given a undirected graph with two nonadjacent nodes s and ¢,
the max number of internally node-disjoint s-r paths equals the min number
of internal nodes whose removal disconnects s and t.

Theorem. Given an directed graph with two nonadjacent nodes s and ¢,
the max number of internally node-disjoint s~¢ paths equals the min number
of internal nodes whose removal disconnects ¢ from s.

Zur allgemeinen Kurventheorie.
Von
Karl Menger (Amsterdam).

Einleitang.

1. Uber die Bed der Ord hl von Kul
1L Uber umfassendste Kurven,

111 Uber die Punkte unendlicher Ordnung.

34

Circulation with demands

Def. Given a digraph G = (V, E) with nonnegative edge capacities c(e) and
node supply and demands d(v), a circulation is a function that satisfies:

* Foreache€E: 0 =< f(e) = cle) (capacity)
* ForeachvevVv: Y f(e) - Y f(e) = d(v) (conservation)
eintov eoutof v

(supply node)

network G -8 -6
flow capacity
/Clj\en 1/7 T l /
4/10 6/6 2/4 749
} \O
7 C>/3/3 > 4/4 > 11
10 0

(demand node) (transshipment node)

36



Circulation with demands: max-flow formulation

* Add new source s and sink r.
* For each v with d(v) <0, add edge (s, v) with capacity -d(v).
* For each v with d(v) >0, add edge (v, n) with capacity d(v).

Claim. G has circulation iff G' has max flow of value D= >d(v) = Y -d(v)

v:d(v)>0 x:d(v)<0
saturates all edges
leaving s
\ «— Supply and entering t
network G' O/ \O

-7 O 3 O 4 11
]C(?\ 0 0 /O
10
\o/ \ demand

Circulation with demands and lower bounds

Feasible circulation.
* Directed graph G=(V,E).
* Edge capacities c(e) and lower bounds ¢ (e) for each edge e €EE.
* Node supply and demands d(v) for each nodev e V.

Def. A circulation is a function that satisfies:

* Foreache€E: L) = fle) < cle) (capacity)
* ForeachveV: Y f(e) - S f(e) = d(v) (conservation)
eintov eoutof v

Circulation problem with lower bounds. Given (V,E, ¢ ,c,d), does there
exists a feasible circulation?

Circulation with demands

Integrality theorem. If all capacities and demands are integers, and there
exists a circulation, then there exists one that is integer-valued.

Pf. Follows from max-flow formulation + integrality theorem for max flow.

Theorem. Given (V,E, c,d), there does not exists a circulation iff there exists
a node partition (A, B) such that X, c zd(v) > cap(A, B).

\

demand by nodes in B exceeds
supply of nodes in B plus
max capacity of edges going from A to B

Pf sketch. Look at min cut in G'.

Circulation with demands and lower bounds

Max flow formulation. Model lower bounds as circulation with demands.
* Send ¢ (e) units of flow along edge e.
* Update demands of both endpoints.

lower bound upper bound capacity

O— s —® O @

d(v) d(w) d(v) + 2 d(w) -2
network G network G'

Theorem. There exists a circulation in G iff there exists a circulation in G'.
Moreover, if all demands, capacities, and lower bounds in G are integers,
then there is a circulation in G that is integer-valued.

Pf sketch. f(e) is a circulation in G iff f'(e) =f(e) — ¢ (e) is a circulation in G'.

40



Survey design

one survey question

» Design survey asking n, consumers about n, products. «<— per product

7. NETWORK FLow I * Can only survey consumer i about product j if they own it.
* Ask consumer i between ¢; and ¢;' questions.
* Ask between p; and p;' consumers about product j.

Goal. Design a survey that meets these specs, if possible.

> » survey design
\ Amumhm HBS|QH Bipartite perfect matching. Special case when¢; = ¢;' = p; = p;' = 1.

JON KLEINBERG - EVA TARDOS

Survey design

Max-flow formulation. Model as circulation problem with lower bounds.
* Add edge (i, ) if consumer j owns product i.
* Add edge from s to consumer ;.
* Add edge from product i to .
* Add edge from ¢ to s.

7. NETWORK FLow I

* Integer circulation <« feasible survey design.

£
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[0, 1]
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Airline scheduling

Airline scheduling.
* Complex computational problem faced by nation's airline carriers.
* Produces schedules that are efficient in terms of:
- equipment usage, crew allocation, customer satisfaction
- in presence of unpredictable issues like weather, breakdowns
* One of largest consumers of high-powered algorithmic techniques.

"Toy problem."
* Manage flight crews by reusing them over multiple flights.
* Input: set of k flights for a given day.
* Flight i leaves origin o; at time s; and arrives at destination d; destination
at time f;.
* Minimize number of flight crews.

Airline scheduling: running time

Theorem. The airline scheduling problem can be solved in O3 log k) time.
Pf.
* k= number of flights.
* ¢ = number of crews (unknown).
* O(k) nodes, O(k?) edges.
* At most k crews needed.
= solve Igk circulation problems. <— binary search for optimal value c*
* Value of the flow is between 0 and .
=> at most k augmentations per circulation problem.
* Overall time = O(k3 log k).

Remark. Can solve in O(k®) time by formulating as minimum flow problem.

Airline scheduling

Circulation formulation. [to see if ¢ crews suffice]
* For each flight i, include two nodes u; and v;.
* Add source s with demand -c, and edges (s, u;) with capacity 1.
* Add sink r with demand ¢, and edges (v;, 1) with capacity 1.
* For each i, add edge (u;, vi) with lower bound and capacity 1.
* if flight j reachable from i, add edge (v, u;) with capacity 1.

crew can end day
with any flight

/

[0, 1] c

@ ®

crew can begin day
with any flight

@

@

use C crews

@

1,1

>

flight 2 is performed

[0, 1]

\

same crew can do flights 2 and 4

45 46

Airline scheduling: postmortem

Remark. We solved a toy problem.

Real-world problem models countless other factors:
* Union regulations: e.g., flight crews can only fly certain number of
hours in given interval.
* Need optimal schedule over planning horizon, not just one day.
* Deadheading has a cost.
* Flights don't always leave or arrive on schedule.
* Simultaneously optimize both flight schedule and fare structure.

Message.
* Qur solution is a generally useful technique for efficient reuse of limited
resources but trivializes real airline scheduling problem.
* Flow techniques useful for solving airline scheduling problems
(and are widely used in practice).
* Running an airline efficiently is a very difficult problem.

47 48



Image segmentation

Image segmentation.

7. NETWORK FLow I * Central problem in image processing.

* Divide image into coherent regions.

Ex. Three people standing in front of complex background scene.
Identify each person as a coherent object.

\ Alyorithm Design

JON KLEINBERG - EVA TARDOS 3 image segmenfaﬁon

liver and hepatic vascularization segmentation

Image segmentation Image segmentation
Foreground / background segmentation. Formulate as min cut problem.
* Label each pixel in picture as belonging to * Maximization.
foreground or background. ° * No source or sink.
* V= set of pixels, E = pairs of neighboring pixels. d . * Undirected graph.
* a; = 0 is likelihood pixel i in foreground. he
* b; = 0is likelihood pixel i in background. Turn into minimization problem.
* p;= 0 is separation penalty for labeling one of i
and j as foreground, and the other as background. * Maximizing 2a;+3b; - I py
i€EA JEB (i,j))EE
| AN{i.j3| =1
Goals.
* Accuracy: if a; > b; in isolation, prefer to label i in foreground. * is equivalent to minimizing (E,EV a; +Ejevbj) - 2a; - xb; + Y p;
. . IEA jEB i,j)EE
* Smoothness: if many neighbors of i are labeled foreground,we should a constant l ! ‘(Xr)){im:l
be inclined to label i as foreground.
* Find partition (A, B) that maximizes: Ya,+ Yb;, - ¥ p; * or alternatively Ya;+3b + 3 p;
f \ i€EA JEB (i,j))EE JEB e84 GHEE
| AN 3| =1 [ANKi /3= 1

foreground  background



Image segmentation Image segmentation

Formulate as min cut problem G' = (V', E"). edgein G Consider min cut (A4, B) in G'.
* Include node for each pixel. O Pi O * A= foreground.
* Use two antiparallel edges instead of cap(A,B) = Sa,+3b, + 3 ps
undirected edge. two antiparallel edges in G' JEB ! i€EA ' (i,/;;e EZ - if i and j on different sides,
€A, jJE i d |
* Add source s to correspond to foreground. O/ pij \O pj counted exactly once
* Add sink rto correspond to background. Pij > * Precisely the quantity we want to minimize.

Project selection

Projects with prerequisites. can be positive
.~ or negative

7. NETWORK FLow Il * Set of possible projects P: project v has associated revenue p,.
+ Set of prerequisites E: if (v,w) EE, can't do project v unless also do

project w.
* A subset of projects A C P is feasible if the prerequisite of every project

in A also belongs to A.

\ A| []mhm I]ES' ﬂ Project selection problem. Given a set of projects P and prerequisites E,
\ Al [ . . e

. choose a feasible subset of projects to maximize revenue.
JON KLEINBERG - EVA TARDOS

» project selection



Project selection: prerequisite graph

Prerequisite graph. Add edge (v, w) if can't do v without also doing w.

{v, x}is infeasible

{v,w, x}is feasible

Project selection: min-cut formulation

Claim. (A, B) is min cut iff A- {s} is optimal set of projects.
« Infinite capacity edges ensure A — {s} is feasible.

* Max revenue because: cap(A, B) = Sp, + SCp,)
vEB:p, >0 vEA:p, <0
= Epv - Epv

vip,>0 VEA
[
constant

Project selection: min-cut formulation

Min-cut formulation.
* Assign capacity « to all prerequisite edge.
* Add edge (s, v) with capacity p, if p,>0.
* Add edge (v, ) with capacity -p, if p, <0.
* For notational convenience, define p, = p, = 0.

Open-pit mining

Open-pit mining. (studied since early 1960s)
* Blocks of earth are extracted from surface to retrieve ore.
* Each block v has net value p, = value of ore - processing cost.
* Can't remove block v before w or x.
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» baseball elimination

Baseball elimination problem

Q. Which teams have a chance of finishing the season with the most wins?

losses

0 A Atlanta 83 71 8 - 1

1 @ Philly 80 79 3 1 -
Ve S

2 @ New York 78 78 6 6 0

3 ﬁ% Montreal 77 82 3 1 2
A4

Montreal is mathematically eliminated.
* Montreal finishes with <80 wins.
* Atlanta already has 83 wins.

Remark. This is the only reason sports writers appear to be aware of —

conditions are sufficient but not necessary!

63

Baseball elimination

TUESORY; SEPTEMBER 10, 1996

Sart Francisco Cljronicle |
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Baseball elimination problem
Q. Which teams have a chance of finishing the season with the most wins?
L L ]
0 A Atlanta 83 71 8 - 1 6
1 Philly 80 79 3 1 - 0
2 Y Newvork 78 78 6 6 0 -
i
3 @ Montreal 77 82 3 1 2 0
Philadelphia is mathematically eliminated.
* Philadelphia finishes with < 83 wins.
* Either New York or Atlanta will finish with > 84 wins.
Observation. Answer depends not only on how many games already won
and left to play, but on whom they're against.
64



Baseball elimination problem

Current standings.
* Set of teams S.
* Distinguished team z € S.

* Team x has won w, games already.

* Teams x and y play each other r,,

“additional times.

Baseball elimination problem. Given the current standings, is there any

outcome of the remaining games in
(or tied for the most) wins?

which team z finishes with the most

Baseball elimination problem: max-flow formulation

Theorem. Team 4 not eliminated iff max flow saturates all edges leaving s.

Pf.

* Integrality theorem => each remaining game between x and y added to

number of wins for team x or team y.

* Capacity on (x, ) edges ensure no team wins too many games. =

games left
between 1 and 2

team 2 can still win
@ this many more games

/®

@
®

game nodes
(each pair of teams other than 4)

:@—W4+r4—WZ—>®

team nodes
(each team other than 4)
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Baseball elimination problem: max-flow formulation

Can team 4 finish with most wins?

* Assume team 4 wins all remaining games = w, +r, wins.

+ Divvy remaining games so that all teams have < w, + r,wins.

games left
between 1 and 2

team 2 can still win
@ this many more games

/@

game nodes

@
©

:@_W4+ ra - w2 _F@

®

team nodes
(each team other than 4)

(each pair of teams other than 4)
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Baseball elimination: explanation for sports writers

Q. Which teams have a chance of finishing the season with the most wins?

-m Pl -----

New York

Baltimore

Boston

Toronto

Detroit

75

71

69

63

49

63 28 3
66 27 8
72 27 7
86 27 3

- 2 7 4
2 - 0 0
7 0 - 0
4 0 0 -

AL East (August 30, 1996)

Detroit is mathematically eliminated.
* Detroit finishes with <76 wins.
* Wins for R = {NYY, BAL, BOS, TOR } = 278.
* Remaining games among { NYY,BAL,BOS,TOR } =3 +8+7+2+7=27.
* Average team in R wins 305/4 = 76.25 games.
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Baseball elimination: explanation for sports writers Baseball elimination: explanation for sports writers

Certificate of elimination. Pf. =
# wins # remaining games * Use max-flow formulation, and consider min cut (A, B).
— )
TCS, wT)= Y w,, gT)= ngy , * Let T* = team nodes on source side A of min cut.
ie€T {xy}C&T

* Observe that game node x-y € A iff both x € T* and y € T*.
- infinite capacity edges ensure if x-y €A, then both x€A and yc A
- ifx€A and y € A but x-y & A, then adding x-y to A decreases the
Theorem. [Hoffman-Rivlin 1967] Team z is eliminated iff there exists a capacity of the cut by g,
subset T* such that wrg < w(T*)+ g(T*)
I T*1
Pf. <

T*)+g(T*
* Suppose there exists 7* C S such that w, +g, < %
* Then, the teams in T* win at least (w(T*) + g(T*)) / | T*| games on average.

* This exceeds the maximum number that team z can win. =

O

/o

/

V., Cp—

O
O

6

Wz + Iz —Wx_'Q
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Baseball elimination: explanation for sports writers

Pf. =
* Use max-flow formulation, and consider min cut (A, B).
* Let T* = team nodes on source side A of min cut.
* Observe that game node x-y € A iff both x € T* and y € T*.
* Since team z is eliminated, by max-flow min-cut theorem,
8(S-{z}) > cap(A, B)

capacity of game edges leaving s capacity of team edges entering t
g8 -{zh)-gT*) + 3w, +g-w,)
XET*

8§ —{2})-g(T*) - w(T*) + IT*I(w,+g,)

w(T™*)+g(T™)

* Rearranging terms: w_+g. <
ging 2+ & 7%
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