
Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on Apr 21, 2013 7:35 PM

7. NETWORK FLOW I

‣ max-flow and min-cut problems

‣ Ford-Fulkerson algorithm

‣ max-flow min-cut theorem

‣ capacity-scaling algorithm

‣ shortest augmenting paths

‣ blocking-flow algorithm

‣ unit-capacity simple networks
SECTION 7.1

7. NETWORK FLOW I

‣ max-flow and min-cut problems

‣ Ford-Fulkerson algorithm

‣ max-flow min-cut theorem

‣ capacity-scaling algorithm

‣ shortest augmenting paths

‣ blocking-flow algorithm

‣ unit-capacity simple networks

・Abstraction for material flowing through the edges.

・Digraph G = (V, E) with source s ∈ V and sink t ∈ V.

・Nonnegative integer capacity c(e) for each e ∈ E.

Flow network

3

s t5

15

10
15

16

9

15

6

8 10

154

4 10

10

capacity

no parallel edges

no edge enters s

no edge leaves t

Def. A st-cut (cut) is a partition (A, B) of the vertices with s ∈ A and t ∈ B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

Minimum cut problem

4

5s

15

10

t

capacity = 10 + 5 + 15 = 30

€

cap(A, B) = c(e)
e out of A
∑

Def. A st-cut (cut) is a partition (A, B) of the vertices with s ∈ A and t ∈ B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

10

Minimum cut problem

5

8

don't count edges

from B to A

t

16
capacity = 10 + 8 + 16 = 34

s

€

cap(A, B) = c(e)
e out of A
∑

Def. A st-cut (cut) is a partition (A, B) of the vertices with s ∈ A and t ∈ B.

Def. Its capacity is the sum of the capacities of the edges from A to B.

Min-cut problem. Find a cut of minimum capacity.

10

Minimum cut problem

6

s

10

t

capacity = 10 + 8 + 10 = 28

8

€

cap(A, B) = c(e)
e out of A
∑

Def. An st-flow (flow) f is a function that satisfies:

・For each e ∈ E : [capacity]

・For each v ∈ V – {s, t} : [flow conservation]

7

Maximum flow problem

0 / 4

0 / 4 0 / 15

10 /
10

10 / 105 / 5 vs t

0 / 6

5 / 10

5 / 9

5 / 8

5 / 15

10 /
1010 / 15

10 / 16

 inflow at v = 5 + 5 + 0 = 10

outflow at v = 10 + 0 = 10

flow capacity

0 / 15

€

f (e)
e in to v
∑ = f (e)

e out of v
∑

€

0 ≤ f (e) ≤ c(e)

8

Maximum flow problem

Def. An st-flow (flow) f is a function that satisfies:

・For each e ∈ E : [capacity]

・For each v ∈ V – {s, t} : [flow conservation]

Def. The value of a flow f is: val(f) =

0 / 4

10 /
10

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 /
1010 / 15

0 / 15

value = 5 + 10 + 10 = 25

0 / 4

0 / 6

10 / 16

0 / 15

€

v(f) = f (e)
e out of s
∑ .

€

f (e)
e in to v
∑ = f (e)

e out of v
∑

€

0 ≤ f (e) ≤ c(e)

9

Maximum flow problem

Def. An st-flow (flow) f is a function that satisfies:

・For each e ∈ E : [capacity]

・For each v ∈ V – {s, t} : [flow conservation]

Def. The value of a flow f is: val(f) =

Max-flow problem. Find a flow of maximum value.

0 / 4

10 /
10

10 / 105 / 5s

8 / 10

8 / 9

8 / 8

10 /
1013 / 15

0 / 15

value = 8 + 10 + 10 = 28

0 / 4

3 / 6

13 / 16

0 / 15

t

2 / 15

€

f (e)
e in to v
∑ = f (e)

e out of v
∑

€

0 ≤ f (e) ≤ c(e)

€

v(f) = f (e)
e out of s
∑ .

SECTION 7.1

7. NETWORK FLOW I

‣ max-flow and min-cut problems

‣ Ford-Fulkerson algorithm

‣ max-flow min-cut theorem

‣ capacity-scaling algorithm

‣ shortest augmenting paths

‣ blocking-flow algorithm

‣ unit-capacity simple networks

11

Towards a max-flow algorithm

Greedy algorithm.

・Start with f (e) = 0 for all edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.

s t

0 / 2
0 /

10 0 / 6

0 / 10

0 / 4

0 / 8

0 / 9

network G

0 / 10 0

value of flow

0 / 10

flow capacity

12

Towards a max-flow algorithm

Greedy algorithm.

・Start with f (e) = 0 for all edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.

s t

0 / 2
0 /

10 0 / 6

0 / 10

0 / 4

0 / 8

0 / 9

network G

0 / 10 0

0 / 10

+ 8 = 8—

8
—

—
8

8

+ 2 = 10

Greedy algorithm.

・Start with f (e) = 0 for all edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.

13

Towards a max-flow algorithm

0 / 6

0 / 4

8 / 8

network G

0 / 10 8

0 / 10

t

0 / 2
8 /

10

8 / 100 / 9

—
10 2 —

2
—

2
—s

Greedy algorithm.

・Start with f (e) = 0 for all edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.

14

Towards a max-flow algorithm

0 / 4

8 / 8

network G

10

2 / 2
10 /

10

10 / 10s

0 / 6

0 / 10

0 / 10

t2 / 9

6 —

8
—

6
— + 6 = 16

6
—

Greedy algorithm.

・Start with f (e) = 0 for all edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.

15

Towards a max-flow algorithm

0 / 4

8 / 8

network G

16

2 / 2
10 /

10

10 / 10s

6 / 6

6 / 10

6 / 10

t8 / 9

ending flow value = 16

Greedy algorithm.

・Start with f (e) = 0 for all edge e ∈ E.

・Find an s↝t path P where each edge has f (e) < c(e).

・Augment flow along path P.

・Repeat until you get stuck.

16

Towards a max-flow algorithm

3 / 4

7 / 8

network G

19

0 / 2
10 /

10

10 / 10s

6 / 6

9 / 10

9 / 10

t9 / 9

but max-flow value = 19

17

Residual graph

Original edge: e = (u, v) ∈ E.

・Flow f (e).

・Capacity c(e).

Residual edge.

・"Undo" flow sent.

・e = (u, v) and eR = (v, u).

・Residual capacity:

Residual graph: Gf = (V, Ef).

・Residual edges with positive residual capacity.

・Ef = {e : f (e) < c(e)} ∪ {eR : f (e) > 0}.

・Key property: f ' is a flow in Gf iff f + f ' is a flow in G.

u v

u v

residual

capacity

flow

€

c f (e) =
c(e)− f (e) if e ∈ E
f (e) if eR ∈ E

⎧
⎨
⎩

6 / 17

capacity

original graph G

residual graph Gf

11

6

where flow on a reverse edge

 negates flow on a forward edge

Def. An augmenting path is a simple s↝t path P in the residual graph Gf .

Def. The bottleneck capacity of an augmenting P is the minimum

residual capacity of any edge in P.

Key property. Let f be a flow and let P be an augmenting path in Gf .

Then f ' is a flow and val(f ') = val(f) + bottleneck(Gf, P).

18

Augmenting path

AUGMENT (f, c, P)
__

b ← bottleneck capacity of path P.
FOREACH edge e ∈ P

IF (e ∈ E) f (e) ← f (e) + b.

ELSE f (eR) ← f (eR) – b.
RETURN f.
__

Ford-Fulkerson augmenting path algorithm.

・Start with f (e) = 0 for all edge e ∈ E.

・Find an augmenting path P in the residual graph Gf .

・Augment flow along path P.

・Repeat until you get stuck.

19

Ford-Fulkerson algorithm

FORD-FULKERSON (G, s, t, c)

FOREACH edge e ∈ E : f (e) ← 0.

Gf ← residual graph.
WHILE (there exists an augmenting path P in Gf)

f ← AUGMENT (f, c, P).
Update Gf.

RETURN f.
}

20

Ford-Fulkerson algorithm demo

s t

0 / 2
0 /

10 0 / 6

0 / 10

0 / 4

0 / 8

0 / 9

network G

0 / 10 0

value of flow

0 / 10

flow capacity

s t

2 6

10

4

9

residual graph Gf

10

residual capacity

 10
 1

0
8

21

Ford-Fulkerson algorithm demo

2 6

4

9

residual graph Gf

10

 10

s t

0 / 2
0 /

10 0 / 6

0 / 10

0 / 4

0 / 8

0 / 9

network G

0 / 10 0

0 / 10

s t

 1
0

10

8

8
—

8
—

8
—

+ 8 = 8

22

Ford-Fulkerson algorithm demo

4

residual graph Gf

10

s t

0 / 2
8 /

10 0 / 6

8 / 10

0 / 4

8 / 8

0 / 9

network G

0 / 10 8

0 / 10

8

8

8

9s

2
2

—
10 2 —

2
— + 2 = 10

 10 6

2
—

2 t

23

Ford-Fulkerson algorithm demo

4

residual graph Gf

s t

2 / 2
10 /

10
0 / 6

10 / 10

0 / 4

8 / 8

2 / 9

network G

0 / 10 10

0 / 10

8

2

2

10

 1
0

10 7s

 10 6

t

6 —

8
—

6
— + 6 = 16

6
—

24

Ford-Fulkerson algorithm demo

residual graph Gf

s t

2 / 2
10 /

10
6 / 6

10 / 10

0 / 4

8 / 8

8 / 9

network G

6 / 10 16

6 / 10

8

8

10

 1
0

1

6

6

 6

4

4s

 4

t

2

8
—

0 —

2
—

8
—

+ 2 = 18

25

Ford-Fulkerson algorithm demo

residual graph Gf

s t

0 / 2
10 /

10
6 / 6

10 / 10

2 / 4

8 / 8

8 / 9

network G

8 / 10 18

8 / 10

8

10

 1
0 6

 8

2

2

8

1

2

s

 2

t2

8

9
—

9
—

7
—

3
—

9
—

+ 1 = 19

26

Ford-Fulkerson algorithm demo

residual graph Gf

s t

0 / 2
10 /

10
6 / 6

10 / 10

3 / 4

7 / 8

9 / 9

network G

9 / 10 19

9 / 10

10

 1
0 6

 9

2

3

9

9

1

s

 1

t1

7

1

nodes reachable from s

min cut max flow

SECTION 7.2

7. NETWORK FLOW I

‣ max-flow and min-cut problems

‣ Ford-Fulkerson algorithm

‣ max-flow min-cut theorem

‣ capacity-scaling algorithm

‣ shortest augmenting paths

‣ blocking-flow algorithm

‣ unit-capacity simple networks

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then, the net

flow across (A, B) equals the value of f.

28

0 / 4

10 /
10

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 /
1010 / 15

0 / 15

value of flow = 25

0 / 4

0 / 6

10 / 16

0 / 15

net flow across cut = 5 + 10 + 10 = 25€

f (e)
e out of A
∑ − f (e)

e in to A
∑ = v(f)

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then, the net

flow across (A, B) equals the value of f.

29

0 / 4

10 /
10

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 /
1010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

net flow across cut = 10 + 5 + 10 = 25€

f (e)
e out of A
∑ − f (e)

e in to A
∑ = v(f)

value of flow = 25

Relationship between flows and cuts

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then, the net

flow across (A, B) equals the value of f.

30

0 / 4

10 /
10

10 / 105 / 5s t

5 / 10

5 / 9

5 / 8

5 / 15

10 /
1010 / 15

0 / 150 / 4

0 / 6

10 / 16

0 / 15

net flow across cut = (10 + 10 + 5 + 10 + 0 + 0) – (5 + 5 + 0 + 0) = 25

edges from B to A

€

f (e)
e out of A
∑ − f (e)

e in to A
∑ = v(f)

value of flow = 25

Flow value lemma. Let f be any flow and let (A, B) be any cut. Then, the net

flow across (A, B) equals the value of f.

Pf.

€

v(f) = f (e)
e out of s
∑

=
v ∈A
∑ f (e)

e out of v
∑ − f (e)

e in to v
∑

⎛

⎝
⎜

⎞

⎠
⎟

= f (e)
e out of A
∑ − f (e).

e in to A
∑

31

Relationship between flows and cuts

€

v(f) = f (e)
e out of s
∑

=
v ∈A
∑ f (e)

e out of v
∑ − f (e)

e in to v
∑

⎛

⎝
⎜

⎞

⎠
⎟

= f (e)
e out of A
∑ − f (e).

e in to A
∑

by flow conservation, all terms

except v = s are 0

€

f (e)
e out of A
∑ − f (e)

e in to A
∑ = v(f)

€

v(f) = f (e)
e out of s
∑

=
v ∈A
∑ f (e)

e out of v
∑ − f (e)

e in to v
∑

⎛

⎝
⎜

⎞

⎠
⎟

= f (e)
e out of A
∑ − f (e).

e in to A
∑ ▪

Relationship between flows and cuts

Weak duality. Let f be any flow and (A, B) be any cut. Then, v(f) ≤ cap(A, B).

Pf.

32

s t

0 / 4

10 /
10

9 / 105 / 5

8 / 10

8 / 9

7 / 8

2 / 15

10 /
10

12 / 15

0 / 4

2 / 6

12 / 16

0 / 15

0 / 15

s

15

5

10

t

value of flow = 27 capacity of cut = 30

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

≤ f (e)
e out of A
∑

≤ c(e)
e out of A
∑

= cap(A,B)

flow-value

lemma

≤

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

≤ f (e)
e out of A
∑

≤ c(e)
e out of A
∑

= cap(A,B)

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

≤ f (e)
e out of A
∑

≤ c(e)
e out of A
∑

= cap(A,B)

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

≤ f (e)
e out of A
∑

≤ c(e)
e out of A
∑

= cap(A,B) ▪

Max-flow min-cut theorem

Augmenting path theorem. A flow f is a max-flow iff no augmenting paths.

Max-flow min-cut theorem. Value of the max-flow = capacity of min-cut.

Pf. The following three conditions are equivalent for any flow f :
 i. There exists a cut (A, B) such that cap(A, B) = val(f).
 ii. f is a max-flow.

iii. There is no augmenting path with respect to f.

[i ⇒ ii]

・Suppose that (A, B) is a cut such that cap(A, B) = val(f).

・Then, for any flow f ', val(f ') ≤ cap(A, B) = val(f).

・Thus, f is a max-flow. ▪

33

weak duality by assumption

Max-flow min-cut theorem

Augmenting path theorem. A flow f is a max-flow iff no augmenting paths.

Max-flow min-cut theorem. Value of the max-flow = capacity of min-cut.

Pf. The following three conditions are equivalent for any flow f :
 i. There exists a cut (A, B) such that cap(A, B) = val(f).
 ii. f is a max-flow.

iii. There is no augmenting path with respect to f.

[ii ⇒ iii] We prove contrapositive: ~iii ⇒ ~ii.

・Suppose that there is an augmenting path with respect to f.

・Can improve flow f by sending flow along this path.

・Thus, f is not a max-flow. ▪

34

[iii ⇒ i]

・Let f be a flow with no augmenting paths.

・Let A be set of nodes reachable from s in residual graph Gf.

・By definition of cut A, s ∈ A.

・By definition of flow f, t ∉ A.

35

Max-flow min-cut theorem

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

= c(e)
e out of A
∑

= cap(A,B)

original network G

s

t

A B

flow-value

lemma

edge e = (v, w) with v ∈ A, w ∈ B

must have f(e) = c(e)

edge e = (v, w) with v ∈ B, w ∈ A

must have f(e) = 0

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

= c(e)
e out of A
∑

= cap(A,B)

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

= c(e)
e out of A
∑

= cap(A,B)

SECTION 7.3

7. NETWORK FLOW I

‣ max-flow and min-cut problems

‣ Ford-Fulkerson algorithm

‣ max-flow min-cut theorem

‣ capacity-scaling algorithm

‣ shortest augmenting paths

‣ blocking-flow algorithm

‣ unit-capacity simple networks

37

Running time

Assumption. Capacities are integers between 1 and C.

Integrality invariant. Throughout the algorithm, the flow values f (e)
and the residual capacities cf (e) are integers.

Theorem. The algorithm terminates in at most val (f *) ≤ n C iterations.

Pf. Each augmentation increases the value by at least 1. ▪

Corollary. The running time of Ford-Fulkerson is O(m n C).
Corollary. If C = 1, the running time of Ford-Fulkerson is O(m n).

Integrality theorem. Then exists a max-flow f * for which every

flow value f *(e) is an integer.

Pf. Since algorithm terminates, theorem follows from invariant. ▪

Q. Is generic Ford-Fulkerson algorithm poly-time in input size?

A. No. If max capacity is C, then algorithm can take ≥ C iterations.

・s→v→w→t

・s→w→v→t

・s→v→w→t

・s→w→v→t

・…

・s→v→w→t

・s→w→v→t

Bad case for Ford-Fulkerson

38

s

t

w

v

1

m, n, and log C

each augmenting path

sends only 1 unit of flow

(# augmenting paths = 2C)

C

C

CC

39

Choosing good augmenting paths

Use care when selecting augmenting paths.

・Some choices lead to exponential algorithms.

・Clever choices lead to polynomial algorithms.

・If capacities are irrational, algorithm not guaranteed to terminate!

Goal. Choose augmenting paths so that:

・Can find augmenting paths efficiently.

・Few iterations.

40

Choosing good augmenting paths

Choose augmenting paths with:

・Max bottleneck capacity.

・Sufficiently large bottleneck capacity.

・Fewest number of edges.

Theoretical Improvements in Algorithmic Efficiency
for Network Flow Problems

J A C K E D M O N D S

University of Waterloo, Waterloo, Ontario, Canada

AND

R I C H A R D M. K A R P

University of California, Berkeley, California

ABSTRACT. This paper presents new algori thms for the maximum flow problem, the Hitchcock
t r anspo r t a t i on problem, and the general min imum-cos t flow problem. Upper bounds on the
numbers of steps in these algori thms are derived, and are shown to compale favorably with
upper bounds on the numbers of steps required by earlier algori thms.

Firs t , the paper s ta tes the maximum flow problem, gives the Ford-Fulkerson labeling method
for its solution, and points out t h a t an improper choice of flow augment ing pa ths can lead to
severe computa t iona l difficulties. Then rules of choice t h a t avoid these difficulties are given.
We show tha t , if each flow augmenta t ion is made along an augment ing pa th having a minimum
number of arcs, then a maximum flow in an n-node network will be obta ined af te r no more than
~(n a - n) augmenta t ions ; and then we show tha t if each flow change is chosen to produce a
maximum increase in the flow value then, provided the capacit ies are integral , a maximum flow
will be de te rmined wi th in at most 1 + logM/(M--1) if(t, S) augmenta t ions , wheref*(t, s) is the
value of the maximum flow and M is the maximum number of arcs across a cut.

Next a new algor i thm is given for the minimum-cos t flow problem, in which all shor tes t -pa th
computa t ions are performed on networks wi th all weights nonnegat ive . In par t icular , this
a lgor i thm solves the n X n ass igmnent problem in O(n 3) steps. Following t h a t we explore a
" sca l ing" technique for solving a minimum-cost flow problem by t r ea t ing a sequence of derived
problems wi th "scaled down" capacit ies. I t is shown tha t , using this technique, the solution of
a I i i tchcock t r anspor t a t i on problem wi th m sources and n sinks, m ~ n, and maximum flow B,
requires at most (n + 2) log2 (B/n) flow augmenta t ions . Similar results are also given for the
general minimum-cost flow problem.

An abs t rac t s t a t ing the main results of the present paper was presented at the Calgary
In te rna t iona l Conference on Combinator ia l S t ruc tures and Thei r Applicat ions, J u n e 1969.
In a paper by l)inic (1970) a resul t closely related to the main resul t of Section 1.2 is obtained.
Dinic shows tha t , in a network wi th n nodes and p arcs, a maximum flow can be computed in
0 (n2p) pr imi t ive operat ions by an a lgor i thm which augments along shor tes t augment ing paths.

KEY WOl¢l)S AND PHP~ASES: network flows, t r anspor ta t ion problem, analysis of algori thms

CR CATEGOI{.IES: 5.3, 5.4, 8.3

Copyr ight © 1972, Association for Comput ing Machinery , Inc.
General permission to republish, bu t not for profit, all or par t of this mater ia l is granted,

provided t ha t reference is made to this publ ica t ion, to its date of issue, and to the fact tha t
r epr in t ing privileges were granted by permission of the Association for Comput ing Machinery.
Authors ' addresses : J . Edmonds, Depa r tmen t of Combinator ics and Optimizat ion, Univers i ty
of Waterloo, Waterloo, Ontario, Canada; R. M. Karp, College of Engineering, Operations
Research Center , Univers i ty of California, Berkeley, CA 94720; the l a t t e r au thor ' s research has
been par t ia l ly suppor ted by the Nat iona l Science Founda t ion raider Gran t GP-15473 with the
Univers i ty of California.

Jc~urnal of the Association for Computing Machinery, Vol. 19, No. 2, Apri| 1972. pp. 248-264.

Edmonds-Karp 1972 (USA) Dinic 1970 (Soviet Union)

41

Capacity-scaling algorithm

Intuition. Choose augmenting path with highest bottleneck capacity:

it increases flow by max possible amount in given iteration.

・Don't worry about finding exact highest bottleneck path.

・Maintain scaling parameter Δ.

・Let Gf (Δ) be the subgraph of the residual graph consisting only of

arcs with capacity ≥ Δ.

Gf

t

s

1

122

102

17
0

11
0

Gf (Δ), Δ = 100

t

s

122

102

17
0

11
0

42

Capacity-scaling algorithm

CAPACITY-SCALING(G, s, t, c)
__

FOREACH edge e ∈ E : f (e) ← 0.

Δ ← largest power of 2 ≤ C.

WHILE (Δ ≥ 1)
Gf (Δ) ← Δ-residual graph.
WHILE (there exists an augmenting path P in Gf (Δ))

f ← AUGMENT (f, c, P).
Update Gf (Δ).

Δ ← Δ / 2.

RETURN f.
__

43

Capacity-scaling algorithm: proof of correctness

Assumption. All edge capacities are integers between 1 and C.

Integrality invariant. All flow and residual capacity values are integral.

Theorem. If capacity-scaling algorithm terminates, then f is a max-flow.

Pf.

・By integrality invariant, when Δ = 1 ⇒ Gf (Δ) = Gf .

・Upon termination of Δ = 1 phase, there are no augmenting paths. ▪

44

Capacity-scaling algorithm: analysis of running time

Lemma 1. The outer while loop repeats 1 + ⎡log2 C⎤ times.

Pf. Initially C / 2 < Δ ≤ C; Δ decreases by a factor of 2 in each iteration. ▪

Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then,

the value of the max-flow ≤ val(f) + m Δ.

Lemma 3. There are at most 2m augmentations per scaling phase.

Pf.

・Let f be the flow at the end of the previous scaling phase.

・LEMMA 2 ⇒ val(f *) ≤ val(f) + 2 m Δ .

・Each augmentation in a Δ-phase increases val(f) by at least Δ. ▪

Theorem. The scaling max-flow algorithm finds a max flow in O(m log C)
augmentations. It can be implemented to run in O(m2 log C) time.

Pf. Follows from LEMMA 1 and LEMMA 3. ▪

proof on next slide

t

45

Capacity-scaling algorithm: analysis of running time

Lemma 2. Let f be the flow at the end of a Δ-scaling phase. Then,

the value of the max-flow ≤ val(f) + m Δ.

Pf.

・We show there exists a cut (A, B) such that cap(A, B) ≤ val(f) + m Δ.

・Choose A to be the set of nodes reachable from s in Gf (Δ).

・By definition of cut A, s ∈ A.

・By definition of flow f, t ∉ A.

original network

s

A B

edge e = (v, w) with v ∈ A, w ∈ B

must have f(e) ≥ c(e) – Δ

edge e = (v, w) with v ∈ B, w ∈ A

must have f(e) ≤ Δ

val(f)

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

≥ (c(e)
e out of A
∑ −Δ) − Δ

e in to A
∑

= c(e)
e out of A
∑ − Δ

e out of A
∑ − Δ

e in to A
∑

≥ cap(A, B) - mΔ

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

≥ (c(e)
e out of A
∑ −Δ) − Δ

e in to A
∑

= c(e)
e out of A
∑ − Δ

e out of A
∑ − Δ

e in to A
∑

≥ cap(A, B) - mΔ

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

≥ (c(e)
e out of A
∑ −Δ) − Δ

e in to A
∑

= c(e)
e out of A
∑ − Δ

e out of A
∑ − Δ

e in to A
∑

≥ cap(A, B) - mΔ

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

≥ (c(e)
e out of A
∑ −Δ) − Δ

e in to A
∑

= c(e)
e out of A
∑ − Δ

e out of A
∑ − Δ

e in to A
∑

≥ cap(A, B) - mΔ

‣ max-flow and min-cut problems

‣ Ford-Fulkerson algorithm

‣ max-flow min-cut theorem

‣ capacity-scaling algorithm

‣ shortest augmenting paths

‣ blocking-flow algorithm

‣ unit-capacity simple networks

7. NETWORK FLOW I

SECTION 17.2

Q. Which augmenting path?

A. The one with the fewest number of edges.

47

Shortest augmenting path

SHORTEST-AUGMENTING-PATH(G, s, t, c)

FOREACH e ∈ E : f (e) ← 0.

Gf ← residual graph.
WHILE (there exists an augmenting path in Gf)

P ← BREADTH-FIRST-SEARCH (Gf, s, t).
f ← AUGMENT (f, c, P).
Update Gf.

RETURN f.

can find via BFS

48

Shortest augmenting path: overview of analysis

L1. Throughout the algorithm, length of the shortest path never decreases.

L2. After at most m shortest path augmentations, the length of the shortest

augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm runs in O(m2 n) time.

Pf.

・O(m + n) time to find shortest augmenting path via BFS.

・O(m) augmentations for paths of length k.

・If there is an augmenting path, there is a simple one.

 ⇒ 1 ≤ k < n
 ⇒ O(m n) augmentations. ▪

Def. Given a digraph G = (V, E) with source s, its level graph is defined by:

・ℓ(v) = number of edges in shortest path from s to v.

・LG = (V, EG) is the subgraph of G that contains only those edges (v,w) ∈ E

with ℓ(w) = ℓ(v) + 1.

49

Shortest augmenting path: analysis

s t

graph G

s t

level graph LG

ℓ= 0 ℓ= 1 ℓ= 2 ℓ= 3

Def. Given a digraph G = (V, E) with source s, its level graph is defined by:

・ℓ(v) = number of edges in shortest path from s to v.

・LG = (V, EG) is the subgraph of G that contains only those edges (v,w) ∈ E

with ℓ(w) = ℓ(v) + 1.

Property. Can compute level graph in O(m + n) time.

Pf. Run BFS; delete back and side edges.

Key property. P is a shortest s↝v path in G iff P is an s↝v path LG.

50

Shortest augmenting path: analysis

level graph LG

s t

ℓ= 0 ℓ= 1 ℓ= 2 ℓ= 3

L1. Throughout the algorithm, length of the shortest path never decreases.

・Let f and f ' be flow before and after a shortest path augmentation.

・Let L and L' be level graphs of Gf and Gf ' .

・Only back edges added to Gf '

(any path with a back edge is longer than previous length) ▪

51

Shortest augmenting path: analysis

ℓ= 0

level graph L

ℓ= 1 ℓ= 2 ℓ= 3

s t

level graph L'

s t

52

Shortest augmenting path: analysis

L2. After at most m shortest path augmentations, the length of the shortest

augmenting path strictly increases.

・The bottleneck edge(s) is deleted from L after each augmentation.

・No new edge added to L until length of shortest path strictly increases. ▪

ℓ= 0

level graph L

ℓ= 1 ℓ= 2 ℓ= 3

s t

level graph L'

s t

53

Shortest augmenting path: review of analysis

L1. Throughout the algorithm, length of the shortest path never decreases.

L2. After at most m shortest path augmentations, the length of the shortest

augmenting path strictly increases.

Theorem. The shortest augmenting path algorithm runs in O(m2 n) time.

Pf.

・O(m + n) time to find shortest augmenting path via BFS.

・O(m) augmentations for paths of exactly k edges.

・O(m n) augmentations. ▪

Note. Θ(m n) augmentations necessary on some networks.

・Try to decrease time per augmentation instead.

・Simple idea ⇒ O(m n2)	

 	

 [Dinic 1970]

・Dynamic trees ⇒ O(m n log n) [Sleator-Tarjan 1983]

54

Shortest augmenting path: improving the running time

JOURNAL OF COMPUTER AND SYSTEM SCIENCES 26, 362-391 (1983)

A Data Structure for Dynamic Trees

DANIEL D. SLEATOR AND ROBERT ENDRE TARJAN

Bell Laboratories, Murray Hill, New Jersey 07974

Received May 8, 1982; revised October 18, 1982

A data structure is proposed to maintain a collection of vertex-disjoint trees under a
sequence of two kinds of operations: a link operation that combines two trees into one by
adding an edge, and a cut operation that divides one tree into two by deleting an edge. Each
operation requires O(log n) time. Using this data structure, new fast algorithms are obtained
for the following problems:

(1) Computing nearest common ancestors.

(2) Solving various network flow problems including finding maximum flows, blocking
flows, and acyclic flows.

(3) Computing certain kinds of constrained minimum spanning trees.

(4) Implementing the network simplex algorithm for minimum-cost flows.

The most significant application is (2); an O(mn log n)-time algorithm is obtained to find a
maximum flow in a network of n vertices and m edges, beating by a factor of log n the fastest
algorithm previously known for sparse graphs.

1. INTR~DIJCTI~N

In this paper we consider the following problem: We are given a collection of
vertex-disjoint rooted trees. We want to represent the trees by a data structure that
allows us to easily extract certain information about the trees and to easily update the
structure to reflect changes in the trees caused by three kinds of operations:

link(v, w): If u is a tree root and w is a vertex in another tree, link the trees
containing v and w by adding the edge(v, w), making w the parent of v.

cut(v): If node v is not a tree root, divide the tree containing v into two trees by
deleting the edge from v to its parent.

ever-t(v): Turn the tree containing vertex u “inside out” by making v the root of
the tree.

We propose a data structure that solves this dynamic trees problem. We give two
versions of the data structure. The first has a time bound of O(log n) per operation
when the time is amortized over a worst-case sequence of operations; the second,

362
0022-0000/83 $3.00
Copyright 0 1983 by Academic Press, Inc.
All rights of reproduction in any form reserved.

‣ max-flow and min-cut problems

‣ Ford-Fulkerson algorithm

‣ max-flow min-cut theorem

‣ capacity-scaling algorithm

‣ shortest augmenting paths

‣ blocking-flow algorithm

‣ unit-capacity simple networks

7. NETWORK FLOW I

SECTION 18.1

Two types of augmentations.

・Normal: length of shortest path does not change.

・Special: length of shortest path strictly increases.

Phase of normal augmentations.

・Explicitly maintain level graph LG.

・Start at s, advance along an edge in LG until reach t or get stuck.

・If reach t, augment and and update LG.

・If get stuck, delete node from LG and go to previous node.

56

Blocking-flow algorithm

level graph LG

s t

Two types of augmentations.

・Normal: length of shortest path does not change.

・Special: length of shortest path strictly increases.

Phase of normal augmentations.

・Explicitly maintain level graph LG.

・Start at s, advance along an edge in LG until reach t or get stuck.

・If reach t, augment and and update LG.

・If get stuck, delete node from LG and go to previous node.

57

Blocking-flow algorithm

level graph LG

advance

s ts t

Two types of augmentations.

・Normal: length of shortest path does not change.

・Special: length of shortest path strictly increases.

Phase of normal augmentations.

・Explicitly maintain level graph LG.

・Start at s, advance along an edge in LG until reach t or get stuck.

・If reach t, augment and and update LG.

・If get stuck, delete node from LG and go to previous node.

58

Blocking-flow algorithm

level graph LG

augment

s t

Two types of augmentations.

・Normal: length of shortest path does not change.

・Special: length of shortest path strictly increases.

Phase of normal augmentations.

・Explicitly maintain level graph LG.

・Start at s, advance along an edge in LG until reach t or get stuck.

・If reach t, augment and and update LG.

・If get stuck, delete node from LG and go to previous node.

59

Blocking-flow algorithm

level graph LG

advance

s ts

Two types of augmentations.

・Normal: length of shortest path does not change.

・Special: length of shortest path strictly increases.

Phase of normal augmentations.

・Explicitly maintain level graph LG.

・Start at s, advance along an edge in LG until reach t or get stuck.

・If reach t, augment and and update LG.

・If get stuck, delete node from LG and go to previous node.

60

Blocking-flow algorithm

level graph LG

retreat

s t

Two types of augmentations.

・Normal: length of shortest path does not change.

・Special: length of shortest path strictly increases.

Phase of normal augmentations.

・Explicitly maintain level graph LG.

・Start at s, advance along an edge in LG until reach t or get stuck.

・If reach t, augment and and update LG.

・If get stuck, delete node from LG and go to previous node.

61

Blocking-flow algorithm

level graph LG

advance

s tt

Two types of augmentations.

・Normal: length of shortest path does not change.

・Special: length of shortest path strictly increases.

Phase of normal augmentations.

・Explicitly maintain level graph LG.

・Start at s, advance along an edge in LG until reach t or get stuck.

・If reach t, augment and and update LG.

・If get stuck, delete node from LG and go to previous node.

62

Blocking-flow algorithm

level graph LG

augment

s t

Two types of augmentations.

・Normal: length of shortest path does not change.

・Special: length of shortest path strictly increases.

Phase of normal augmentations.

・Explicitly maintain level graph LG.

・Start at s, advance along an edge in LG until reach t or get stuck.

・If reach t, augment and and update LG.

・If get stuck, delete node from LG and go to previous node.

63

Blocking-flow algorithm

level graph LG

advance

tss

Two types of augmentations.

・Normal: length of shortest path does not change.

・Special: length of shortest path strictly increases.

Phase of normal augmentations.

・Explicitly maintain level graph LG.

・Start at s, advance along an edge in LG until reach t or get stuck.

・If reach t, augment and and update LG.

・If get stuck, delete node from LG and go to previous node.

64

Blocking-flow algorithm

level graph LG

retreat

tss

Two types of augmentations.

・Normal: length of shortest path does not change.

・Special: length of shortest path strictly increases.

Phase of normal augmentations.

・Explicitly maintain level graph LG.

・Start at s, advance along an edge in LG until reach t or get stuck.

・If reach t, augment and and update LG.

・If get stuck, delete node from LG and go to previous node.

ss

65

Blocking-flow algorithm

level graph LG

retreat

t

Two types of augmentations.

・Normal: length of shortest path does not change.

・Special: length of shortest path strictly increases.

Phase of normal augmentations.

・Explicitly maintain level graph LG.

・Start at s, advance along an edge in LG until reach t or get stuck.

・If reach t, augment and and update LG.

・If get stuck, delete node from LG and go to previous node.

s

66

Blocking-flow algorithm

level graph LG

end of phase

t

67

Blocking-flow algorithm

INITIALIZE(G, s, t, f, c)

LG ← level-graph of Gf.
P ← ∅.

GOTO ADVANCE(s).

ADVANCE(v)
__

IF (v = t)
AUGMENT(P).
Remove saturated edges from LG.
P ← ∅.

GOTO ADVANCE(s).

IF (there exists edge (v, w) ∈ LG)

Add edge (v, w) to P.
GOTO ADVANCE(w).

ELSE GOTO RETREAT(v).
__

RETREAT(v)

IF (v = s) STOP.
ELSE

Delete v (and all incident edges) from LG.
Remove last edge (u, v) from P.
GOTO ADVANCE(u).

68

Blocking-flow algorithm: analysis

Lemma. A phase can be implemented in O(m n) time.

Pf.

・Initialization happens once per phase.

・At most m augmentations per phase.

(because an augmentation deletes at least one edge from LG)

・At most n retreats per phase.

(because a retreat deletes one node from LG)

・At most m n advances per phase.

(because at most n advances before retreat or augmentation) ▪

Theorem. [Dinic 1970] The blocking-flow algorithm runs in O(mn2) time.

Pf.

・By lemma, O(mn) time per phase.

・At most n phases (as in shortest augment path analysis). ▪

O(mn) per phase

O(m + n) per phase

O(mn) per phase

O(m) using BFS

69

Choosing good augmenting paths: summary

Assumption. Integer capacities between 1 and C.

method # augmentations running time

augmenting path n C O(m n C)

fattest augmenting path m log (mC) O(m2 log n log (mC))

capacity scaling m log C O(m2 log C)

improved capacity scaling m log C O(m n log C)

shortest augmenting path m n O(m2 n)

improved shortest augmenting path m n O(m n2)

dynamic trees m n O(m n log n)

Maximum flow algorithms: theory

70

year method worst case discovered by

1951 simplex O(m3 C) Dantzig

1955 augmenting path O(m2 C) Ford-Fulkerson

1970 shortest augmenting path O(m3) Dinic, Edmonds-Karp

1970 fattest augmenting path O(m2 log m log(m C)) Dinic, Edmonds-Karp

1977 blocking flow O(m 5/2) Cherkasky

1978 blocking flow O(m 7/3) Galil

1983 dynamic trees O(m2 log m) Sleator-Tarjan

1985 capacity scaling O(m2 log C) Gabow

1997 length function O(m3/2 log m log C) Goldberg-Rao

2012 compact network O(m2 / log m) Orlin

? ? O(m) ?

max-flow algorithms for sparse digraphs with m edges, integer capacities between 1 and C

Maximum flow algorithms: practice

Push-relabel algorithm (SECTION 7.4). [Goldberg-Tarjan 1988]

Increases flow one edge at a time instead of one augmenting path at a time.

71

A New Approach to the Maximum-Flow Problem

ANDREW V. GOLDBERG

Massachusetts Institute of Technology, Cambridge, Massachusetts

AND

ROBERT E. TARJAN

Princeton University, Princeton, New Jersey, and AT&T Bell Laboratories, Murray Hill, New Jersey

Abstract. All previously known efftcient maximum-flow algorithms work by finding augmenting paths,
either one path at a time (as in the original Ford and Fulkerson algorithm) or all shortest-length
augmenting paths at once (using the layered network approach of Dinic). An alternative method based
on the preflow concept of Karzanov is introduced. A preflow is like a flow, except that the total amount
flowing into a vertex is allowed to exceed the total amount flowing out. The method maintains a preflow
in the original network and pushes local flow excess toward the sink along what are estimated to be
shortest paths. The algorithm and its analysis are simple and intuitive, yet the algorithm runs as fast as
any other known method on dense. graphs, achieving an O(n)) time bound on an n-vertex graph. By
incorporating the dynamic tree data structure of Sleator and Tarjan, we obtain a version of the algorithm
running in O(nm log(n’/m)) time on an n-vertex, m-edge graph. This is as fast as any known method
for any graph density and faster on graphs of moderate density. The algorithm also admits efticient
distributed and parallel implementations. A parallel implementation running in O(n’log n) time using
n processors and O(m) space is obtained. This time bound matches that of the Shiloach-Vishkin
algorithm, which also uses n processors but requires O(n’) space.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems; G.2.2 [Discrete Mathematics]: Graph Theory-graph algorithms;
network problems

General Terms: Algorithms, Design, Theory, Verification
Additional Key Words and Phrases: Dynamic trees, maximum-flow problem

1. Introduction
The problem of finding a maximum flow in a directed graph with edge capacities
arises in many settings in operations research and other fields, and efficient
algorithms for the problem have received a great deal of attention. Extensive

A preliminary version of this paper appeared in the Proceedings of the 18th Annual ACM Symposium
on Theory of Computing (Berkeley, Calif., May 28-30). ACM, New York, 1986, pp. 136-146.
The work of A. V. Goldberg was supported by a Fannie and John Hertz Foundation Fellowship and by
the Advanced Research Projects Agency of the Department of Defense under contract NO00 14-80-C-
0622. The work of R. E. Tarjan was partially supported by the National Science Foundation under
grant DCR-8605962 and the Office of Naval Research under Contract N00014-87-K-0467.
Authors’ present addresses: A. V. Goldberg, Department of Computer Science, Stanford University,
Stanford, CA 94305; R. E. Tarjan, AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill, NJ
07974-2070.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1988 ACM 0004-541 l/88/1000-0921 $01.50

Journal of the Association for Computing Machinery. Vol. 35, No. 4. October 1988, pp. 921-940.

Maximum flow algorithms: practice

Warning. Worst-case running time is generally not useful for predicting or

comparing max-flow algorithm performance in practice.

Best in practice. Push-relabel method with gap relabeling: O(m 3/2).

72

EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

E L S E V I E R European Journal of Operational Research 97 (1997) 509-542

T h e o r y a n d M e t h o d o l o g y

Computational investigations of maximum flow algorithms
R a v i n d r a K . A h u j a a, M u r a l i K o d i a l a m b, A j a y K . M i s h r a c, J a m e s B . O r l i n d, .

a Department t~'lndustrial and Management Engineering. Indian Institute of Technology. Kanpur, 208 016, India
b AT& T Bell Laboratories, Holmdel, NJ 07733, USA

c KA'F-Z Graduate School of Business, University of Pittsburgh, Pittsburgh, PA 15260, USA
d Sloun School of Management, Massachusetts Institute of Technology. Cambridge. MA 02139. USA

Received 30 August 1995; accepted 27 June 1996

A b s t r a c t

The maximum flow algorithm is distinguished by the long line of successive contributions researchers have made in
obtaining algorithms with incrementally better worst-case complexity. Some, but not all, of these theoretical improvements
have produced improvements in practice. The purpose of this paper is to test some of the major algorithmic ideas developed
in the recent years and to assess their utility on the empirical front. However, our study differs from previous studies in
several ways. Whereas previous studies focus primarily on CPU time analysis, our analysis goes further and provides
detailed insight into algorithmic behavior. It not only observes how algorithms behave but also tries to explain why
algorithms behave that way. We have limited our study to the best previous maximum flow algorithms and some of the
recent algorithms that are likely to be efficient in practice. Our study encompasses ten maximum flow algorithms and five
classes of networks. The augmenting path algorithms tested by us include Dinic's algorithm, the shortest augmenting path
algorithm, and the capacity-scaling algorithm. The preflow-push algorithms tested by us include Karzanov's algorithm, three
implementations of Goldberg-Tarjan's algorithm, and three versions of Ahuja-Orlin-Tarjan's excess-scaling algorithms.
Among many findings, our study concludes that the preflow-push algorithms are substantially faster than other classes of
algorithms, and the highest-label preflow-push algorithm is the fastest maximum flow algorithm for which the growth rate in
the computational time is O(n LS) on four out of five of our problem classes. Further, in contrast to the results of the
worst-case analysis of maximum flow algorithms, our study finds that the time to perform relabel operations (or constructing
the layered networks) takes at least as much computation time as that taken by augmentations and/or pushes. © 1997
Published by Elsevier Science B.V.

1. I n t r o d u c t i o n

The maximum flow problem is one of the most
fundamental problems in network optimization. Its
intuitive appeal, mathematical simplicity, and wide
applicabil i ty has made it a popular research topic

* Corresponding author.

0377-2217/97/$17.00 © 1997 Published by Elsevier Science B.V. All
PII S0377-2217(96)00269-X

among mathematicians, operations researchers and
computer scientists.

The maximum flow problem arises in a wide
variety of situations. It occurs directly in problems as
diverse as the flow of commodit ies in pipeline net-
works, parallel machine scheduling, distributed com-
puting on multi-processor computers, matrix round-
ing problems, the baseball el imination problem, and
the statistical security of data. The maximum flow

rights reserved.

On Implement ing Push-Re labe l M e t h o d
for the M a x i m u m Flow Problem

Boris V. Cherkassky 1 and Andrew V. Goldberg 2

1 Central Institute for Economics and Mathematics,
Krasikova St. 32, 117418, Moscow, Russia

cher@eemi.msk.su
2 Computer Science Department, Stanford University

Stanford, CA 94305, USA
goldberg ~cs. stanford, edu

Abst rac t . We study efficient implementations of the push-relabel method
for the maximum flow problem. The resulting codes are faster than the
previous codes, and much faster on some problem families. The speedup
is due to the combination of heuristics used in our implementations. We
also exhibit a family of problems for which the running time of all known
methods seem to have a roughly quadratic growth rate.

1 I n t r o d u c t i o n

The rnaximum flow problem is a classical combinatorial problem that comes up
in a wide variety of applications. In this paper we study implementations of the
push-rdabel [13, 17] method for the problem.

The basic methods for the maximum flow problem include the network sim-
plex method of Dantzig [6, 7], the augmenting path method of Ford and F~lker-
son [12], the blocking flow method of Dinitz [10], and the push-relabel method
of Goldberg and Tarjan [14, 17]. (An earlier algorithm of Cherkassky [5] has
many features of the push-relabel method.) The best theoretical time bounds
for the maximum flow problem, based on the latter method, are as follows. An
algorithm of Goldberg and Tarjan [17] runs in O(nm log(n2/m)) time, an algo-
r i thm of King et. al. [21] runs in O(nm + n TM) time for any constant e > 0,
an algorithm of Cheriyan et. al. [3] runs in O(nm + (n logn) 2) time with high
probability, and an algorithm of Ahuja et. al. [1] runs in O (a m log (~ - -~ + 2))
time.

Prior to the push-relabel method, several studies have shown that Dinitz'
algorithm [10] is in practice superior to other methods, including the network
simplex method [6, 7], Ford-giflkerson algorithm [11, 12], Karzanov's algorithm
[20], and Tarjan's algorithm [23]. See e.g. [18]. Several recent studies (e.g. [2,

* Andrew V. Goldberg was supported in part by NSF Grant CCR-9307045 and a
grant from Powell Foundation. This work was done while Boris V. Cherkassky was
visiting Stanford University Computer Science Department and supported by the
above-mentioned NSF and Powell Foundation grants.

Maximum flow algorithms: practice

Computer vision. Different algorithms work better for some dense

problems that arise in applications to computer vision.

73

VERMA, BATRA: MAXFLOW REVISITED 1

MaxFlow Revisited:
An Empirical Comparison of Maxflow
Algorithms for Dense Vision Problems

Tanmay Verma
tanmay08054@iiitd.ac.in

IIIT-Delhi
Delhi, India

Dhruv Batra
dbatra@ttic.edu

TTI-Chicago
Chicago, USA

Abstract

Algorithms for finding the maximum amount of flow possible in a network (or max-
flow) play a central role in computer vision problems. We present an empirical compari-
son of different max-flow algorithms on modern problems. Our problem instances arise
from energy minimization problems in Object Category Segmentation, Image Deconvo-
lution, Super Resolution, Texture Restoration, Character Completion and 3D Segmen-
tation. We compare 14 different implementations and find that the most popularly used
implementation of Kolmogorov [5] is no longer the fastest algorithm available, especially
for dense graphs.

1 Introduction

Over the past two decades, algorithms for finding the maximum amount of flow possible in
a network (or max-flow) have become the workhorses of modern computer vision and ma-
chine learning – from optimal (or provably-approximate) inference in sophisticated discrete
models [6, 11, 27, 30, 32] to enabling real-time image processing [38, 39].

Perhaps the most prominent role of max-flow is due to the work of Hammer [23] and
Kolmogorov and Zabih [27], who showed that a fairly large class of energy functions – sum
of submodular functions on pairs of boolean variables – can be efficiently and optimally
minimized via a reduction to max-flow. Max-flow also plays a crucial role in approximate
minimization of energy functions with multi-label variables [4, 6], triplet or higher order
terms [26, 27, 35, 37], global terms [30], and terms encoding label costs [11, 32].

Given the wide applicability, it is important to ask which max-flow algorithm should be
used. There are numerous algorithms for max-flow with different asymptotic complexities
and practical run-time behaviour. For an extensive list, we refer the reader to surveys in the
literature [2, 7]. Broadly speaking, there are three main families of max-flow algorithms:

1. Augmenting-Path (AP) variants: algorithms [5, 13, 14, 17, 21] that maintain a valid
flow during the algorithm, i.e. always satisfying the capacity and flow-conservation
constraints.

© 2012. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

In IEEE Transactions on PAMI, Vol. 26, No. 9, pp. 1124-1137, Sept. 2004 p.1

An Experimental Comparison of
Min-Cut/Max-Flow Algorithms for

Energy Minimization in Vision

Yuri Boykov and Vladimir Kolmogorov∗

Abstract

After [15, 31, 19, 8, 25, 5] minimum cut/maximum flow algorithms on graphs emerged as

an increasingly useful tool for exact or approximate energy minimization in low-level vision.

The combinatorial optimization literature provides many min-cut/max-flow algorithms with

different polynomial time complexity. Their practical efficiency, however, has to date been

studied mainly outside the scope of computer vision. The goal of this paper is to provide an

experimental comparison of the efficiency of min-cut/max flow algorithms for applications

in vision. We compare the running times of several standard algorithms, as well as a

new algorithm that we have recently developed. The algorithms we study include both

Goldberg-Tarjan style “push-relabel” methods and algorithms based on Ford-Fulkerson

style “augmenting paths”. We benchmark these algorithms on a number of typical graphs

in the contexts of image restoration, stereo, and segmentation. In many cases our new

algorithm works several times faster than any of the other methods making near real-time

performance possible. An implementation of our max-flow/min-cut algorithm is available

upon request for research purposes.

Index Terms — Energy minimization, graph algorithms, minimum cut, maximum

flow, image restoration, segmentation, stereo, multi-camera scene reconstruction.

∗Yuri Boykov is with the Computer Science Department at the University of Western Ontario, Canada,
yuri@csd.uwo.ca. Vladimir Kolmogorov is with Microsoft Research, Cambridge, England, vnk@microsoft.com.
This work was mainly done while the authors were with Siemens Corp. Research, Princeton, NJ.

‣ max-flow and min-cut problems

‣ Ford-Fulkerson algorithm

‣ max-flow min-cut theorem

‣ capacity-scaling algorithm

‣ shortest augmenting paths

‣ blocking-flow algorithm

‣ unit-capacity simple networks

7. NETWORK FLOW I

75

Q. Which max-flow algorithm to use for bipartite matching?

・Generic augmenting path: O(m | f * |) = O(m n).

・Capacity scaling: O(m2 log U) = O(m2).

・Shortest augmenting path: O(m n2).

Q. Suggests "more clever" algorithms are not as good as we first thought?

A. No, just need more clever analysis!

Next. We prove that shortest augmenting path algorithm can be

implemented in O(m n1/2) time.

Bipartite matching

SIAM J. CoMavx.
Vol. 4, No. 4, December 1975

NETWORK FLOW AND TESTING GRAPH CONNECTIVITY*

SHIMON EVEN" AND R. ENDRE TARJAN:I:

Abstract. An algorithm of Dinic for finding the maximum flow in a network is described. It is
then shown that if the vertex capacities are all equal to one, the algorithm requires at most O(IV[1/2 IEI)
time, and if the edge capacities are all equal to one, the algorithm requires at most O(I VI 2/3. IEI) time.
Also, these bounds are tight for Dinic’s algorithm.

These results are used to test the vertex connectivity of a graph in O(IVI 1/z. IEI 2) time and the
edge connectivity in O(I V[5/3. IEI) time.

Key words. Dinic’s algorithm, maximum flow, connectivity, vertex connectivity, edge connec-
tivity

1. Network flow. Let G(V, E) be a finite directed graph, where V is the set of
vertices and E is the set of edges. Each edge e is assigned.a capacity c(e) >= O.
One of the vertices, s, is called the source, and another, t, is called the sink. We seek
a flow function f(e) on the edges such that for every e, c(e) >= f(e) >= 0 and such
that the total flow which enters a vertex, other than s or t, will equal the total
flow which leaves the vertex. Of all such flows, we want one for which the net total
flow which emanates from s is maximum.

This well-known network flow problem [1] was recently reexamined. A
solution in O(n5) steps, where n is the number ofvertices, was produced by Edmonds
and Karp [2] in 1969. A solution in O(I VI 2" IE]) steps was published in Russian by
Dinic [3] in 1970.

In this section we present a solution in O(IVI 2. IEI), essentially the same as
Dinic’s. (This version was discovered independently by S. Even and J. Hopcroft.)

The algorithm runs in phases, at most IVI in number. We start with zero
flow; that is, f(e) 0 for every e E. In each phase, the flow is increased. New
phases are applied until no increase is possible. At that point, the proof of maxi-
mality is the same as that of Ford and Fulkerson [1], and it will not be repeated
here. However, the algorithm up to that point is not a restriction of the freedom
allowed by the Ford and Fulkerson algorithm--as is the case with the Edmonds
and Karp algorithm. The computation within each phase is through a different
method of labeling and path finding.

Assume that we have a present flow f(e). An edge is usable in the forward
direction iff(e) < c(e), and it is usable in the backward direction iff(e) > 0. Clearly,
an edge may be usable in both directions.

Each phase starts with a breadth-first search from s. That is, we start by label-
ing s with 0; i.e., 2(s) 0. Next, we label with all unlabeled vertices which are
reachable from s via a single usable edge, where the usable direction is from s to

Received by the editors June 27, 1974, and in revised form November 15, 1974.
-Computer Science Department, Technion-Israel Institute of Technology, Haifa, Israel. On

leave of absence from the Department of Applied Mathematics, Weizmann Institute of Science, Rehovot,
Israel. Parts of this work were completed during the summers of 1972 and 1973 while he visited the
Department of Computer Science, Cornell University, Ithaca, New York.

Computer Science Division, University of California at Berkeley, Berkeley, California 94720.
The work of this author was supported in part by the National Science Foundation under Grant
NSF-GJ-35604X, and by a Miller Research Fellowship.

507

76

Unit-capacity simple networks

Def. A network is a unit-capacity simple network if:

・Every edge capacity is 1.

・Every node (other than s or t) has either (i) at most one entering edge

or (ii) at most one leaving edge.

Property. Let G be a simple unit-capacity network and let f be a 0-1 flow,

then Gf is a unit-capacity simple network.

Ex. Bipartite matching.

1

1

1

Shortest augmenting path algorithm.

・Normal augmentation: length of shortest path does not change.

・Special augmentation: length of shortest path strictly increases.

Theorem. [Even-Tarjan 1975] In unit-capacity simple networks, the shortest

augmenting path algorithm computes a maximum flow in O(m n1/2) time.

Pf.

・L1. Each phase of normal augmentations takes O(m) time.

・L2. After at most n1/2 phases, | f | ≥ | f *| – n1/2.

・L3. After at most n1/2 additional augmentations, flow is optimal. ▪

77

Unit-capacity simple networks

Phase of normal augmentations.

・Explicitly maintain level graph LG.

・Start at s, advance along an edge in LG until reach t or get stuck.

・If reach t, augment and and update LG.

・If get stuck, delete node from LG and go to previous node.

78

Unit-capacity simple networks

advance

level graph LG

delete all edges in augmenting path from LG

Phase of normal augmentations.

・Explicitly maintain level graph LG.

・Start at s, advance along an edge in LG until reach t or get stuck.

・If reach t, augment and and update LG.

・If get stuck, delete node from LG and go to previous node.

79

Unit-capacity simple networks

augment

level graph LG

delete all edges in augmenting path from LG

Phase of normal augmentations.

・Explicitly maintain level graph LG.

・Start at s, advance along an edge in LG until reach t or get stuck.

・If reach t, augment and and update LG.

・If get stuck, delete node from LG and go to previous node.

80

Unit-capacity simple networks

advance

level graph LG

delete all edges in augmenting path from LG

Phase of normal augmentations.

・Explicitly maintain level graph LG.

・Start at s, advance along an edge in LG until reach t or get stuck.

・If reach t, augment and and update LG.

・If get stuck, delete node from LG and go to previous node.

81

Unit-capacity simple networks

retreat

level graph LG

delete all edges in augmenting path from LG

Phase of normal augmentations.

・Explicitly maintain level graph LG.

・Start at s, advance along an edge in LG until reach t or get stuck.

・If reach t, augment and and update LG.

・If get stuck, delete node from LG and go to previous node.

82

Unit-capacity simple networks

advance

level graph LG

delete all edges in augmenting path from LG

Phase of normal augmentations.

・Explicitly maintain level graph LG.

・Start at s, advance along an edge in LG until reach t or get stuck.

・If reach t, augment and and update LG.

・If get stuck, delete node from LG and go to previous node.

83

Unit-capacity simple networks

augment

level graph LG

delete all edges in augmenting path from LG

Phase of normal augmentations.

・Explicitly maintain level graph LG.

・Start at s, advance along an edge in LG until reach t or get stuck.

・If reach t, augment and and update LG.

・If get stuck, delete node from LG and go to previous node.

84

Unit-capacity simple networks

end of phase

level graph LG

delete all edges in augmenting path from LG

85

Unit-capacity simple networks: analysis

Phase of normal augmentations.

・Explicitly maintain level graph LG.

・Start at s, advance along an edge in LG until reach t or get stuck.

・If reach t, augment and and update LG.

・If get stuck, delete node from LG and go to previous node.

LEMMA 1. A phase of normal augmentations takes O(m) time.

Pf.

・O(m) to create level graph LG.

・O(1) per edge since each edge traversed and deleted at most once.

・O(1) per node since each node deleted at most once. ▪

LEMMA 2. After at most n1/2 phases, | f | ≥ | f *| – n1/2.

・After n1/2 phases, length of shortest augmenting path is > n1/2.

・Level graph has more than n1/2 levels.

・Let 1 ≤ h ≤ n1/2 be layer with min number of nodes: | Vh | ≤ n1/2.

86

Unit-capacity simple networks: analysis

VhV0 Vn
1/2 V1

level graph LG for flow f

LEMMA 2. After at most n1/2 phases, | f | ≥ | f *| – n1/2.

・After n1/2 phases, length of shortest augmenting path is > n1/2.

・Level graph has more than n1/2 levels.

・Let 1 ≤ h ≤ n1/2 be layer with min number of nodes: | Vh | ≤ n1/2.

・Let A = {v : ℓ(v) < h} ∪ {v : ℓ(v) = h and v has ≤ 1 outgoing residual edge}.

・capf (A, B) ≤ | Vh | ≤ n1/2 ⇒ | f | ≥ | f *| – n1/2. ▪

87

Unit-capacity simple networks: analysis

VhV0 Vn
1/2 V1

residual edgesresidual graph Gf

A

