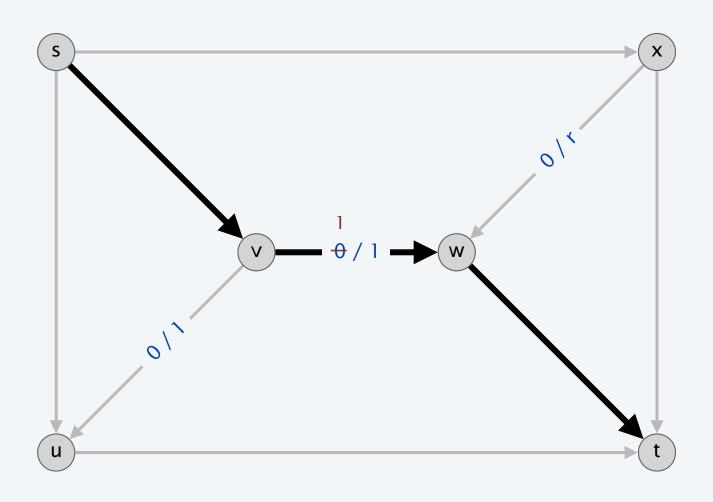
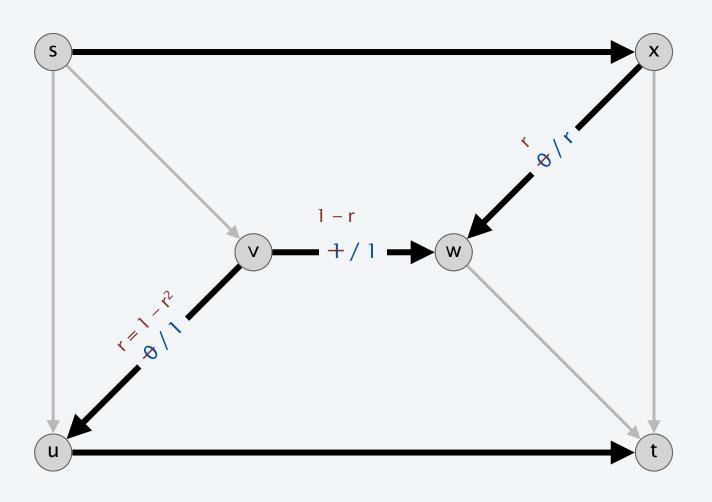


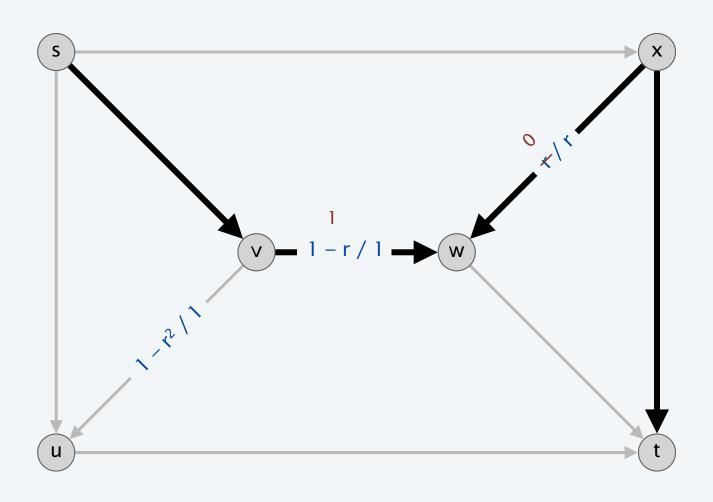
augmenting path 1: $s \rightarrow v \rightarrow w \rightarrow t$ (bottleneck capacity = 1)



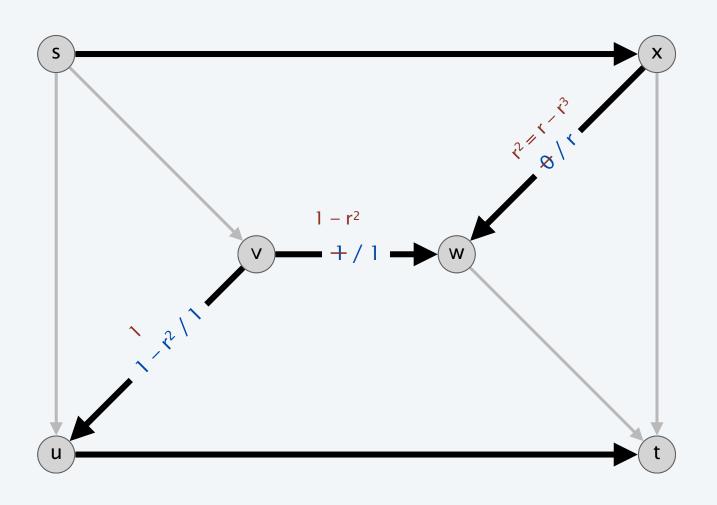
augmenting path 2: $s \rightarrow x \rightarrow w \rightarrow v \rightarrow u \rightarrow t$ (bottleneck capacity = r)



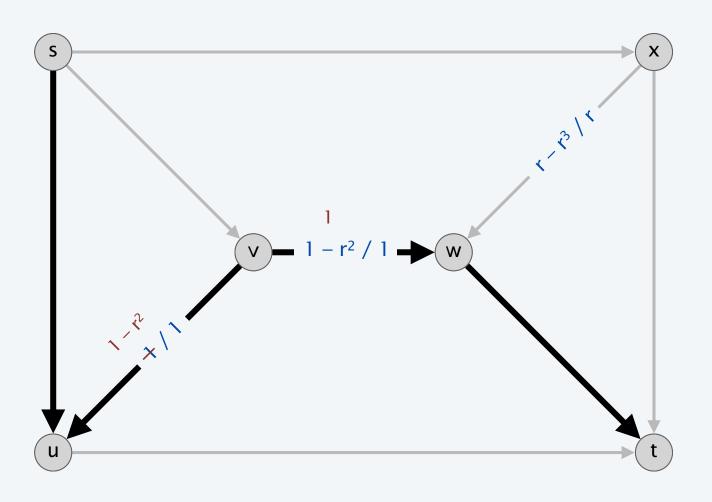
augmenting path 3: $s \rightarrow v \rightarrow w \rightarrow x \rightarrow t$ (bottleneck capacity = r)



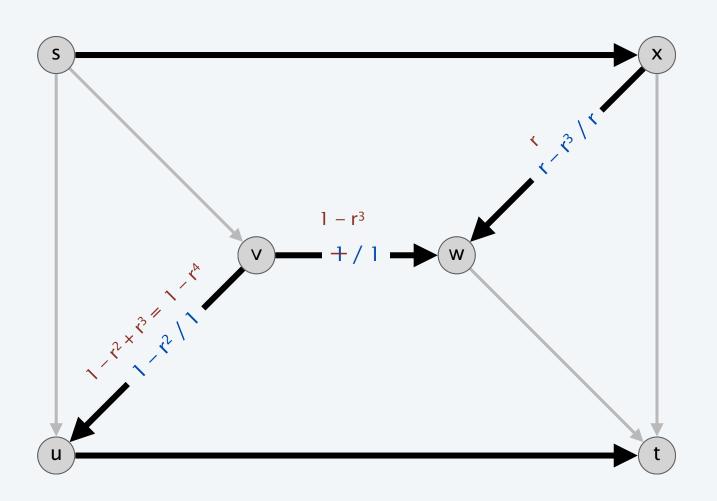
augmenting path 4: $s \rightarrow x \rightarrow w \rightarrow v \rightarrow u \rightarrow t$ (bottleneck capacity = r^2)



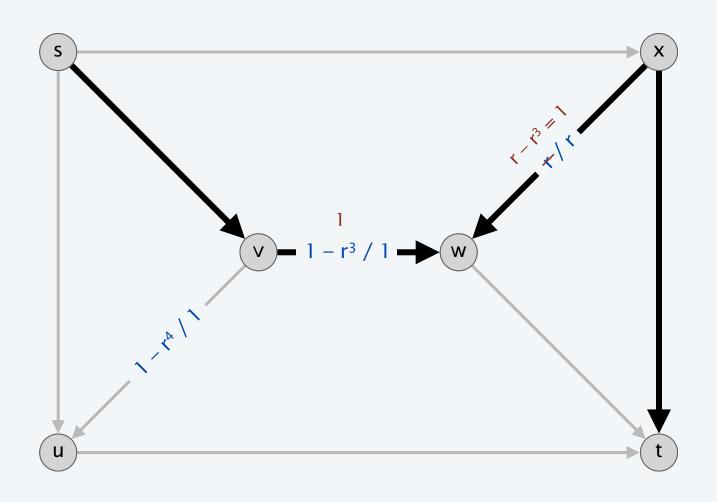
augmenting path 5: $s \rightarrow u \rightarrow v \rightarrow w \rightarrow t$ (bottleneck capacity = r^2)



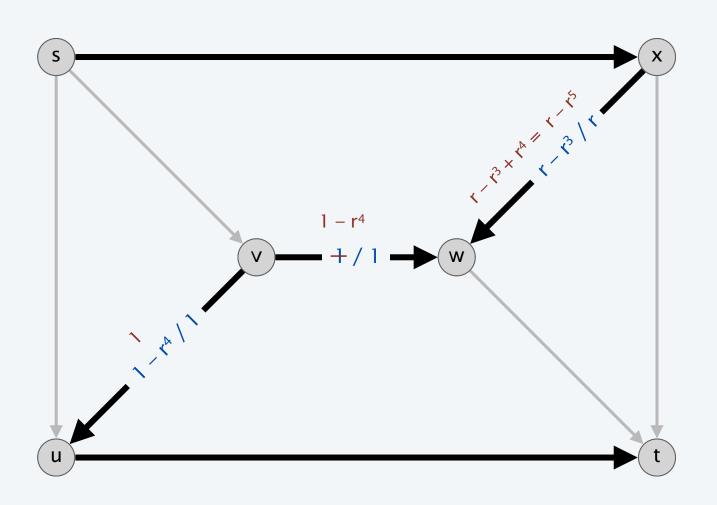
augmenting path 6: $s \rightarrow x \rightarrow w \rightarrow v \rightarrow u \rightarrow t$ (bottleneck capacity = r^3)



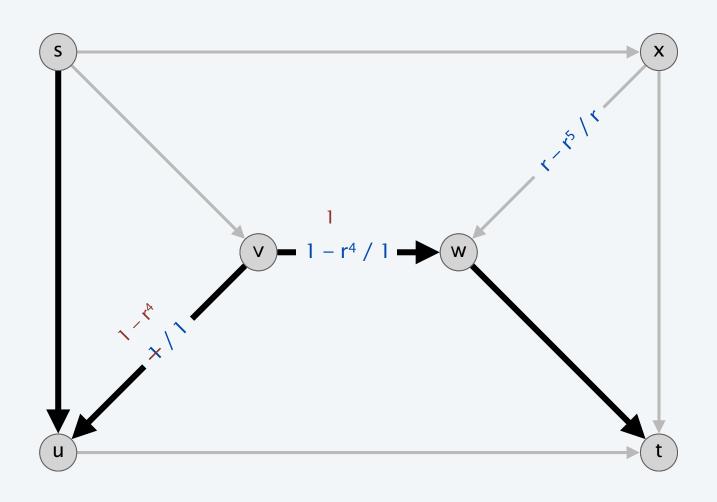
augmenting path 7: $s \rightarrow v \rightarrow w \rightarrow x \rightarrow t$ (bottleneck capacity = r^3)



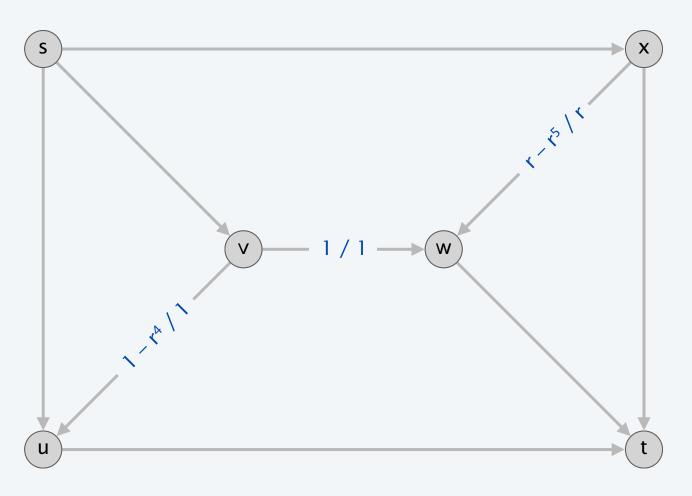
augmenting path 8: $s \rightarrow x \rightarrow w \rightarrow v \rightarrow u \rightarrow t$ (bottleneck capacity = r^4)



augmenting path 9: $s \rightarrow u \rightarrow v \rightarrow w \rightarrow t$ (bottleneck capacity = r^4)



```
after augmenting path 1: 1 - r^0, 1, r - r^1 (flow = 1) after augmenting path 5: 1 - r^2, 1, r - r^3 (flow = 1 + 2r + 2r^2) after augmenting path 9: 1 - r^4, 1, r - r^5 (flow = 1 + 2r + 2r^2 + 2r^3 + 2r^4)
```



Theorem. The Ford-Fulkerson algorithm may not terminate; moreover, it may converge a value not equal to the value of the maximum flow.

Pf.

• Using the given sequence of augmenting paths, after $(1 + 4k)^{th}$ such path, the value of the flow \underline{k}

$$= 1 + 2 \sum_{i=1}^{k} r^{i}$$

$$\leq 1 + 2 \sum_{i=1}^{\infty} r^{i}$$

$$= 3 + 2r$$

$$< 5$$

• Value of maximum flow = 200 + 1.