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String similarity Edit distance
Q. How similar are two strings? Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]
* Gap penalty o; mismatch penalty o,,.
Ex. ocurrance and occurrence. « Cost = sum of gap and mismatch penalties.
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e — Applications. Unix diff, speech recognition, computational biology, ...



Sequence alignment Sequence alignment: problem structure

Goal. Given two strings x, x, ... x,, and y, y, ... y, find min cost alignment. Def. OPT(, j) = min cost of aligning prefix strings x, x, ... x; and y, y, ... y;.
Def. An alignment M is a set of ordered pairs x;,—y; such that each item Case 1. OPT matches x;—y;.
occurs in at most one pair and no crossings. Pay mismatch for x,—y;, + min cost of aligning x, x, ...x;; and y, y, ... y; ;.
xi—yjand x; —y; cross if i<i', but j> '
Def. The cost of an alignment M is: Case 2a. OPT leaves x; unmatched.
costM) = S a,, + S 8+ 38 Pay gap for x; + min cost of aligning x, x, ... x,; and y, y, ... y;.
(xi.y;))EM Y i:x;unmatched  j:y; unmatched
mismatch 2ap \ optimal substructure property
Case 2b. OPT leaves y; unmatched. / (proof via exchange argument)

Pay gap for y; + min cost of aligning x, x, ... x;and y, y, ... y; ;.

X1 X2 X3 X4 X5 X6

C T A C C . G ) .
jo if i=0
a,, +OPTG-1,j-1)
. T A C A T G o
OPT(i, j)=1 min { 0+OPT(i-1, j) otherwise
S 8+OPT(i, j-1)
an alignment of CTACCG and TACATG: id if j=0
M = { X3=y1, X5-Yp, X4=Y35 X5~V4» X6V }
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Sequence alignment: algorithm Sequence alignment: analysis

Theorem. The dynamic programming algorithm computes the edit distance
SEQUENCE-ALIGNMENT (m, 1, X1, ..., Xmy V1, «.., Vn, O, Q) (and optimal alignment) of two strings of length m and n in ©(mn) time and

FOR i=0TO m ®©(mn) space.

M|i, 0] < id.
FOR j=0TOn
MTJO0, )] «jo.

Pf.

+ Algorithm computes edit distance.

* Can trace back to extract optimal alignment itself. =
Fori=1TO m . . .
. Q. Can we avoid using quadratic space?
FOrR j=1 TO n

MI[i,j] < min { a[x; y] + M[i-1,j-1],

S+Mli-1,]],
&+ Mli, j—1]).

A. Easy to compute optimal value in O(mn) time and O(m + n) space.
* Compute OPT(, *) from OPT(i — 1, *).
* But, no longer easy to recover optimal alignment itself.

RETURN M [m, n].



Sequence alignment in linear space

Theorem. There exist an algorithm to find an optimal alignment in O(mn)

6. DYNAMIC PROGRAMMING I time and O(m + n) space.

» Clever combination of divide-and-conquer and dynamic programming.

* Inspired by idea of Savitch from complexity theory.
» Hirschberg's algorithm

Programming G. Manacher
Techniques Editor

] s A Linear Space
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SECTION 6.7

The problem of finding a longest common subse-

quence of two strings has been solved in quadratic time

and space. An algorithm is presented which will solve

this problem in quadratic time and in linear space.
Key Words and Phrases: subsequence, longest

common subsequence, string correction, editing
CR Categories: 3.63, 3.73, 3.79, 4.22, 5.25
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Hirschberg's algorithm Hirschberg's algorithm
Edit distance graph. Edit distance graph.
* Let f(i,j) be shortest path from (0,0) to (i, j). * Let f(i, /) be shortest path from (0,0) to (i, )).
* Lemma: £(i,j)= OPT(,j) for all i and ;. * Lemma: £(i, ;)= OPT(,j) for all i and ;.
Pf of Lemma. [ by strong induction on i +; ]
* Base case: f(0,0)=OPT(0,0)=0.
£ v 2 VB 2 B e * Inductive hypothesis: assume true for all (i/,j) with i’ + ;' < i+].
£ @ * Last edge on shortest path to (i, ) is from (i—1, j—1), (i—1, j), or (i, j—1).
e Thus,
N f(lv.]) = min{axiyj +f(2—1,]—1), 6+f(l_17.])7 5+f(lv.]_1)}
= min{ay,,, + OPT(i—1,j—1), § + OPT(i — 1,5), § + OPT(i,j — 1)}
X2 = OPT(i,j) =

Xa ¢



Hirschberg's algorithm Hirschberg's algorithm

Edit distance graph.
* Let g(i, /) be shortest path from (i, j) to (m, n).
« Can compute by reversing the edge orientations and inverting the roles

Edit distance graph.
* Let f(i,j) be shortest path from (0,0) to (i, ).
* Lemma: f(i,j) = OPT(i,;) for all i and j.
* Can compute f(-, /) for any j in O(@mn) time and O(m + n) space. of (0, 0) and (m, n).
i
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Hirschberg's algorithm Hirschberg's algorithm

Edit distance graph. Observation 1. The cost of the shortest path that uses (i, ) is £, j) + g(i, J).

* Let g(i,j) be shortest path from (i, ) to (m, n).
* Can compute g(+, j) for any j in O(mn) time and O(m + n) space.
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Hirschberg's algorithm

Observation 2. let ¢ be an index that minimizes f(q, n/2) + g (g, n/2).
Then, there exists a shortest path from (0, 0) to (m, n) uses (g, n/2).
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Hirschberg's algorithm: running time analysis warmup

Theorem. Let T(m, n) = max running time of Hirschberg's algorithm on
strings of length at most m and n. Then, T(m, n) = O(m n log n).

Pf. T(m,n) < 2T(m,n/2) + O(mn)
= T(m,n)= O(mlogn).

Remark. Analysis is not tight because two subproblems are of size
(g, n/2) and (m —g,n/2). In next slide, we save log » factor.

Hirschberg's algorithm

Divide. Find index ¢ that minimizes f(q, n/2) + g(g, n/2); align x, and y, 5.
Conquer. Recursively compute optimal alignment in each piece.

Hirschberg's algorithm: running time analysis

Theorem. Let T(m, n) = max running time of Hirschberg's algorithm on
strings of length at most m and n. Then, T(m, n) = O(mn).

Pf. [ by induction on n]
* O(mn) time to compute f(e, n/2) and g(, n/2) and find index gq.
* T(q,n/2)+T(m—q,n/2) time for two recursive calls.
* Choose constant ¢ so that: T(m, 2)
T(2, n)
Tm,n) < cmn+T(q,n/2)+T(m—q,n/2)

IA

cm

IA

cn

* Claim. T(m,n) < 2cmn.
* Base cases:m=2o0rn=2.
* Inductive hypothesis: T(m,n) < 2cmn for all (m’, n") with m’+n' < m +n.

Tm,n) = T(q,n/2)+T(m—-q,n/2)+cmn

A

IA

2cqnl/2 + 2c(m—q)n/2 + cmn
= cqn+ cmn —cqn + cmn

2c¢mn =



Shortest paths

Shortest path problem. Given a digraph G = (V, E), with arbitrary edge
6. DYNAMIC PROGRAMMING I weights or costs c,,, find cheapest path from node s to node +.

» Bellman-Ford ] 3 (3
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Shortest paths: failed attempts Negative cycles

Dijkstra. Can fail if negative edge weights. Def. A negative cycle is a directed cycle such that the sum of its edge

weights is negative.
2 @
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Reweighting. Adding a constant to every edge weight can fail.
4 _Qq_ -4
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Shortest paths and negative cycles

Lemma 1. If some path from v to 7 contains a negative cycle, then there
does not exist a cheapest path from v to ¢.

Pf. If there exists such a cycle W, then can build a v~ path of arbitrarily
negative weight by detouring around cycle as many times as desired. =

cW) <0

25

Shortest path and negative cycle problems

Shortest path problem. Given a digraph G = (V, E) with edge weights c,,, and
no negative cycles, find cheapest v~ path for each node v.

Negative cycle problem. Given a digraph G =(V, E) with edge weights ¢
find a negative cycle (if one exists).

N
Lo

I

-3

N
Lo

shortest-paths tree negative cycle
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Shortest paths and negative cycles

Lemma 2. If G has no negative cycles, then there exists a cheapest path
from v to ¢ that is simple (and has < n—1 edges).

Pf.
* Consider a cheapest v~ path P that uses the fewest number of edges.
* If P contains a cycle W, can remove portion of P corresponding to W
without increasing the cost. =

@ O

w

cW) =0

Shortest paths: dynamic programming

Def. OPT(i,v) = cost of shortest v~ path that uses <i edges.

* Case 1: Cheapest v~t path uses <i—1 edges.
- OPT(i’ V) = OPT(i -1 V) \ optimal substructure property
/ (proof via exchange argument)
* Case 2: Cheapest v~t path uses exactly i edges.
- if (v,w) is first edge, then OPT uses (v,w), and then selects best w~t

path using <i-1 edges

) if i=0

min{ OPT(i-1,v), min {OPT(-1, w)+c,, }} otherwise
v,Ww)EE

OPT(i,v) =

Observation. If no negative cycles, OPT(n - 1,v) = cost of cheapest v~¢ path.
Pf. By Lemma 2, cheapest v~t path is simple. =



Shortest paths: implementation

SHORTEST-PATHS (V, E, ¢, f)

FOREACH node v E V'
M0, v] « .
MO0, 1] < 0.
Fori=1TON-1
FOREACH node v € V
MIi,v] < M[i—-1,v].
FOREACH edge (v, w) EE
Mi,v] «—min { M[i,v], M[i—1,w]+cw }.

29

Shortest paths: practical improvements

Space optimization. Maintain two 1d arrays (instead of 2d array).
* d(v) = cost of cheapest v~t path that we have found so far.
* successor(v) = next node on a v~t path.

Performance optimization. If d(w) was not updated in iteration i —1,
then no reason to consider edges entering w in iteration i.

Shortest paths: implementation

Theorem 1. Given a digraph G =(V, E) with no negative cycles, the dynamic
programming algorithm computes the cost of the cheapest v~¢ path for
each node v in ©(mn) time and ©(n2) space.

Pf.
* Table requires ©(n?) space.
* Each iteration i takes ©(m) time since we examine each edge once. =

Finding the shortest paths.
* Approach 1: Maintain a successor(i, v) that points to next node on
cheapest v~ path using at most i edges.
* Approach 2: Compute optimal costs M[i,v] and consider only edges
with M[i, v] = M[i — 1, w] + -

Bellman-Ford: efficient implementation

BELLMAN-FORD (V, E, ¢, f)

FOREACH nodevE V

d(v) « .

successor(v) «— null.
d(t) < 0.
Fori=1TON-1

FOREACH node w € V

IF (d(w) was updated in previous iteration)
FOREACH edge (v, w) E E
IF (d(v)>d(w)+ cw)
d(v) «— dw) + cw.

successor(v) «— w.

1 pass

IF no d(w) value changed in iteration i, STOP.



Bellman-Ford: analysis

Claim. Afterthe#+pass-ofBelman-Forddtequalsthecostofthecheapest
I .  edaes.

Counterexample. Claim is false!

d(v)=3 d(w) =2 d(t)=0
Ol W— ®
4

if nodes w considered before node v,
then d(v) = 3 after 1 pass

Bellman-Ford: analysis

Counterexample. Claim is false!

* Cost of successor v~t path may have strictly lower cost than d(v).

consider nodes in order: t, 1, 2,

s(2)=1 s(1)=t
d(2) = 20 d(1)=10 d(t)=0

! 1

s3)=t
d3) =1

Bellman-Ford: analysis

Lemma 3. Throughout Bellman-Ford algorithm, d(v) is the cost of some v~t
path; after the i” pass, d(v) is no larger than the cost of the cheapest v~t path
using <i edges.
Pf. [by induction on i]
* Assume true after i pass.
* Let P be any v~t path with i + 1 edges.
* Let (v, w) be first edge on path and let P' be subpath from w to t.
* By inductive hypothesis, d(w) < c(P') since P' is a w~t path with i edges.
* After considering v in pass i+l: d(v) =< cw+dWw)
Cow+ (P
c(p) =

Theorem 2. Given a digraph with no negative cycles, Bellman-Ford computes
the costs of the cheapest v~¢ paths in O(mn) time and ©(n) extra space.
Pf. Lemmas 2 + 3. = N

can be substantially
faster in practice 34

Bellman-Ford: analysis

Counterexample. Claim is false!

* Cost of successor v~t path may have strictly lower cost than d(v).

consider nodes in order: t, 1, 2, 3

s(2) =1 s()=3
d@) =20 d(1y =2 d@® =0
(:)—10—>(i) 10/@

s3)=t
di3) =1



Bellman-Ford: analysis

Counterexample. Claim is false!

* Successor graph may have cycles.

consider nodes in order: t, 1, 2, 3,

d3)=10 d(2) =8
2
9 d =0
1 3 /@
¢ 5
——
dé4)=11 d(1)=5

Bellman-Ford: finding the shortest path

Lemma 4. If the successor graph contains a directed cycle W,
then W is a negative cycle.
Pf.
* If successor(v) = w, we must have d(v) = d(w) + cuw.
(LHS and RHS are equal when successor(v) is set; d(w) can only decrease;
d(v) decreases only when successor(v) is reset)
e Letvi—>v:— ... > v be the nodes along the cycle w.
* Assume that (v, v1) is the last edge added to the successor graph.
 Just prior to that: d(v)) > dv2)  + c(vi,v2)
d(v2) > d(w) + c(v2, v3)

dvi-) =z dv) + Vi1, i)
d(vi)

\%

holds with strict inequality
since we are updating d(vk)

\

d(vl) ar C(Vk, V1) «—

¢ Adding inequalities yields c(vi, v2) + c(v2,v3) + ... + c(Vi1, Vi) + c(v, v1) < 0. =

W is a negative cycle

Bellman-Ford: analysis

Counterexample. Claim is false!

» Successor graph may have cycles.

consider nodes in order: t, 1, 2, 3, 4

di3)=10 d2)=38
2

s
LS

d4) =11 d(1)=3

Bellman-Ford: finding the shortest path

Theorem 3. Given a digraph with no negative cycles, Bellman-Ford finds the
cheapest s~t paths in O(mn) time and ©(n) extra space.

Pf.
* The successor graph cannot have a negative cycle. [Lemma 4]
* Thus, following the successor pointers from s yields a directed path to .
* Lets=v;—>w— .. > w=t be the nodes along this path P.
* Upon termination, if successor(v) =w, we must have d(v) = dw) + cuw.
(LHS and RHS are equal when successor(v) is set; d(-) did not change)

* Thus, d(vi) = d(n) + c(vi, ) \
since algorithm
© d(v2) = dv3) + c(v2,v3) terminated
dvie1)) = d(w) + c(Vie1, Vi)

Adding equations yields d(s) = d(t) + c(vi,v2) + c(v2,v3) + ...+ c(Vie1, vi). ®

/ T cost of path P

min cost 0
of any s~t path
(Theorem 2)

40



Distance vector protocols

Communication network.

6. DYNAMIC PROGRAMMING I . Node = router.

« Edge = direct communication link.

« Cost of edge = delay on link. «—— naturally nonnegative, but Bellman-Ford used anyway!
Dijkstra's algorithm. Requires global information of network.

» distance vector profoco/s Bellman-Ford. Uses only local knowledge of neighboring nodes.

/

\ Moot Design

\

Synchronization. We don't expect routers to run in lockstep. The order in

JON KLEINBERG - EVA TARDOS . . . .
which each foreach loop executes in not important. Moreover, algorithm

still converges even if updates are asynchronous.

SECTION 6.9
Distance vector protocols Path vector protocols
Distance vector protocols. [ "routing by rumor" ] Link state routing. not just the distance and first hop
» Each router maintains a vector of shortest path lengths to every other » Each router also stores the entire path.
node (distances) and the first hop on each path (directions). » Based on Dijkstra's algorithm.
* Algorithm: each router performs n separate computations, one for each * Avoids "counting-to-infinity" problem and related difficulties.
potential destination node. » Requires significantly more storage.

Ex. RIP, Xerox XNS RIP, Novell's IPX RIP, Cisco's IGRP, DEC's DNA Phase |V,
AppleTalk's RTMP. Ex. Border Gateway Protocol (BGP), Open Shortest Path First (OSPF).

Caveat. Edge costs may change during algorithm (or fail completely).

A

d(s) =2 d(v) = dt)=0

"counting to infinity" -
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» negative cycles in a digraph

JON KLEINBERG - EVA TARDOS
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SECTION 6.10

Detecting negative cycles: application

Currency conversion. Given n currencies and exchange rates between pairs
of currencies, is there an arbitrage opportunity?

Remark. Fastest algorithm very valuable!

0.741 * 1.366 * .995 = 1.00714497

47

Detecting negative cycles

Negative cycle detection problem. Given a digraph G =(V, E), with edge
weights c,,, find a negative cycle (if one exists).

.

Q_s 6
!

-3 2 -3 -3

—

4 _ng— -4
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Detecting negative cycles

Lemma 5. If OPT(n,v) = OPT(n - 1,v) for all v, then no negative cycle can
reach .
Pf. Bellman-Ford algorithm. =

Lemma 6. If OPT(n,v) < OPT(n—-1,v) for some node v, then (any) cheapest
path from v to ¢t contains a cycle W. Moreover W is a negative cycle.

Pf. [by contradiction]
* Since OPT(n,v) < OPT(n—-1,v), we know that shortest v~z path P has
exactly n edges.
* By pigeonhole principle, P must contain a directed cycle w.
* Deleting W yields a v~¢ path with < n edges = W has negative cost. =

®

cW) <0
48



Detecting negative cycles

Theorem 4. Can find a negative cycle in @(mn) time and ©(n2) space.
Pf.

* Add new node r and connect all nodes to ¢ with 0-cost edge.

* G has a negative cycle iff G' has a negative cycle than can reach ¢.
If OPT(n,v) = OPT(n—1,v) for all nodes v, then no negative cycles.
* If not, then extract directed cycle from path from v to t.

(cycle cannot contain ¢ since no edges leave 1) =

O— s —0Q—+—0 g
VA N

I
-3 2 4 -3 3
I

AN |
e =
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Detecting negative cycles

Theorem 5. Can find a negative cycle in O(mn) time and O(n) extra space.
Pf.

* Run Bellman-Ford for n passes (instead of n— 1) on modified digraph.

* If no d(v) values updated in pass n, then no negative cycles.

* Otherwise, suppose d(s) updated in pass n.

* Define pass(v) = last pass in which d(v) was updated.

* Observe pass(s) = n and pass(successor(v)) = pass(v) — 1 for each v.

» Following successor pointers, we must eventually repeat a node.

* Lemma 4 = this cycle is a negative cycle. =

Remark. See p. 304 for improved version and early termination rule.
(Tarjan's subtree disassembly trick)



