
Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley

http://www.cs.princeton.edu/~wayne/kleinberg-tardos

Last updated on Feb 18, 2013 6:08 AM

4. GREEDY ALGORITHMS II

‣ Dijkstra's algorithm

‣ minimum spanning trees

‣ Prim, Kruskal, Boruvka

‣ single-link clustering

‣ min-cost arborescences

SECTION 4.4

4. GREEDY ALGORITHMS II

‣ Dijkstra's algorithm

‣ minimum spanning trees

‣ Prim, Kruskal, Boruvka

‣ single-link clustering

‣ min-cost arborescences

Problem. Given a digraph G = (V, E), edge weights ℓe ≥ 0, source s ∈ V,

and destination t ∈ V, find the shortest directed path from s to t.

Shortest-paths problem

3

7

1 3

source s

6

8

5

7

5
4

15

312

20

13

9

length of path = 9 + 4 + 1 + 11 = 25

destination t

0

4

5

2

6

9

4

1 11

Car navigation

4

・PERT/CPM.

・Map routing.

・Seam carving.

・Robot navigation.

・Texture mapping.

・Typesetting in LaTeX.

・Urban traffic planning.

・Telemarketer operator scheduling.

・Routing of telecommunications messages.

・Network routing protocols (OSPF, BGP, RIP).

・Optimal truck routing through given traffic congestion pattern.

5

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

Shortest path applications

Greedy approach. Maintain a set of explored nodes S for which

algorithm has determined the shortest path distance d(u) from s to u.

・Initialize S = { s }, d(s) = 0.

・Repeatedly choose unexplored node v which minimizes

6

Dijkstra's algorithm

s

v

u
S

shortest path to some node u in explored part,
followed by a single edge (u, v)

d(u)
ℓe

Greedy approach. Maintain a set of explored nodes S for which

algorithm has determined the shortest path distance d(u) from s to u.

・Initialize S = { s }, d(s) = 0.

・Repeatedly choose unexplored node v which minimizes

add v to S, and set d(v) = π(v).

7

Dijkstra's algorithm

s

v

u
S

d(u)
ℓe

d(v)

shortest path to some node u in explored part,
followed by a single edge (u, v)

Invariant. For each node u ∈ S, d(u) is the length of the shortest s↝u path.

Pf. [by induction on | S |]
Base case: | S | = 1 is easy since S = { s } and d(s) = 0.

Inductive hypothesis: Assume true for | S | = k ≥ 1.

・Let v be next node added to S, and let (u, v) be the final edge.

・The shortest s↝u path plus (u, v) is an s↝v path of length π(v).

・Consider any s↝v path P. We show that it is no shorter than π(v).

・Let (x, y) be the first edge in P that leaves S,

and let P' be the subpath to x.

・P is already too long as soon as it reaches y.

S

s

8

Dijkstra's algorithm: proof of correctness

 ℓ(P) ≥ ℓ(P') + ℓ(x, y)

nonnegative
weights

v

u

y

P

P'
x

Dijkstra chose v
instead of y

 ≥ π (v)

definition
of π(y)

≥ π (y)

inductive
hypothesis

 ≥ d(x) + ℓ(x, y) ▪

9

Dijkstra's algorithm: efficient implementation

Critical optimization 1. For each unexplored node v, explicitly

maintain π(v) instead of computing directly from formula:

・For each v ∉ S, π (v) can only decrease (because S only increases).

・More specifically, suppose u is added to S and there is an edge (u, v)
leaving u. Then, it suffices to update:

Critical optimization 2. Use a priority queue to choose the unexplored node

that minimizes π (v).

€

π (v) = min
e = (u,v) : u∈ S

d (u) +  e .

π (v) = min { π (v), d(u) + ℓ(u, v) }

10

Dijkstra's algorithm: efficient implementation

Implementation.

・Algorithm stores d(v) for each explored node v.

・Priority queue stores π (v) for each unexplored node v.

・Recall: d(u) = π (u) when u is deleted from priority queue.

DIJKSTRA (V, E, s)

Create an empty priority queue.

FOR EACH v ≠ s : d(v) ← ∞; d(s) ← 0.

FOR EACH v ∈ V : insert v with key d(v) into priority queue.

WHILE (the priority queue is not empty)

u ← delete-min from priority queue.

FOR EACH edge (u, v) ∈ E leaving u:

IF d(v) > d(u) + ℓ(u, v)

decrease-key of v to d(u) + ℓ(u, v) in priority queue.

d(v) ← d(u) + ℓ(u, v).

11

Performance. Depends on PQ: n insert, n delete-min, m decrease-key.

・Array implementation optimal for dense graphs.

・Binary heap much faster for sparse graphs.

・4-way heap worth the trouble in performance-critical situations.

・Fibonacci/Brodal best in theory, but not worth implementing.

Dijkstra's algorithm: which priority queue?

PQ implementation insert delete-min decrease-key total

unordered array O(1) O(n) O(1) O(n2)

binary heap O(log n) O(log n) O(log n) O(m log n)

d-way heap
(Johnson 1975) O(d logd n) O(d logd n) O(logd n) O(m logm/n n)

Fibonacci heap
(Fredman-Tarjan 1984) O(1) O(log n) † O(1) † O(m + n log n)

Brodal queue
(Brodal 1996) O(1) O(log n) O(1) O(m + n log n)

† amortized

Dijkstra's algorithm and proof extend to several related problems:

・Shortest paths in undirected graphs: d(v) ≤ d(u) + ℓ(u, v).

・Maximum capacity paths: d(v) ≥ min { π (u), c(u, v) }.

・Maximum reliability paths: d(v) ≥ d(u) 𐄂 γ(u, v) .

・…

Key algebraic structure. Closed semiring (tropical, bottleneck, Viterbi).

12

Extensions of Dijkstra's algorithm

s

v

u
S

d(u)
ℓe

4. GREEDY ALGORITHMS II

‣ Dijkstra's algorithm

‣ minimum spanning trees

‣ Prim, Kruskal, Boruvka

‣ single-link clustering

‣ min-cost arborescences

SECTION 6.1

14

Cycles and cuts

Def. A path is a sequence of edges which connects a sequence of nodes.

Def. A cycle is a path with no repeated nodes or edges other than the

starting and ending nodes.

1

2 3

4

8

56

7

cycle C = { (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1) }

15

Cycles and cuts

Def. A cut is a partition of the nodes into two nonempty subsets S and V – S.

Def. The cutset of a cut S is the set of edges with exactly one endpoint in S.

1

2 3

4

8

56

7

cutset D = { (3, 4), (3, 5), (5, 6), (5, 7), (8, 7) }

cut S

16

Cycle-cut intersection

Proposition. A cycle and a cutset intersect in an even number of edges.

1

2 3

4

8

56

7

cutset D = { (3, 4), (3, 5), (5, 6), (5, 7), (8, 7) }

intersection C ∩ D = { (3, 4), (5, 6) }

cycle C = { (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 1) }

Proposition. A cycle and a cutset intersect in an even number of edges.

Pf. [by picture]

17

Cycle-cut intersection

cycle C

S

18

Spanning tree properties

Proposition. Let T = (V, F) be a subgraph of G = (V, E). TFAE:

・T is a spanning tree of G.

・T is acyclic and connected.

・T is connected and has n – 1 edges.

・T is acyclic and has n – 1 edges.

・T is minimally connected: removal of any edge disconnects it.

・T is maximally acyclic: addition of any edge creates a cycle.

・T has a unique simple path between every pair of nodes.

T = (V, F)

19

Minimum spanning tree

Given a connected graph G = (V, E) with edge weights ce, an MST is a subset

of the edges T ⊆ E such that T is a spanning tree whose sum of edge

weights is minimized.

Cayley's theorem. There are nn–2 spanning trees of Kn. can't solve by brute force

MST cost = 50 = 4 + 6 + 8 + 5 + 11 + 9 + 7

 16

4

6 23

10

21

14

24

18
9

7

115

8

20

Applications

MST is fundamental problem with diverse applications.

・Dithering.

・Cluster analysis.

・Max bottleneck paths.

・Real-time face verification.

・LDPC codes for error correction.

・Image registration with Renyi entropy.

・Find road networks in satellite and aerial imagery.

・Reducing data storage in sequencing amino acids in a protein.

・Model locality of particle interactions in turbulent fluid flows.

・Autoconfig protocol for Ethernet bridging to avoid cycles in a network.

・Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).

・Network design (communication, electrical, hydraulic, computer, road).

21

Fundamental cycle

Fundamental cycle.

・Adding any non-tree edge e to a spanning tree T forms unique cycle C.

・Deleting any edge f ∈ C from T ∪ { e } results in new spanning tree.

Observation. If ce < cf, then T is not an MST.

T = (V, F)

e

f

22

Fundamental cutset

Fundamental cutset.

・Deleting any tree edge f from a spanning tree T divide nodes into

two connected components. Let D be cutset.

・Adding any edge e ∈ D to T – { f } results in new spanning tree.

Observation. If ce < cf, then T is not an MST.

T = (V, F)

e

f

23

The greedy algorithm

Red rule.

・Let C be a cycle with no red edges.

・Select an uncolored edge of C of max weight and color it red.

Blue rule.

・Let D be a cutset with no blue edges.

・Select an uncolored edge in D of min weight and color it blue.

Greedy algorithm.

・Apply the red and blue rules (non-deterministically!) until all edges

are colored. The blue edges form an MST.

・Note: can stop once n – 1 edges colored blue.

24

Greedy algorithm: proof of correctness

Color invariant. There exists an MST T* containing all of the blue edges

and none of the red edges.

Pf. [by induction on number of iterations]

Base case. No edges colored ⇒ every MST satisfies invariant.

25

Greedy algorithm: proof of correctness

Color invariant. There exists an MST T* containing all of the blue edges

and none of the red edges.

Pf. [by induction on number of iterations]

Induction step (blue rule). Suppose color invariant true before blue rule.

・let D be chosen cutset, and let f be edge colored blue.

・if f ∈ T*, T* still satisfies invariant.

・Otherwise, consider fundamental cycle C by adding f to T*.

・let e ∈ C be another edge in D.

・e is uncolored and ce ≥ cf since
- e ∈ T* ⇒ e not red
- blue rule ⇒ e not blue and ce ≥ cf

・Thus, T* ∪ { f } – { e } satisfies invariant.
f

 T*

e

26

Greedy algorithm: proof of correctness

Color invariant. There exists an MST T* containing all of the blue edges

and none of the red edges.

Pf. [by induction on number of iterations]

Induction step (red rule). Suppose color invariant true before red rule.

・let C be chosen cycle, and let e be edge colored red.

・if e ∉ T*, T* still satisfies invariant.

・Otherwise, consider fundamental cutset D by deleting e from T*.

・let f ∈ D be another edge in C.

・f is uncolored and ce ≥ cf since
- f ∉ T* ⇒ f not blue
- red rule ⇒ f not red and ce ≥ cf

・Thus, T* ∪ { f } – { e } satisfies invariant. ▪
f

 T*

e

27

Greedy algorithm: proof of correctness

Theorem. The greedy algorithm terminates. Blue edges form an MST.

Pf. We need to show that either the red or blue rule (or both) applies.

・Suppose edge e is left uncolored.

・Blue edges form a forest.

・Case 1: both endpoints of e are in same blue tree.

 ⇒ apply red rule to cycle formed by adding e to blue forest.

Case 1

e

28

Greedy algorithm: proof of correctness

Theorem. The greedy algorithm terminates. Blue edges form an MST.

Pf. We need to show that either the red or blue rule (or both) applies.

・Suppose edge e is left uncolored.

・Blue edges form a forest.

・Case 1: both endpoints of e are in same blue tree.

 ⇒ apply red rule to cycle formed by adding e to blue forest.

・Case 2: both endpoints of e are in different blue trees.

 ⇒ apply blue rule to cutset induced by either of two blue trees. ▪

Case 2

e

4. GREEDY ALGORITHMS II

‣ Dijkstra's algorithm

‣ minimum spanning trees

‣ Prim, Kruskal, Boruvka

‣ single-link clustering

‣ min-cost arborescences

SECTION 6.2

30

Prim's algorithm

Initialize S = any node.

Repeat n – 1 times:

・Add to tree the min weight edge with one endpoint in S.

・Add new node to S.

Theorem. Prim's algorithm computes the MST.

Pf. Special case of greedy algorithm (blue rule repeatedly applied to S). ▪

S

31

Prim's algorithm: implementation

Theorem. Prim's algorithm can be implemented in O(m log n) time.

Pf. Implementation almost identical to Dijkstra's algorithm.

 [d(v) = weight of cheapest known edge between v and S]

PRIM (V, E, c)

Create an empty priority queue.

s ← any node in V.

FOR EACH v ≠ s : d(v) ← ∞; d(s) ← 0.

FOR EACH v : insert v with key d(v) into priority queue.

WHILE (the priority queue is not empty)

u ← delete-min from priority queue.

FOR EACH edge (u, v) ∈ E incident to u:

IF d(v) > c(u, v)

decrease-key of v to c(u, v) in priority queue.

d(v) ← c(u, v).

32

Kruskal's algorithm

Consider edges in ascending order of weight:

・Add to tree unless it would create a cycle.

Theorem. Kruskal's algorithm computes the MST.

Pf. Special case of greedy algorithm.

・Case 1: both endpoints of e in same blue tree.

 ⇒ color red by applying red rule to unique cycle.

・Case 2. If both endpoints of e are in different blue trees.

 ⇒ color blue by applying blue rule to cutset defined by either tree. ▪

e

all other edges in cycle are blue

no edge in cutset has smaller weight
(since Kruskal chose it first)

33

Kruskal's algorithm: implementation

Theorem. Kruskal's algorithm can be implemented in O(m log m) time.

・Sort edges by weight.

・Use union-find data structure to dynamically maintain connected

components.

KRUSKAL (V, E, c)
__

SORT m edges by weight so that c(e1) ≤ c(e2) ≤ … ≤ c(em)
S ← φ

FOREACH v ∈ V: MAKESET(v).

FOR i = 1 TO m
(u, v) ← ei

IF FINDSET(u) ≠ FINDSET(v)
S ← S ∪ { ei }

UNION(u, v).
RETURN S
__

are u and v in
same component?

make u and v in
same component

34

Reverse-delete algorithm

Consider edges in descending order of weight:

・Remove edge unless it would disconnect the graph.

Theorem. The reverse-delete algorithm computes the MST.

Pf. Special case of greedy algorithm.

・Case 1: removing edge e does not disconnect graph.

 ⇒ apply red rule to cycle C formed by adding e to existing path

 between its two endpoints

・Case 2: removing edge e disconnects graph.

 ⇒ apply blue rule to cutset D induced by either component. ▪

Fact. [Thorup 2000] Can be implemented in O(m log n (log log n)3) time.

any edge in C with larger weight would
have been deleted when considered

e is the only edge in the cutset
(any other edges must have been colored red / deleted)

35

Borůvka's algorithm

Repeat until only one tree.

・Apply blue rule to cutset corresponding to each blue tree.

・Color all selected edges blue.

Theorem. Borůvka's algorithm computes the MST.

Pf. Special case of greedy algorithm (repeatedly apply blue rule). ▪

7 11

58 12

13

assume edge
weights are distinct

Theorem. Borůvka's algorithm can be implemented in O(m log n) time.

Pf.

・To implement a phase in O(m) time:

- compute connected components of blue edges
- for each edge (u, v) ∈ E, check if u and v are in different components;

if so, update each component's best edge in cutset

・At most log2 n phases since each phase (at least) halves total # trees. ▪

36

Borůvka's algorithm: implementation

7 11

58 12

13

Edge contraction version.

・After each phase, contract each blue tree to a single supernode.

・Delete parallel edges, keeping only one with smallest weight.

・Borůvka phase becomes: take cheapest edge incident to each node.

37

Borůvka's algorithm: implementation

2 3

54 6

1 8

3 4 2

97

5

6 3

4 6

1

8

3 2
97

5

6

2, 5

3

4 6

1

8

3 2
97

5

2, 5

graph G contract edge (2 ,5)

delete parallel edges

1 1

1

Theorem. Borůvka's algorithm runs in O(n) time on planar graphs.

Pf.

・To implement a Borůvka phase in O(n) time:

- use contraction version of algorithm
- in planar graphs, m ≤ 3n – 6.

- graph stays planar when we contract a blue tree

・Number of nodes (at least) halves.

・At most log2 n phases: cn + cn / 2 + cn / 4 + cn / 8 + … = O(n). ▪

38

Borůvka's algorithm on planar graphs

planar not planar

39

Borůvka-Prim algorithm

Borůvka-Prim algorithm.

・Run Borůvka (contraction version) for log2 log2 n phases.

・Run Prim on resulting, contracted graph.

Theorem. The Borůvka-Prim algorithm computes an MST and can be

implemented in O(m log log n) time.

Pf.

・Correctness: special case of the greedy algorithm.

・The log2 log2 n phases of Borůvka's algorithm take O(m log log n) time;

resulting graph has at most n / log2 n nodes and m edges.

・Prim's algorithm (using Fibonacci heaps) takes O(m + n) time on a

graph with n / log2 n nodes and m edges. ▪

O

�
m +

n

log n
log

�
n

log n

��

Remark 1. O(m) randomized MST algorithm. [Karger-Klein-Tarjan 1995]

Remark 2. O(m) MST verification algorithm. [Dixon-Rauch-Tarjan 1992]

40

deterministic compare-based MST algorithms

Does a linear-time MST algorithm exist?

year worst case discovered by

1975 O(m log log n) Yao

1976 O(m log log n) Cheriton-Tarjan

1984 O(m log*n) O(m + n log n) Fredman-Tarjan

1986 O(m log (log* n)) Gabow-Galil-Spencer-Tarjan

1997 O(m α(n) log α(n)) Chazelle

2000 O(m α(n)) Chazelle

2002 optimal Pettie-Ramachandran

20xx O(m) ???

SECTION 4.7

4. GREEDY ALGORITHMS II

‣ Dijkstra's algorithm

‣ minimum spanning trees

‣ Prim, Kruskal, Boruvka

‣ single-link clustering

‣ min-cost arborescences

42

Goal. Given a set U of n objects labeled p1, …, pn, partition into clusters so

that objects in different clusters are far apart.

Applications.

・Routing in mobile ad hoc networks.

・Document categorization for web search.

・Similarity searching in medical image databases

・Skycat: cluster 109 sky objects into stars, quasars, galaxies.

・...

outbreak of cholera deaths in London in 1850s (Nina Mishra)

Clustering

k-clustering. Divide objects into k non-empty groups.

Distance function. Numeric value specifying "closeness" of two objects.

・d(pi, pj) = 0 iff pi = pj [identity of indiscernibles]

・d(pi, pj) ≥ 0	

 	

 	

 	

 	

 [nonnegativity]

・d(pi, pj) = d(pj, pi) [symmetry]

Spacing. Min distance between any pair of points in different clusters.

Goal. Given an integer k, find a k-clustering of maximum spacing.

43

Clustering of maximum spacing

4-clustering

distance between two clusters distance between
two closest clusters

44

Greedy clustering algorithm

“Well-known” algorithm in science literature for single-linkage k-clustering:

・Form a graph on the node set U, corresponding to n clusters.

・Find the closest pair of objects such that each object is in a different

cluster, and add an edge between them.

・Repeat n – k times until there are exactly k clusters.

Key observation. This procedure is precisely Kruskal's algorithm

(except we stop when there are k connected components).

Alternative. Find an MST and delete the k – 1 longest edges.

Theorem. Let C* denote the clustering C*1, …, C*k formed by deleting the

k – 1 longest edges of an MST. Then, C* is a k-clustering of max spacing.

Pf. Let C denote some other clustering C1, …, Ck.

・The spacing of C* is the length d* of the (k – 1)st longest edge in MST.

・Let pi and pj be in the same cluster in C*, say C*r , but different clusters

in C, say Cs and Ct.

・Some edge (p, q) on pi – pj path in C*r spans two different clusters in C.

・Edge (p, q) has length ≤ d* since it wasn't deleted.

・Spacing of C is ≤ d* since p and q are in different clusters. ▪

45

Greedy clustering algorithm: analysis

p qpi
pj

Cs Ct

C*r

edges left after deleting
k – 1 longest edges

from a MST

46

Tumors in similar tissues cluster together.

Reference: Botstein & Brown group

gene 1

gene n

gene expressed

gene not expressed

Dendrogram of cancers in human

SECTION 4.9

4. GREEDY ALGORITHMS II

‣ Dijkstra's algorithm

‣ minimum spanning trees

‣ Prim, Kruskal, Boruvka

‣ single-link clustering

‣ min-cost arborescences

48

Def. Given a digraph G = (V, E) and a root r ∈ V, an arborescence (rooted at r)
is a subgraph T = (V, F) such that

・T is a spanning tree of G if we ignore the direction of edges.

・There is a directed path in T from r to each other node v ∈ V.

Warmup. Given a digraph G, find an arborescence rooted at r (if one exists).

Algorithm. BFS or DFS from r is an arborescence (iff all nodes reachable).

Arborescences

r

49

Def. Given a digraph G = (V, E) and a root r ∈ V, an arborescence (rooted at r)
is a subgraph T = (V, F) such that

・T is a spanning tree of G if we ignore the direction of edges.

・There is a directed path in T from r to each other node v ∈ V.

Proposition. A subgraph T = (V, F) of G is an arborescence rooted at r iff
T has no directed cycles and each node v ≠ r has exactly one entering edge.

Pf.

⇒ If T is an arborescence, then no (directed) cycles and every node v ≠ r
 has exactly one entering edge—the last edge on the unique r↝v path.

⇐ Suppose T has no cycles and each node v ≠ r has one entering edge.

・To construct an r↝v path, start at v and repeatedly follow edges in the

backward direction.

・Since T has no directed cycles, the process must terminate.

・It must terminate at r since r is the only node with no entering edge. ▪

Arborescences

50

Problem. Given a digraph G with a root node r and with a nonnegative cost

ce ≥ 0 on each edge e, compute an arborescence rooted at r of minimum cost.

Assumption 1. G has an arborescence rooted at r.
Assumption 2. No edge enters r (safe to delete since they won't help).

Min-cost arborescence problem

r

4

1

2

35

6

9

7

8

51

Observations. A min-cost arborescence need not:

・Be a shortest-paths tree.

・Include the cheapest edge (in some cut).

・Exclude the most expensive edge (in some cycle).

Simple greedy approaches do not work

r

4

1

2

35

6

52

Property. For each node v ≠ r, choose one cheapest edge entering v
and let F* denote this set of n – 1 edges. If (V, F*) is an arborescence,

then it is a min-cost arborescence.

Pf. An arborescence needs exactly one edge entering each node v ≠ r
and (V, F*) is the cheapest way to make these choices. ▪

A sufficient optimality condition

r

4

2

1

35

6

9

7

8

53

Property. For each node v ≠ r, choose one cheapest edge entering v
and let F* denote this set of n – 1 edges. If (V, F*) is an arborescence,

then it is a min-cost arborescence.

Note. F* need not be an arborescence (may have directed cycles).

A sufficient optimality condition

r

4

1

2

35

6

9

7

8

54

Def. For each v ≠ r, let y(v) denote the min cost of any edge entering v.
The reduced cost an edge (u, v) is c'(u, v) = c(u, v) – y(v) ≥ 0.

Observation. T is a min-cost arborescence in G using costs c iff
T is a min-cost arborescence in G using reduced costs c'.
Pf. Each arborescence has exactly one edge entering v.

Reduced costs

r

4

1

2

37

9 r

0

0

1

03

0

costs c reduced costs c'
1 9

4 3 y(v)

55

Intuition. Recall F* = set of cheapest edges entering v for each v ≠ r.

・Now, all edges in F* have 0 cost with respect to costs c'(u, v).

・If F* does not contain a cycle, then it is a min-cost arborescence.

・If F* contains a cycle C, can afford to use as many edges in C as desired.

・Contract nodes in C to a supernode.

・Recursively solve problem in contracted network G' with costs c'(u, v).

Edmonds branching algorithm: intuition

r

0

3

4

01

0

0

0

4 0

0

7

1

56

Intuition. Recall F* = set of cheapest edges entering v for each v ≠ r.

・Now, all edges in F* have 0 cost with respect to costs c'(u, v).

・If F* does not contain a cycle, then it is a min-cost arborescence.

・If F* contains a cycle C, can afford to use as many edges in C as desired.

・Contract nodes in C to a supernode (removing any self-loops).

・Recursively solve problem in contracted network G' with costs c'(u, v).

Edmonds branching algorithm: intuition

r

3

4

0

1

0

7

1

0

57

Edmonds branching algorithm

EDMONDSBRANCHING(G, r , c)

FOREACH v ≠ r
y(v) ← min cost of an edge entering v.
c'(u, v) ← c'(u, v) – y(v) for each edge (u, v) entering v.

FOREACH v ≠ r: choose one 0-cost edge entering v and let F*
be the resulting set of edges.
IF F* forms an arborescence, RETURN T = (V, F*).
ELSE

C ← directed cycle in F*.
Contract C to a single supernode, yielding G' = (V', E').
T' ← EDMONDSBRANCHING(G', r , c')
Extend T' to an arborescence T in G by adding all but one edge of C.
RETURN T.

58

Q. What could go wrong?

A.

・Min-cost arborescence in G' has exactly one edge entering a node in C
(since C is contracted to a single node)

・But min-cost arborescence in G might have more edges entering C.

Edmonds branching algorithm

ba

r

cycle C

min-cost arborescence in G

59

Lemma. Let C be a cycle in G consisting of 0-cost edges. There exists a min-

cost arborescence rooted at r that has exactly one edge entering C.

Pf. Let T be a min-cost arborescence rooted at r.

Case 0. T has no edges entering C.

Since T is an arborescence, there is an r↝v path fore each node v ⇒
at least one edge enters C.

Case 1. T has exactly one edge entering C.

T satisfies the lemma.

Case 2. T has more than one edge that enters C.

We construct another min-cost arborescence T' that has exactly one edge

entering C.

Edmonds branching algorithm: key lemma

Case 2 construction of T'.

・Let (a, b) be an edge in T entering C that lies on a shortest path from r.

・We delete all edges of T that enter a node in C except (a, b).

・We add in all edges of C except the one that enters b.

b

60

Edmonds branching algorithm: key lemma

a

r

cycle CT

path from r to C uses
only one node in C

T

Case 2 construction of T'.

・Let (a, b) be an edge in T entering C that lies on a shortest path from r.

・We delete all edges of T that enter a node in C except (a, b).

・We add in all edges of C except the one that enters b.

Claim. T' is a min-cost arborescence.

・The cost of T' is at most that of T since we add only 0-cost edges.

・T' has exactly one edge entering each node v ≠ r.

・T' has no directed cycles.

(T had no cycles before; no cycles within C; now only (a, b) enters C)

b

61

Edmonds branching algorithm: key lemma

ba

T is an arborescence rooted at r

r

cycle CT'

path from r to C uses
only one node in C

and the only path in T' to
a is the path from r to a

(since any path must
follow unique entering

edge back to r)

Theorem. [Chu-Liu 1965, Edmonds 1967] The greedy algorithm finds a

min-cost arborescence.

Pf. [by induction on number of nodes in G]

・If the edges of F* form an arborescence, then min-cost arborescence.

・Otherwise, we use reduced costs, which is equivalent.

・After contracting a 0-cost cycle C to obtain a smaller graph G',
the algorithm finds a min-cost arborescence T' in G' (by induction).

・Key lemma: there exists a min-cost arborescence T in G that

corresponds to T'. ▪

Theorem. The greedy algorithm can be implemented in O(m n) time.

Pf.

・At most n contractions (since each reduces the number of nodes).

・Finding and contracting the cycle C takes O(m) time.

・Transforming T' into T takes O(m) time. ▪

62

Edmonds branching algorithm: analysis

Theorem. [Gabow-Galil-Spencer-Tarjan 1985] There exists an O(m + n log n)
time algorithm to compute a min-cost arborescence.

63

Min-cost arborescence

