4. GREEDY ALGORITHMS I 4. GREEDY ALGORITHMS I

PEARSON
Addison
Wesley

» Dijkstra's algorithm » Dijkstra's algorithm
» minimum spanning trees

» Prim, Kruskal, Boruvka

» single-link clustering

» min-cost arborescences

JON KLEINBERG - EVA TARDOS

'\& Algnmhm Desi

SECTION 4.4
Lecture slides by Kevin Wayne
Copyright © 2005 Pearson-Addison Wesley
http://www.cs.princeton.edu/~wayne/kleinberg-tardos
Last updated on Feb 18, 2013 6:08 AM
Shortest-paths problem Car navigation

Problem. Given a digraph G =(V, E), edge weights ¢, = 0, source sV,
and destination r € V, find the shortest directed path from s to r.

1 15

3

> 4

N\ 9
2 A\

destination t

source s 3

« Sttty

g A

AN

by AlmadenBlvdvmw f

length of path =9 + 4 + 1 + 11 = 25

Shortest path applications Dijkstra's algorithm

e PERT/CPM. Greedy approach. Maintain a set of explored nodes S for which

* Map routing. algorithm has determined the shortest path distance d(u) from s to u.

* Seam carving. * Initialize S={s}, d(s) =0.

* Robot navigation. * Repeatedly choose unexplored node v which minimizes

e Texture mapping. w(v)= min du)+/,,

« Typesetting in LaTeX. o= @3Sy N

* Urban traffic planning. shortest path to some node u in explored part,
+ Telemarketer operator scheduling. (Elliseed by 8 gl ey @, ¥
* Routing of telecommunications messages.

* Network routing protocols (OSPF, BGP, RIP).

» Optimal truck routing through given traffic congestion pattern. 0

d(u)
: \
Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993. Q/O

Dijkstra's algorithm Dijkstra's algorithm: proof of correctness
Greedy approach. Maintain a set of explored nodes S for which Invariant. For each node u €S, d(u) is the length of the shortest s~u path.
algorithm has determined the shortest path distance d(u) from s to u. Pf. [by induction on IS1]
* Initialize S={s}, d(s) =0. Base case: ISI=1 is easy since S={s} and d(s) =0.
* Repeatedly choose unexplored node v which minimizes Inductive hypothesis: Assume true for ISI=k > 1.
x () = min d() +(,, * Let v be next node added to S, and let (u,v) be the final edge.
o= (@) 30 N * The shortest s~u path plus («,v) is an s~v path of length m(v).
add v to S, and set d(v) = (v). S ERies: pEdh i Sere ek o i) ol Fe * Consider any s~v path P. We show that it is no shorter than w(v).
i) by & sl el (1,) * Let (x,y) be the first edge in P that leaves S,
and let P' be the subpath to x. P
* Pis already too long as soon as it reaches y. PN MG ’®

, d(v) ¢ - - e -
d(u) ¢ S S \@\ """"
s \ IP) = 6P+ l(x,y) = dx)+ ¢(x,y) = wt(y) = 7(V) ®A'

O/O TEHTETEGRE elEReE definition Dijkstra chose v
weights hypothesis of aily) instead of y

Dijkstra's algorithm: efficient implementation

Critical optimization 1. For each unexplored node v, explicitly
maintain n(v) instead of computing directly from formula:

a(v)= min Sd(u)+€e .

e=(uy):u€

* Foreachvé& s, m(v) can only decrease (because S only increases).
* More specifically, suppose u is added to S and there is an edge (u, v)
leaving u. Then, it suffices to update:

t(v) =min { 7(v), du) + f(u,v)}

Critical optimization 2. Use a priority queue to choose the unexplored node
that minimizes wt(v).

Dijkstra's algorithm: which priority queue?

Performance. Depends on PQ: n insert, n delete-min, m decrease-key.
* Array implementation optimal for dense graphs.
« Binary heap much faster for sparse graphs.
* 4-way heap worth the trouble in performance-critical situations.
* Fibonacci/Brodal best in theory, but not worth implementing.

- implementation

unordered array o(l) on) o) o(n2)
binary heap O(log n) O(log n) O(log n) O(m log n)
d-way heap

(Johnson 1975) O(d loga n) O(d loga n) O(loga n) O(m logum n)

Fibonacci heap

(Fredman-Tarjan 1984) o O(log n) ¥ omt O(m + nlog n)

Brodal queue
(Brodal 1996) o(1) O(log n) o(1) O(m + nlog n)

+ amortized

Dijkstra's algorithm: efficient implementation

Implementation.
* Algorithm stores d(v) for each explored node v.
* Priority queue stores z(v) for each unexplored node v.
* Recall: d(u) =m(u) when u is deleted from priority queue.

DUKSTRA (V, E, 5)

Create an empty priority queue.
FOREACHV#s: d(v) « o; d(s) < 0.
FOR EACH v € V': insert v with key d(v) into priority queue.
WHILE (the priority queue is not empty)

u « delete-min from priority queue.

FOR EACH edge (u, v) € E leaving u:

IF dv) > d(u) + 4(u,v)
decrease-key of vto d(u) + €(u, v) in priority queue.

dv) «—du) + l(u,v).

Extensions of Dijkstra's algorithm

Dijkstra's algorithm and proof extend to several related problems:
* Shortest paths in undirected graphs: d(v) < d(u) + ¢(u,v).
* Maximum capacity paths: d(v) = min { 7 (u), c(u,v) }.
* Maximum reliability paths: d(v) = d(u) x y(u,v) .

Key algebraic structure. Closed semiring (tropical, bottleneck, Viterbi).

Cycles and cuts

Def. A path is a sequence of edges which connects a sequence of nodes.

4. GREEDY ALGORITHMS I

Def. A cycle is a path with no repeated nodes or edges other than the
starting and ending nodes.

Data Structures
and Network Algorithms

» minimum spanning frees

ROBERT ENDRE TARJAN
03 Cavormsoes
Wty 4, o sy

CBMS-NSF
'REGIONAL CONFERENCE SERIES
INAPPLIED MATHEMATICS

@

SECTION 6.1
cycle C=1{(1,2),(2,3),(3,4),(4,5),(56),6,1)}
14
Cycles and cuts Cycle-cut intersection
Def. A cut is a partition of the nodes into two nonempty subsets S and V -S. Proposition. A cycle and a cutset intersect in an even number of edges.

Def. The cutset of a cut Sis the set of edges with exactly one endpoint in S.

cutset D = { (3, 4), 3,5, (5,6), (5,7), 8, N } cutset D ={ 3,4, 3,5, 5,6), (5,7, &, N }
cycle € = {(1,2),2,3), 3, 4), (4,5), (5,6), (6,) }
intersectionCND ={(3,4),(5,6)}

Cycle-cut intersection

Proposition. A cycle and a cutset intersect in an even number of edges.
Pf. [by picture]

cycle C

Minimum spanning tree

Given a connected graph G = (V, E) with edge weights c,, an MST is a subset
of the edges TC E such that T is a spanning tree whose sum of edge
weights is minimized.

< .7
Lo ey

MSTcost=50=4+6+8+5+11+9+7

Cayley's theorem. There are n"-2 spanning trees of K,. <«— can'tsolve by brute force

Spanning tree properties

Proposition. Let T=(V,F) be a subgraph of G=(V,E). TFAE:
* Tis a spanning tree of G.
* Tis acyclic and connected.
* Tis connected and has n— 1 edges.
* Tis acyclic and has n — 1 edges.
* Tis minimally connected: removal of any edge disconnects it.
* Tis maximally acyclic: addition of any edge creates a cycle.
* T has a unique simple path between every pair of nodes.

T=(V,P 18

Applications

MST is fundamental problem with diverse applications.
+ Dithering.
e Cluster analysis.
* Max bottleneck paths.
+ Real-time face verification.
* LDPC codes for error correction.
* Image registration with Renyi entropy.
 Find road networks in satellite and aerial imagery.
* Reducing data storage in sequencing amino acids in a protein.
* Model locality of particle interactions in turbulent fluid flows.
« Autoconfig protocol for Ethernet bridging to avoid cycles in a network.
» Approximation algorithms for NP-hard problems (e.g., TSP, Steiner tree).
» Network design (communication, electrical, hydraulic, computer, road).

Fundamental cycle

Fundamental cycle.
* Adding any non-tree edge e to a spanning tree T forms unique cycle C.
* Deleting any edge f € C from T U { ¢ } results in new spanning tree.

T=(V,P

Observation. If ¢, < ¢, then T is not an MST.

The greedy algorithm

Red rule.
* Let C be a cycle with no red edges.
* Select an uncolored edge of C of max weight and color it red.

Blue rule.
* Let D be a cutset with no blue edges.
* Select an uncolored edge in D of min weight and color it blue.

Greedy algorithm.
* Apply the red and blue rules (non-deterministically!) until all edges
are colored. The blue edges form an MST.
* Note: can stop once n—1 edges colored blue.

23

Fundamental cutset

Fundamental cutset.
* Deleting any tree edge f from a spanning tree T divide nodes into
two connected components. Let D be cutset.
* Adding any edge e€ D to T {f} results in new spanning tree.

-

T=(V,P

Observation. If ¢.<c;, then T is not an MST.

Greedy algorithm: proof of correctness

Color invariant. There exists an MST T* containing all of the blue edges
and none of the red edges.
Pf. [by induction on number of iterations]

Base case. No edges colored = every MST satisfies invariant.

Greedy algorithm: proof of correctness

Color invariant. There exists an MST T* containing all of the blue edges
and none of the red edges.
Pf. [by induction on number of iterations]

Induction step (blue rule). Suppose color invariant true before blue rule.
* let D be chosen cutset, and let f be edge colored blue.
* if fEeT*, T* still satisfies invariant.
* Otherwise, consider fundamental cycle C by adding fto T*.
* let ¢ € C be another edge in D.
* eis uncolored and ¢, = ¢ since
- eET* = enotred
- blue rule = enot blue and ¢, = ¢ T
Thus, T* U {f} - { e} satisfies invariant.

25

Greedy algorithm: proof of correctness

Theorem. The greedy algorithm terminates. Blue edges form an MST.
Pf. We need to show that either the red or blue rule (or both) applies.
* Suppose edge e is left uncolored.
* Blue edges form a forest.
* Case 1: both endpoints of e are in same blue tree.
= apply red rule to cycle formed by adding e to blue forest.

Case 1

27

Greedy algorithm: proof of correctness

Color invariant. There exists an MST T* containing all of the blue edges
and none of the red edges.
Pf. [by induction on number of iterations]

Induction step (red rule). Suppose color invariant true before red rule.
* let C be chosen cycle, and let e be edge colored red.
o if e & T*, T* still satisfies invariant.
* Otherwise, consider fundamental cutset D by deleting e from T*.
* let f€ D be another edge in C.
* fis uncolored and c. = ¢ since
- f&T* = f not blue
- red rule = fnotred andc. = ¢ T+
* Thus, T* U {f} - {e} satisfies invariant. =

Greedy algorithm: proof of correctness

Theorem. The greedy algorithm terminates. Blue edges form an MST.
Pf. We need to show that either the red or blue rule (or both) applies.
* Suppose edge e is left uncolored.
* Blue edges form a forest.
* Case 1: both endpoints of e are in same blue tree.
= apply red rule to cycle formed by adding e to blue forest.
* Case 2: both endpoints of e are in different blue trees.
= apply blue rule to cutset induced by either of two blue trees. =

Case 2

4. GREEDY ALGORITHMS I

Data Structures
and Network Algorithms

ROBERT ENDRE TARJAN » Prim, Kruskal, Boruvka

Wrizy 4, N dcsy

ISF
'REGIONAL CONFERENCE
INAPPLIED MATHEMATICS

SECTION 6.2

Prim's algorithm: implementation

Theorem. Prim's algorithm can be implemented in O(m log n) time.
Pf. Implementation almost identical to Dijkstra's algorithm.
[d(v) = weight of cheapest known edge between v and]

PRiM (V] E, ¢)

Create an empty priority queue.
s «— anynodein V.
FOREACHV#s: d(v) « o; d(s) « 0.
FOR EACH v : insert v with key d(v) into priority queue.
WHILE (the priority queue is not empty)
u «— delete-min from priority queue.
FOR EACH edge (1, v) € E incident to u:
IF dv) > c(u,v)
decrease-key of v to c(u, v) in priority queue.
dv) < c(u,v).

Prim's algorithm

Initialize S = any node.

Repeat n-1 times: D
* Add to tree the min weight edge with one endpoint in S.
* Add new node to S.

Theorem. Prim's algorithm computes the MST.
Pf. Special case of greedy algorithm (blue rule repeatedly applied to). =

Kruskal's algorithm

Consider edges in ascending order of weight:
+ Add to tree unless it would create a cycle. D

Theorem. Kruskal's algorithm computes the MST.
Pf. Special case of greedy algorithm.
all other edges in cycle are blue
* Case 1: both endpoints of e in same blue tree.
= color red by applying red rule to unique cycle.
* Case 2. If both endpoints of ¢ are in different blue trees.

= color blue by applying blue rule to cutset defined by either tree. =

AN

no edge in cutset has smaller weight
(since Kruskal chose it first)

OO0

OO0

30

32

Kruskal's algorithm: implementation

Theorem. Kruskal's algorithm can be implemented in O(m log m) time.
* Sort edges by weight.
e Use union-find data structure to dynamically maintain connected
components.

KRUSKAL (¥, E, ¢)

SORT m edges by weight so that c(e1) < c(e2) < ... <c(em)
S—¢
FOREACH v € V: MAKESET(v).
FOR i =1TO m

(u,v) «—ei

IF FINDSET() # FINDSET() <— (e bomo v,

S — SU{e}
make u and v in

UNION(M’ v)' same component

RETURN S

Boruvka's algorithm

Repeat until only one tree.
* Apply blue rule to cutset corresponding to each blue tree.
e Color all selected edges blue.

assume edge

Theorem. Bortvka's algorithm computes the MST. <—— yeights are distinct
Pf. Special case of greedy algorithm (repeatedly apply blue rule). =

7 Q_Q 11

13

Reverse-delete algorithm

Consider edges in descending order of weight:
* Remove edge unless it would disconnect the graph.

Theorem. The reverse-delete algorithm computes the MST.
Pf. Special case of greedy algorithm.
* Case 1: removing edge e does not disconnect graph.
= apply red rule to cycle C formed by adding e to existing path

between its two endpoints any edge in C with larger weight would

have been deleted when considered

* Case 2: removing edge ¢ disconnects graph.
= apply blue rule to cutset D induced by either component. =

e is the only edge in the cutset
(any other edges must have been colored red / deleted)

Fact. [Thorup 2000] Can be implemented in O(m log n (log log n)3) time.

Boruvka's algorithm: implementation

Theorem. Borlvka's algorithm can be implemented in O@n log n) time.
Pf.
* To implement a phase in O(m) time:
- compute connected components of blue edges
- for each edge (u,v) €E, check if u and v are in different components;
if so, update each component's best edge in cutset
* At most logz n phases since each phase (at least) halves total # trees. =

7 Q_O 11

13

Borivka's algorithm: implementation Borivka's algorithm on planar graphs

Edge contraction version. Theorem. Borlvka's algorithm runs in O(n) time on planar graphs.

« After each phase, contract each blue tree to a single supernode. Pf.

* Delete parallel edges, keeping only one with smallest weight. * To implement a Borlivka phase in O(n) time:

* Boruvka phase becomes: take cheapest edge incident to each node. - use contraction version of algorithm

- in planar graphs, m < 3n-6.
RN ENEEEICEEO 0 02) - graph stays planar when we contract a blue tree
® 6@ 8 O ® ° ® * Number of nodes (at least) halves.
> s * At most logo n phases: cn+cn/2+cn/d+cn/8+... =0(n). =

@ 7 @& ° 6 © ®
1 1
delete parallel edges
@ ®
5 8
3 @ 2
7 9

1 37 planar not planar

Boruvka-Prim algorithm Does a lineartime MST algorithm exist?

Boruvka-Prim algorithm.
* Run Boruvka (contraction version) for log, logz n phases.

« Run Prim on resulting, contracted graph. discovered by

deterministic compare-based MST algorithms

1975 O(m log log n)
Theorem. The Borlivka-Prim algorithm computes an MST and can be 1976 O(m log log n) Cheriton-
implemented in O(m log log n) time. 1984 O(m log*n) O(m +n log n) Fredman-
1986 O(m log (log* n)) Gabow-Galil-Spencer- PRINCETON
Pf. UNIVERSITY
» Correctness: special case of the greedy algorithm. 1997 Otm) log o)
* The log: log: n phases of Boruvka's algorithm take O(n log log n) time; 2000 Otm a(n))
resulting graph has at most n/log, n nodes and m edges. 2002 optimal Pettie-
* Prim's algorithm (using Fibonacci heaps) takes O(m + n) time on a 20xx O(m) ”
graph with n/log, n nodes and m edges. = \
O<71L+L10g (L>> A A) A
logn logn Remark 1. O(m) randomized MST algorithm. [Karger-Klein 1995]

Remark 2. O(m) MST verification algorithm. [Dixon- - 1992]

4. GREEDY ALGORITHMS I

» single-link clustering

\ €1A|gnmhm Jesi

JON KLEINBERG - EVA TARDOS

SECTION 4.7

Clustering of maximum spacing

k-clustering. Divide objects into kK non-empty groups.

Distance function. Numeric value specifying "closeness" of two objects.

s dp.p) = 0iff p;=p; [identity of indiscernibles]
« dp,p) = 0 [nonnegativity]
s dp;,p) = dp;,p) [symmetry]

Spacing. Min distance between any pair of points in different clusters.

Goal. Given an integer k, find a k-clustering of maximum spacing.

distance between two clusters .
/ \ coe
oo ’\: XX
\ coe
(XX}

4-clustering

distance between
two closest clusters

Clustering

Goal. Given a set U of n objects labeled p,, ..., p,, partition into clusters so
that objects in different clusters are far apart.

outbreak of cholera deaths in London in 1850s (Nina Mishra)

Applications.
» Routing in mobile ad hoc networks.
+ Document categorization for web search.
 Similarity searching in medical image databases
» Skycat: cluster 109 sky objects into stars, quasars, galaxies.

Greedy clustering algorithm

“Well-known” algorithm in science literature for single-linkage k-clustering:

* Form a graph on the node set U, corresponding to n clusters.

 Find the closest pair of objects such that each object is in a different
cluster, and add an edge between them.

* Repeat n -k times until there are exactly k clusters.

= {x o7,

?\(\z\lv~(
TR

Key observation. This procedure is precisely Kruskal's algorithm
(except we stop when there are k connected components).

Alternative. Find an MST and delete the k-1 longest edges.

43

42

44

Greedy clustering algorithm: analysis

Theorem. Let C* denote the clustering C*,, ..., C*, formed by deleting the
k-1 longest edges of an MST. Then, C* is a k-clustering of max spacing.

Pf. Let C denote some other clustering C,, ..., C,.

* The spacing of C* is the length d4* of the (k- 1)st longest edge in MST.
Let p;and p; be in the same cluster in C*, say C*,, but different clusters
in C, say C, and C..

Some edge (p,) on p;—p;path in C*_spans two different clusters in C.
Edge (p, g) has length < d* since it wasn't deleted.

Spacing of C is = d* since p and g are in different clusters. =

e

\ /

cr,

edges left after deleting
k-1 longest edges
from a MST

45
I

4. GREEDY ALGORITHMS I

T4R=

» min-cost arborescences

JON KLEINBERG - EVA TARDOS

\N 0Ngmﬂhm Jesign

SECTION 4.9

Dendrogram of cancers in human

Tumors in similar tissues cluster together.

|
o

gene 1

gene n

Skin Liver Lung

Breast Tumors

Breast Normal Kidney Prostate Brain
Luminal

Tumors Breast
Basal

APL Ovary

ene expressed
Reference: Botstein & Brown group LI i

l gene not expressed

Arborescences

Def. Given a digraph G=(V,E) and a root r €V, an arborescence (rooted at r)
is a subgraph T=(V, F) such that

* Tis a spanning tree of G if we ignore the direction of edges.
* There is a directed path in T from r to each other node ve V.

[>

»O

O«

Warmup. Given a digraph G, find an arborescence rooted at r (if one exists).
Algorithm. BFS or DFS from r is an arborescence (iff all nodes reachable).

48

46

Arborescences

Def. Given a digraph G=(V,E) and a root r €V, an arborescence (rooted at r)
is a subgraph 7= (V, F) such that

* Tis a spanning tree of G if we ignore the direction of edges.

* There is a directed path in T from r to each other node veE V.

Proposition. A subgraph T=(V, F) of G is an arborescence rooted at r iff

T has no directed cycles and each node v = r has exactly one entering edge.

Pf.

= If Tis an arborescence, then no (directed) cycles and every node v = r
has exactly one entering edge—the last edge on the unique r~v path.

< Suppose T has no cycles and each node v #r has one entering edge.
* To construct an r~v path, start at v and repeatedly follow edges in the
backward direction.
* Since T has no directed cycles, the process must terminate.
* It must terminate at r since ris the only node with no entering edge. =

49

Simple greedy approaches do not work

Observations. A min-cost arborescence need not:
* Be a shortest-paths tree.
* Include the cheapest edge (in some cut).
* Exclude the most expensive edge (in some cycle).

O— 2 — 6 O
5 1 3
Ot— ¢+ =0

Min-cost arborescence problem

Problem. Given a digraph G with a root node r and with a nonnegative cost
c.=0 on each edge ¢, compute an arborescence rooted at » of minimum cost.

Assumption 1. G has an arborescence rooted at r.
Assumption 2. No edge enters r (safe to delete since they won't help).

A sufficient optimality condition

Property. For each node v #r, choose one cheapest edge entering v
and let F* denote this set of n—1 edges. If (V, F*) is an arborescence,
then it is a min-cost arborescence.

Pf. An arborescence needs exactly one edge entering each node v #r
and (V, F*) is the cheapest way to make these choices. =

A sufficient optimality condition Reduced costs

Property. For each node v #r, choose one cheapest edge entering v Def. For each vzr, let y(v) denote the min cost of any edge entering v.
and let F* denote this set of n—1 edges. If (V, F¥) is an arborescence, The reduced cost an edge (u,v) is c'(u,v) = c(u,v) —y(v) =0.
then it is @ min-cost arborescence.
Observation. T is a min-cost arborescence in G using costs c iff
Note. F* need not be an arborescence (may have directed cycles). T is a min-cost arborescence in G using reduced costs c'.
Pf. Each arborescence has exactly one edge entering v.

® 2 6 () costs ¢ reduced costs c'
1 9
o—- SO O 1 —»O— 0 —O
5 1 3 8 9
¢ 7 1 3 0

3 0
: 7 —pO |
Oe— O—o

4 3 «— y(v)
53 54
Edmonds branching algorithm: intuition Edmonds branching algorithm: intuition
Intuition. Recall F* = set of cheapest edges entering v for each v =r. Intuition. Recall F* = set of cheapest edges entering v for each v =r.
* Now, all edges in F* have 0 cost with respect to costs c'(u, v). * Now, all edges in F* have 0 cost with respect to costs c'(u, v).
* If F* does not contain a cycle, then it is a min-cost arborescence. * If F* does not contain a cycle, then it is a min-cost arborescence.
* If F* contains a cycle C, can afford to use as many edges in C as desired. * If F* contains a cycle C, can afford to use as many edges in C as desired.
* Contract nodes in C to a supernode. * Contract nodes in C to a supernode (removing any self-loops).
* Recursively solve problem in contracted network G' with costs c¢'(u, v). * Recursively solve problem in contracted network G' with costs c¢'(u, v).
® $— 0 —»T 0 ——Q ® \ i O
1 3 0 4 0 1 0 1 0
3 1
0 7
O 0 <+ @ 7 O @ O

Edmonds branching algorithm

EDMONDSBRANCHING(G, 7, ¢)

FOREACH V#r

¥(v) < min cost of an edge entering v.

c'(u,v) « c'(u, v)— y(v) for each edge (u, v) entering v.
FOREACH v # r: choose one 0-cost edge entering v and let F*
be the resulting set of edges.

IF F* forms an arborescence, RETURN 7' = (V] F'*).
ELSE
C « directed cycle in F'*.
Contract C to a single supernode, yielding G’ = (V", E").
T" — EDMONDSBRANCHING(G', 7, ¢")
Extend 7" to an arborescence 7 in G by adding all but one edge of C.
RETURN T.

Edmonds branching algorithm: key lemma

Lemma. Let C be a cycle in G consisting of 0-cost edges. There exists a min-
cost arborescence rooted at r that has exactly one edge entering C.

Pf. Let T be a min-cost arborescence rooted at r.

Case 0. T has no edges entering C.
Since T is an arborescence, there is an r~v path fore each node v =
at least one edge enters C.

Case 1. T has exactly one edge entering C.
T satisfies the lemma.

Case 2. T has more than one edge that enters C.
We construct another min-cost arborescence 7' that has exactly one edge
entering C.

Edmonds branching algorithm

Q. What could go wrong?
A.

* Min-cost arborescence in G' has exactly one edge entering a node in C
(since C is contracted to a single node)
* But min-cost arborescence in G might have more edges entering C.

min-cost arborescence in G

cycle C

Edmonds branching algorithm: key lemma

v

O

Case 2 construction of 7.

* Let (a,b) be an edge in T entering C that lies on a shortest path from r.

* We delete all edges of T that enter a node in C except (a, b).
* We add in all edges of C except the one that enters b.

cycle C
T Y

v

O

path from r to C uses
only one node in C

60

Edmonds branching algorithm: key lemma

Case 2 construction of 7.

* Let (a,b) be an edge in T entering C that lies on a shortest path from r.

* We delete all edges of T that enter a node in C except (a, b). \

* We add in all edges of C except the one that enters b. Pimyﬁgg ;;Zeclﬁsgs
Claim. T'is a min-cost arborescence.

* The cost of T' is at most that of T since we add only 0-cost edges.

* T'has exactly one edge entering each node v =r.
<«— T is an arborescence rooted at r

* T' has no directed cycles.
(T had no cycles before; no cycles within C; now only (a, b) enters C)

and the only path in T' to

T™ R cycle C _ a is the path from r to a
a 7\13/ | » (since any path must
follow unique entering
edge back tor)
O O

Min-cost arborescence

Theorem. [Gabow-Galil-Spencer-Tarjan 1985] There exists an O(m + n logn)
time algorithm to compute a min-cost arborescence.

COMBINATORICA 6 (2) (1986) 109—122

EFFICIENT ALGORITHMS FOR FINDING
MINIMUM SPANNING TREES IN UNDIRECTED
AND DIRECTED GRAPHS

H. N. GABOW*, Z. GALIL**, T. SPENCER*** and R. E. TARJAN

Received 23 January 1985
Revised 1 December 1985

Recently, Fredman and Tarjan invented a new, especially efficient form of heap (priority
queue). Their data structure, the Fibonacci heap (or F-heap) supports arbitrary deletion in O(log n)
amortized time and other heap operations in O(1) amortized time. In this paper we use F-heaps to
obtain fast algorithms for finding mini anning trees in i and directed graphs. For
an undirected graph containing n vertices and m edges, our minimum spanning tree algorithm runs
in O(m log B(m, n)) time, improved from O(mp(m, n)) time, where B(m, my==min {ijlog® n=m/n).
Our minimum spanning tree algorithm for directed graphs runs in O(nlog n+m) time, improved
from O(ilog n+1110g 10g 10g(m/n+21). Both algorithms can be extended to allow a degree constra-
int at one vertex.

63

Edmonds branching algorithm: analysis

Theorem. [Chu-Liu 1965, Edmonds 1967] The greedy algorithm finds a
min-cost arborescence.
Pf. [by induction on number of nodes in G]

* If the edges of F* form an arborescence, then min-cost arborescence.

* Otherwise, we use reduced costs, which is equivalent.

* After contracting a 0-cost cycle C to obtain a smaller graph G',

the algorithm finds a min-cost arborescence 7' in G' (by induction).
* Key lemma: there exists a min-cost arborescence T in G that

corresponds to 7". =

Theorem. The greedy algorithm can be implemented in O(mn) time.
Pf.
* At most n contractions (since each reduces the number of nodes).
* Finding and contracting the cycle C takes O(m) time.
* Transforming T' into T takes O(m) time. =

62

