1. **Representative Problems**

- stable matching
- five representative problems
1. Representative Problems

- stable matching
- five representative problems
Matching med-school students to hospitals

Goal. Given a set of preferences among hospitals and med-school students, design a self-reinforcing admissions process.

Unstable pair: student x and hospital y are unstable if:

- x prefers y to its assigned hospital.
- y prefers x to one of its admitted students.

Stable assignment. Assignment with no unstable pairs.

- Natural and desirable condition.
- Individual self-interest prevents any hospital–student side deal.
Stable matching problem

Goal. Given a set of n men and a set of n women, find a "suitable" matching.
- Participants rank members of opposite sex.
- Each man lists women in order of preference from best to worst.
- Each woman lists men in order of preference from best to worst.

<table>
<thead>
<tr>
<th>favorite</th>
<th>least favorite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>Xavier</td>
<td>Amy</td>
</tr>
<tr>
<td>Yancey</td>
<td>Bertha</td>
</tr>
<tr>
<td>Zeus</td>
<td>Amy</td>
</tr>
</tbody>
</table>

men's preference list

<table>
<thead>
<tr>
<th>favorite</th>
<th>least favorite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>Amy</td>
<td>Yancey</td>
</tr>
<tr>
<td>Bertha</td>
<td>Xavier</td>
</tr>
<tr>
<td>Clare</td>
<td>Xavier</td>
</tr>
</tbody>
</table>

women's preference list
Perfect matching

Def. A matching S is a set of ordered pairs $m–w$ with $m \in M$ and $w \in W$ s.t.
- Each man $m \in M$ appears in at most one pair of S.
- Each woman $w \in W$ appears in at most one pair of S.

Def. A matching S is perfect if $|S| = |M| = |W| = n$.

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>Amy</td>
<td>Bertha</td>
</tr>
<tr>
<td>Yancey</td>
<td>Bertha</td>
<td>Amy</td>
</tr>
<tr>
<td>Zeus</td>
<td>Amy</td>
<td>Bertha</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Yancey</td>
<td>Xavier</td>
</tr>
<tr>
<td>Bertha</td>
<td>Xavier</td>
<td>Yancey</td>
</tr>
<tr>
<td>Clare</td>
<td>Xavier</td>
<td>Yancey</td>
</tr>
</tbody>
</table>

A perfect matching $S = \{ X–C, Y–B, Z–A \}$
Unstable pair

Def. Given a perfect matching S, man m and woman w are **unstable** if:

- m prefers w to his current partner.
- w prefers m to her current partner.

Key point. An unstable pair $m–w$ could each improve partner by joint action.

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>Amy</td>
<td>Bertha</td>
<td>Clare</td>
</tr>
<tr>
<td>Yancey</td>
<td>Bertha</td>
<td>Amy</td>
<td>Clare</td>
</tr>
<tr>
<td>Zeus</td>
<td>Amy</td>
<td>Bertha</td>
<td>Clare</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Yancey</td>
<td>Xavier</td>
<td>Zeus</td>
</tr>
<tr>
<td>Bertha</td>
<td>Xavier</td>
<td>Yancey</td>
<td>Zeus</td>
</tr>
<tr>
<td>Clare</td>
<td>Xavier</td>
<td>Yancey</td>
<td>Zeus</td>
</tr>
</tbody>
</table>

Bertha and Xavier are an unstable pair
Stable matching problem

Def. A stable matching is a perfect matching with no unstable pairs.

Stable matching problem. Given the preference lists of n men and n women, find a stable matching (if one exists).
- Natural, desirable, and self-reinforcing condition.
- Individual self-interest prevents any man–woman pair from eloping.

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>Amy</td>
<td>Bertha</td>
</tr>
<tr>
<td>Yancey</td>
<td>Bertha</td>
<td>Amy</td>
</tr>
<tr>
<td>Zeus</td>
<td>Amy</td>
<td>Bertha</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>Yancey</td>
<td>Xavier</td>
</tr>
<tr>
<td>Bertha</td>
<td>Xavier</td>
<td>Yancey</td>
</tr>
<tr>
<td>Clare</td>
<td>Xavier</td>
<td>Yancey</td>
</tr>
</tbody>
</table>

a perfect matching $S = \{ X-A, Y-B, Z-C \}$
Stable roommate problem

Q. Do stable matchings always exist?
A. Not obvious a priori.

Stable roommate problem.
• $2n$ people; each person ranks others from 1 to $2n - 1$.
• Assign roommate pairs so that no unstable pairs.

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adam</td>
<td>B</td>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>Bob</td>
<td>C</td>
<td>A</td>
<td>D</td>
</tr>
<tr>
<td>Chris</td>
<td>A</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>Doofus</td>
<td>A</td>
<td>B</td>
<td>C</td>
</tr>
</tbody>
</table>

Observation. Stable matchings need not exist for stable roommate problem.
Gale-Shapley deferred acceptance algorithm

An intuitive method that guarantees to find a stable matching.

Gale–Shapley *(preference lists for men and women)*

Initialize S to empty matching.

While (some man m is unmatched and hasn't proposed to every woman)

- $w \leftarrow$ first woman on m's list to whom m has not yet proposed.

 If (w is unmatched)

 - Add pair m–w to matching S.

 Else If (w prefers m to her current partner m')

 - Remove pair m'–w from matching S.
 - Add pair m–w to matching S.

 Else

 - w rejects m.

Return stable matching S.
Proof of correctness: termination

Observation 1. Men propose to women in decreasing order of preference.

Observation 2. Once a woman is matched, she never becomes unmatched; she only "trades up."

Claim. Algorithm terminates after at most \(n^2 \) iterations of while loop.

Pf. Each time through the while loop a man proposes to a new woman. There are only \(n^2 \) possible proposals.

\[
n(n-1) + 1 \text{ proposals required}
\]
Proof of correctness: perfection

Claim. In Gale-Shapley matching, all men and women get matched.

Pf. [by contradiction]

• Suppose, for sake of contradiction, that Zeus is not matched upon termination of GS algorithm.
• Then some woman, say Amy, is not matched upon termination.
• By Observation 2, Amy was never proposed to.
• But, Zeus proposes to everyone, since he ends up unmatched. ▪
Proof of correctness: stability

Claim. In Gale-Shapley matching, there are no unstable pairs.

Pf. Suppose the GS matching S^* does not contain the pair $A-Z$.

• Case 1: Z never proposed to A.
 \Rightarrow Z prefers his GS partner B to A. \leftarrow men propose in decreasing order of preference
 \Rightarrow $A-Z$ is stable.

• Case 2: Z proposed to A.
 \Rightarrow A rejected Z (right away or later)
 \Rightarrow A prefers her GS partner Y to Z. \leftarrow women only trade up
 \Rightarrow $A-Z$ is stable.

• In either case, the pair $A-Z$ is stable. \blacksquare
Summary

Stable matching problem. Given \(n \) men and \(n \) women, and their preferences, find a stable matching if one exists.

Q. How to implement GS algorithm efficiently?
Q. If there are multiple stable matchings, which one does GS find?
Efficient implementation. We describe an $O(n^2)$ time implementation.

Representing men and women.
- Assume men are named 1, ..., n.
- Assume women are named $1'$, ..., n'.

Representing the matching.
- Maintain a list of free men (in a stack or queue).
- Maintain two arrays $wife[m]$ and $husband[w]$.
 - if m matched to w, then $wife[m] = w$ and $husband[w] = m$
 - set entry to 0 if unmatched

Men proposing.
- For each man, maintain a list of women, ordered by preference.
- For each man, maintain a pointer to woman in list for next proposal.
Efficient implementation (continued)

Women rejecting/accepting.

- Does woman w prefer man m to man m'?
- For each woman, create *inverse* of preference list of men.
- Constant time access for each query after $O(n)$ preprocessing.

<table>
<thead>
<tr>
<th>pref[]</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
<th>7th</th>
<th>8th</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>inverse[]</th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
<th>4th</th>
<th>5th</th>
<th>6th</th>
<th>7th</th>
<th>8th</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4th</td>
<td>8th</td>
<td>2nd</td>
<td>5th</td>
<td>6th</td>
<td>7th</td>
<td>3rd</td>
<td>1st</td>
</tr>
</tbody>
</table>

For $i = 1$ to n

```
inverse[pref[i]] = i
```
Understanding the solution

For a given problem instance, there may be several stable matchings.
 • Do all executions of GS algorithm yield the same stable matching?
 • If so, which one?

<table>
<thead>
<tr>
<th></th>
<th>1st</th>
<th>2nd</th>
<th>3rd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>Amy</td>
<td>Bertha</td>
<td>Clare</td>
</tr>
<tr>
<td>Yancey</td>
<td>Bertha</td>
<td>Amy</td>
<td>Clare</td>
</tr>
<tr>
<td>Zeus</td>
<td>Amy</td>
<td>Bertha</td>
<td>Clare</td>
</tr>
</tbody>
</table>

an instance with two stable matching: \(M = \{ A-X, B-Y, C-Z \} \) and \(M' = \{ A-Y, B-X, C-Z \} \)
Understanding the solution

Def. Woman \(w \) is a valid partner of man \(m \) if there exists some stable matching in which \(m \) and \(w \) are matched.

Ex.
- Both Amy and Bertha are valid partners for Xavier.
- Both Amy and Bertha are valid partners for Yancey.
- Clare is the only valid partner for Zeus.

<table>
<thead>
<tr>
<th></th>
<th>1(^{st})</th>
<th>2(^{nd})</th>
<th>3(^{rd})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xavier</td>
<td>Amy</td>
<td>Bertha</td>
<td>Clare</td>
</tr>
<tr>
<td>Yancey</td>
<td>Bertha</td>
<td>Amy</td>
<td>Clare</td>
</tr>
<tr>
<td>Zeus</td>
<td>Amy</td>
<td>Bertha</td>
<td>Clare</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1(^{st})</th>
<th>2(^{nd})</th>
<th>3(^{rd})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy</td>
<td>YANCEY</td>
<td>XAVIER</td>
<td>ZEUS</td>
</tr>
<tr>
<td>Bertha</td>
<td>XAVIER</td>
<td>YANCEY</td>
<td>ZEUS</td>
</tr>
<tr>
<td>Clare</td>
<td>XAVIER</td>
<td>YANCEY</td>
<td>ZEUS</td>
</tr>
</tbody>
</table>

An instance with two stable matching: \(M = \{ A-X, B-Y, C-Z \} \) and \(M' = \{ A-Y, B-X, C-Z \} \)
Understanding the solution

Def. Woman \(w \) is a valid partner of man \(m \) if there exists some stable matching in which \(m \) and \(w \) are matched.

Man-optimal assignment. Each man receives best valid partner.
- Is it perfect?
- Is it stable?

Claim. All executions of GS yield man-optimal assignment.

Corollary. Man-optimal assignment is a stable matching!
Man optimality

Claim. GS matching S^* is man-optimal.

Pf. [by contradiction]

• Suppose a man is matched with someone other than best valid partner.
 ➞ some man is rejected by valid partner during GS.
• Men propose in decreasing order of preference
• Let Y be first such man, and let A be the first valid valid woman that rejects him.
• Let S be a stable matching where A and Y are matched.
 • When Y is rejected by A in GS, A forms (or reaffirms) engagement with a man, say Z.
 ➞ A prefers Z to Y.
• Let B be partner of Z in S.
 • Z has not been rejected by any valid partner (including B) at the point when Y is rejected by A.
 • Thus, Z has not yet proposed to B when he proposes to A.
 ➞ Z prefers A to B.
• Thus A–Z is unstable in S, a contradiction. □
Woman pessimality

Q. Does man-optimality come at the expense of the women?
A. Yes.

Woman-pessimal assignment. Each woman receives worst valid partner.

Claim. GS finds **woman-pessimal** stable matching S^*.

Pf. [by contradiction]

- Suppose A–Z matched in S^* but Z is not worst valid partner for A.
- There exists stable matching S in which A is paired with a man, say Y, whom she likes less than Z.

\Rightarrow **A prefers Z to Y.**

- Let B be the partner of Z in S. By man-optimality, A is the best valid partner for Z.

\Rightarrow **Z prefers A to B.**

- Thus, A–Z is an unstable pair in S, a contradiction. □

stable matching S
Deceit: Machiavelli meets Gale-Shapley

Q. Can there be an incentive to misrepresent your preference list?
- Assume you know men’s propose-and-reject algorithm will be run.
- Assume preference lists of all other participants are known.

Fact. No, for any man; yes, for some women.

<table>
<thead>
<tr>
<th>men's preference list</th>
<th>women's preference list</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>X</td>
<td>A</td>
</tr>
<tr>
<td>Y</td>
<td>B</td>
</tr>
<tr>
<td>Z</td>
<td>A</td>
</tr>
</tbody>
</table>

Amy lies

<table>
<thead>
<tr>
<th>men's preference list</th>
<th>women's preference list</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>2nd</td>
</tr>
<tr>
<td>A</td>
<td>Y</td>
</tr>
<tr>
<td>B</td>
<td>X</td>
</tr>
<tr>
<td>C</td>
<td>X</td>
</tr>
</tbody>
</table>
Extensions: matching residents to hospitals

Ex: Men \approx hospitals, Women \approx med school residents.

Variant 1. Some participants declare others as unacceptable.

Variant 2. Unequal number of men and women.

Variant 3. Limited polygamy.

Def. Matching is *unstable* if there is a hospital h and resident r such that:

- h and r are acceptable to each other; and
- Either r is unmatched, or r prefers h to her assigned hospital; and
- Either h does not have all its places filled, or h prefers r to at least one of its assigned residents.
Historical context

National resident matching program (NRMP).

- Centralized clearinghouse to match med-school students to hospitals.
- Began in 1952 to fix unraveling of offer dates.
- Originally used the "Boston Pool" algorithm.
- Algorithm overhauled in 1998.
 - med-school student optimal
 - deals with various side constraints
 (e.g., allow couples to match together)
- 38,000+ residents for 26,000+ positions.

The Redesign of the Matching Market for American Physicians: Some Engineering Aspects of Economic Design

By Alvin E. Roth and Elliott Peranson

We report on the design of the new clearinghouse adopted by the National Resident Matching Program, which annually fills approximately 20,000 jobs for new physicians. Because the market has complementarities between applicants and between positions, the theory of simple matching markets does not apply directly. However, computational experiments show the theory provides good approximations. Furthermore, the set of stable matchings, and the opportunities for strategic manipulation, are surprisingly small. A new kind of "core convergence" result explains this; that each applicant interviews only a small fraction of available positions is important. We also describe engineering aspects of the design process. (JEL C78, B41, J44)
2012 Nobel Prize in Economics

Lloyd Shapley. Stable matching theory and Gale-Shapley algorithm.

Alvin Roth. Applied Gale-Shapley to matching new doctors with hospitals, students with schools, and organ donors with patients.
Lessons learned

Powerful ideas learned in course.
 • Isolate underlying structure of problem.
 • Create useful and efficient algorithms.

Potentially deep social ramifications. [legal disclaimer]
 • Historically, men propose to women. Why not vice versa?
 • Men: propose early and often; be honest.
 • Women: ask out the men.
 • Theory can be socially enriching and fun!
 • COS majors get the best partners (and jobs)!
1. **Representative Problems**

- stable matching
- five representative problems
Interval scheduling

Input. Set of jobs with start times and finish times.

Goal. Find maximum cardinality subset of mutually **compatible** jobs.

A diagram shows intervals for jobs a, b, c, d, e, f, g, and h on a time axis from 0 to 11. Jobs a, b, c, and d have been colored in a lighter shade, indicating they are part of the solution set. Jobs e, f, g, and h are in a darker shade, representing jobs that are not compatible with the selected subset.
Weighted interval scheduling

Input. Set of jobs with start times, finish times, and weights.

Goal. Find maximum weight subset of mutually compatible jobs.
Bipartite matching

Problem. Given a bipartite graph $G = (L \cup R, E)$, find a max cardinality matching.

Def. A subset of edges $M \subseteq E$ is a **matching** if each node appears in exactly one edge in M.
Independent set

Problem. Given a graph $G = (V, E)$, find a max cardinality independent set.

Def. A subset $S \subseteq V$ is independent if for every $(u, v) \in E$, either $u \notin S$ or $v \notin S$ (or both).
Competitive facility location

Input. Graph with weight on each node.

Game. Two competing players alternate in selecting nodes. Not allowed to select a node if any of its neighbors have been selected.

Goal. Select a maximum weight subset of nodes.

Second player can guarantee 20, but not 25.
Five representative problems

Variations on a theme: independent set.

Interval scheduling: $O(n \log n)$ greedy algorithm.
Weighted interval scheduling: $O(n \log n)$ dynamic programming algorithm.
Bipartite matching: $O(n^k)$ max-flow based algorithm.
Independent set: NP-complete.
Competitive facility location: PSPACE-complete.