
‣ R-way tries

‣ ternary search tries

‣ character-based operations

ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

5.2 TRIES

Swype

2

The Parable of Frankie Halfbean

3

Key

Bearman Butter Extrobophile

Dave Chocolate Superpope

Delbert Strawberry Ronald Jenkees

Edith Vanilla My Bloody Valentine

Glaser Cardamom Rx Nightly

James Rocky Road Robots are Supreme

JS Fish The Filthy Reds

Lauren Mint Jon Talabot

Lee Vanilla La(r)va

Lisa Vanilla Blue Peter

Sandra Vanilla Grimes

Swimp Chocolate Sef

Arvind Space Dust Whale Songs

Josh Vanilla Menace to the Mayor

Key

Bearman Butter Extrobophile

Dave Chocolate Superpope

Delbert Strawberry Ronald Jenkees

Edith Vanilla My Bloody Valentine

Glaser Cardamom Rx Nightly

James Rocky Road Robots are Supreme

JS Fish The Filthy Reds
Lauren Mint Jon Talabot

Lee Vanilla La(r)va

Lisa Vanilla Blue Peter

Sandra Vanilla Grimes

Swimp Chocolate Sef

The Parable of Frankie Halfbean

4

Key

Bearman Butter Extrobophile

Dave Chocolate Superpope

Delbert Strawberry Ronald Jenkees

Edith Vanilla My Bloody Valentine

Glaser Cardamom Rx Nightly

James Rocky Road Robots are Supreme

JS Fish The Filthy Reds

Lauren Mint Jon Talabot

Lee Vanilla La(r)va

Lisa Vanilla Blue Peter

Sandra Vanilla Grimes

Swimp Chocolate Sef

Key

Bearman Butter Extrobophile

Dave Chocolate Superpope

Delbert Strawberry Ronald Jenkees

Edith Vanilla My Bloody Valentine

Glaser Cardamom Rx Nightly

James Rocky Road Robots are Supreme

JS Fish The Filthy Reds
Lauren Mint Jon Talabot

Lee Vanilla La(r)va

Lisa Vanilla Blue Peter

Sandra Vanilla Grimes

Swimp Chocolate Sef

Arvind Space Dust Whale Songs

Josh Vanilla Menace to the Mayor

The Parable of Frankie Halfbean

5

Key

Bearman Butter Extrobophile

Dave Chocolate Superpope

Delbert Strawberry Ronald Jenkees

Edith Vanilla My Bloody Valentine

Glaser Cardamom Rx Nightly

James Rocky Road Robots are Supreme

JS Fish The Filthy Reds

Lauren Mint Jon Talabot

Lee Vanilla La(r)va

Lisa Vanilla Blue Peter

Sandra Vanilla Grimes

Swimp Chocolate Sef

Key

Arvind Space Dust Whale Songs

Bearman Butter Extrobophile

Dave Chocolate Superpope

Delbert Strawberry Ronald Jenkees

Edith Vanilla My Bloody Valentine

Glaser Cardamom Rx Nightly

James Rocky Road Robots are Supreme

Josh Vanilla Menace to the Mayor

JS Fish The Filthy Reds
Lauren Mint Jon Talabot

Lee Vanilla La(r)va

Lisa Vanilla Blue Peter

Sandra Vanilla Grimes

Swimp Chocolate Sef

String Symbol Tables.

・Fast basic operations.

– Search.

– Insert.

– Delete.

・Support advanced operations.

– Ordered ST operations.

– String operations.

Summary of the performance of symbol-table implementations

Order of growth of the frequency of operations.

Q. Can we do better?

A. Yes, if we can avoid examining the entire key, as with string sorting.

6

implementation

typical case
ordered operations

implementation

search insert delete
operations on keys

red-black BST log N log N log N yes compareTo()

hash table 1 † 1 † 1 † no
equals()
hashCode()

† under uniform hashing assumption

Is hog in the tree?

7

SHAI HULUD

MAIL

MAID

MAIAS

MAIA

EBOOKS

ARR HORSE

HORPE

Given N long random strings from an R character alphabet stored in a LLRB

and a search key X. Give an order of growth in terms of N for the following:

・What is the maximum number of string compares that you must perform

to see if X is inside the tree?

・At the root, how many characters of X must we compare on average to

determine if X is at the root?

・Extra: If the search makes it to a leaf node, how many characters of X

must we compare on average to determine if X is at the leaf?

HOG

X

Given N long random strings from an R character alphabet stored in a LLRB

and a search key X. Give an order of growth in terms of N for the following:

・Max number of string compares: lg N.

・Average number of character compares at root:

– Same as comparing two totally random strings.

– Overall: Constant in N. 8

2 lg N

SHAI HULUD

MAIL

MAID

MAIAS

MAIA

EBOOKS

ARR HORSE

HORPE

R/(R-1)

HOG

Is hog in the tree?

X

– Chance of zero character match: 1-1/R

– Chance of one character match: 1/R*(1-1/R), ...

– Calculate expected value for number of characters: R/(R-1)

Given N long random strings from an R character alphabet stored in a LLRB

and a search key X. Give an order of growth in terms of N for the following:

・Max number of string compares: lg N.

・Average number of character compares at root:

– Same as comparing two totally random strings.

– Overall: Constant in N. 9

lg N

SHAI HULUD

MAIL

MAID

MAIAS

MAIA

EBOOKS

ARR HORSE

HORPE

1

HOG

Is hog in the tree?

X

Given N long random strings from an R character alphabet stored in a LLRB

and a search key X. Give an order of growth in terms of N for the following:

・Average number of character compares at leaf:

– Observation: Out of N strings, the leaf string is the closest string to X.

– Expected number of leaves that match in first character: N/R.

– Expected number of leaves that match in the first k characters: N/Rk

– How many characters before only one node matches? When k = logR N.

– Order of growth: lg N

10

SHAI HULUD

MAIL

MAID

MAIAS

MAIA

EBOOKS

ARR HORSE

HORPE

HOG

X

Is hog in the tree?

logR N

lg N

1

Given N long random strings from an R character alphabet stored in a LLRB

and a search key X. Give an order of growth in terms of N for the following:

・Average number of character compares at leaf:

– Observation: Out of N strings, the leaf string is the closest string to X.

– Expected number of leaves that match in first character: N/R.

– Expected number of leaves that match in the first k characters: N/Rk

– How many characters before only one node matches? When k = logR N.

– Order of growth: lg N

11

SHAI HULUD

MAIL

MAID

MAIAS

MAIA

EBOOKS

ARR HORSE

HORPE

HOG

X

Is hog in the tree?

lg N

1

lg N

Given N long random strings from an R character alphabet stored in a LLRB

and a search key X, give an order of growth in terms of N for the following:

・Max number of string compares: lg N.

・Average number of character compares at root: Constant (in N).

・Average number of character compares at leaf: lg N.

12

lg N

SHAI HULUD

MAIL

MAID

MAIAS

MAIA

EBOOKS

ARR HORSE

HORPE

1

HOG

X

Is hog in the tree? (order of growth)

lg N

・Total number of compares on a miss: lg2 N

LLRB String Symbol Table

13

character accesses (typical case)character accesses (typical case)

implementation
search

hit

search

miss
insert

space

(references)

red-black BST L + lg 2 N lg 2 N lg 2 N 4N

lg N

SHAI HULUD

MAIL

MAID

MAIAS

MAIA

EBOOKS

ARR HORSE

HORPE

1

lg N

Assuming no collisions, given N random strings from an R character

alphabet stored in a hash table and a query string of length L, give an order

of growth for:

・The number of characters examined on a search hit

・How many on a search miss

For the linear probing hash table above:

・Which key will result in the most character examinations on a search

hit?
14

Search in a Hash Table

MAIA MAIL MAID HORPE ARR HORSE

Vanilla Mint Vanilla Mint Vanilla Vanilla

key hash

MAIA 0

MAIL 2

MAID 2

HORPE 5

ARR 6

HORSE 7
HOG

L

Assuming no collisions, given N random strings from an R character

alphabet stored in a hash table and a query string of length L, give an order

of growth for:

・The number of characters examined on a search hit: L

・How many on a search miss:

For the linear probing hash table above:

・Which key will result in the most character examinations on a search

hit?
15

Search in a Hash Table

MAIA MAIL MAID HORPE ARR HORSE

Vanilla Mint Vanilla Mint Vanilla Vanilla

key hash

MAIA 0

MAIL 2

MAID 2

HORPE 5

ARR 6

HORSE 7
HOG

L

Assuming no collisions, given N random strings from an R character

alphabet stored in a hash table and a query string of length L, give an order

of growth for:

・The number of characters examined on a search hit: L

・How many on a search miss: L

For the linear probing hash table above:

・Which key will result in the most character examinations on a search

hit?
16

Search in a Hash Table

MAIA MAIL MAID HORPE ARR HORSE

Vanilla Mint Vanilla Mint Vanilla Vanilla

key hash

MAIA 0

MAIL 2

MAID 2

HORPE 5

ARR 6

HORSE 7
HOG

L

Assuming no collisions, given N random strings from an R character

alphabet stored in a hash table and a query string of length L, give an order

of growth for:

・The number of characters examined on a search hit: L

・How many on a search miss: L

For the linear probing hash table above:

・Which key will result in the most character examinations on a search

hit: MAID
17

Search in a Hash Table

key hash

MAIA 0

MAIL 2

MAID 2

HORPE 5

ARR 6

HORSE 7

MAIA MAIL MAID HORPE ARR HORSE

Vanilla Mint Vanilla Mint Vanilla Vanilla

HOG

L

18

String symbol table implementations cost summary

Challenges.

・Efficient performance for string keys.

・Support common string operations (ordered ST and beyond).

Parameters

• N = number of strings

• L = length of string

• R = radix

file size words distinct

moby.txt 1.2 MB 210 K 32 K

actors.txt 82 MB 11.4 M 900 K

character accesses (typical case)character accesses (typical case)character accesses (typical case)character accesses (typical case) dedupdedup

implementation
search

hit

search

miss
insert

space

(references)
moby.txt actors.txt

red-black BST L + lg 2 N lg 2 N lg 2 N 4N 1.40 97.4

hashing

(linear probing)
L L L 4N to 16N 0.76 40.6

Between 1/8th and 1/2 full

String symbol table. Symbol table specialized to string keys.

Goal. Faster than hashing, more flexible than BSTs.

19

String symbol table basic API

 public class StringST<Value> public class StringST<Value>

StringST()StringST() create an empty symbol table

void put(String key, Value val)put(String key, Value val) put key-value pair into the symbol table

Value get(String key)get(String key) return value paired with given key

void delete(String key)delete(String key) delete key and corresponding value

⋮⋮

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ R-way tries

‣ ternary search tries

‣ character-based operations

5.2 TRIES

21

22

Tries. [from retrieval, but pronounced "try"]

・Store characters in nodes (not keys).

・Each node has R children, one for each possible character.

・For now, we do not draw null links.

23

Tries

e

r

e

a l

l

s

b

y

o

h

e

t

7

50

3

1

6

4

s

l

l

e

h

s

root

link to trie for all keys

that start with s
link to trie for all keys

that start with she

value for she in node

corresponding to last

key character

key value

by 4

sea 6

sells 1

she 0

shells 3

shore 7

the 5

for now we do not

draw null links

Follow links corresponding to each character in the key.

・Search hit: node where search ends has a non-null value.

・Search miss: reach null link or node where search ends has null value.

24

Search in a trie

e

r

get("shells")

e

a l

l

s

b

y

o

h

e

t

7

50

3

1

6

4

ss

ll

ll

ee

hh

ss

return value associated

with last key character

(return 3)

3

Follow links corresponding to each character in the key.

・Search hit: node where search ends has a non-null value.

・Search miss: reach null link or node where search ends has null value.

25

Search in a trie

e

r

get("she")

e

a l

l

s

b

y

o

h

e

t

7

50

3

1

6

4

s

l

l

ee

hh

ss

search may terminated

at an intermediate node

(return 0)

0

Follow links corresponding to each character in the key.

・Search hit: node where search ends has a non-null value.

・Search miss: reach null link or node where search ends has null value.

26

Search in a trie

e

r

get("shell")

e

a l

l

s

b

y

o

h

e

t

7

50

3

1

6

4

s

ll

ll

ee

hh

ss

no value associated

with last key character

(return null)

Follow links corresponding to each character in the key.

・Search hit: node where search ends has a non-null value.

・Search miss: reach null link or node where search ends has null value.

27

Search in a trie

e

r

get("shelter")

e

a l

l

s

b

y

o

h

e

t

7

50

3

1

6

4

s

l

ll

ee

hh

ss

no link to t
(return null)

Follow links corresponding to each character in the key.

・Encounter a null link: create new node.

・Encounter the last character of the key: set value in that node.

28

Insertion into a trie

e

r

put("shore", 7)

e

a l

l

s

e

l

s

b

y

l

o

h

e

t

hh

ss

7

50

3

1

6

4

Trie construction demo

trie

e

Trie construction demo

put("she", 0)

h

s

0

value is in node

corresponding to

last character

key is sequence

of characters from

root to value

e

Trie construction demo

trie

h

s

0

h

e

Trie construction demo

trie

s

0

h

e

Trie construction demo

put("sells", 1)

s

l

l

e

ss

1

0

h

e

Trie construction demo

trie

l

l

s

s

e

1

0

h

e

Trie construction demo

trie

l

l

s

s

e

0

1

h

ea

Trie construction demo

put("sea", 2)

l

l

s

ee

ss

2

1

0

h

ea

Trie construction demo

trie

l

l

s

s

e

1

2 0

a

Trie construction demo

put("shells", 3)

l

l

s

e

s

l

l

ee

hh

ss

3

1

2 0

a

Trie construction demo

trie

l

l

s

l

s

s

l

he

e

3

1

2 0

y

b

a

Trie construction demo

put("by", 4)

l

l

s

l

s

s

l

he

e

4

3

1

2 0

b

y

a

Trie construction demo

trie

l

l

s

l

s

s

l

he

e

3

1

2

4

0

b

y

a

Trie construction demo

put("the", 5)

l

l

s

l

s

s

l

he

e e

h

t

5

3

1

2

4

0

a

Trie construction demo

trie

e

l

l

s

l

s

b

y

s

l

h h

t

e e 5

3

1

2

4

0

2a

Trie construction demo

put("sea", 6)

l

l

s

e

l

s

b

y

l

h h

e

t

a

ee

ss

6

overwrite

old value with

new value

5

3

1

4

0

Trie construction demo

trie

e

a l

l

s

e

l

s

b

y

s

l

h h

e

t

5

3

1

6

4

0

Trie construction demo

trie

e

a l

l

s

e

l

s

b

y

s

l

h h

e

t

3

1

6

4

0 5

e

r

Trie construction demo

put("shore", 7)

e

a l

l

s

e

l

s

b

y

l

o

h

e

t

hh

ss

7

5

3

1

6

4

0

Trie construction demo

trie

e

a l

l

s

e

l

s

b

y

s

l

o

r

e

h

t

h

e 5

7

3

1

6

4

0

Trie construction demo

trie

e

a l

l

s

e

l

s

b

y

s

l

o

r

e

h

t

h

e 5

7

3

1

6

4

0

To delete a key-value pair:

・Find the node corresponding to key and set value to null.

・If node has null value and all null links, remove that node (and recur).

3ss
50

Deletion in an R-way trie

e

r

e

a l

l

s

b

y

o

h

e

t

7

50

1

6

4

ll

ll

ee

hh

ss

delete("shells")

set value to null

To delete a key-value pair:

・Find the node corresponding to key and set value to null.

・If node has null value and all null links, remove that node (and recur).

51

Deletion in an R-way trie

e

r

delete("shells")

e

a l

l

s

b

y

o

h

e

t

7

50

1

6

4

s

s

l

l

e

h

s

null value and links

(delete node)

52

Trie representation: Java implementation

Node. A value, plus references to R nodes.

private static class Node
{
 private Object value;
 private Node[] next = new Node[R];
}

Trie representation

each node has
an array of links

and a value

characters are implicitly
defined by link index

s

h

e 0

e

l

l

s 1

a

s

h

e

e

l

l

s

a
0

1

22

neither keys nor

characters are

explicitly stored

use Object instead of Value since

no generic array creation in Java

Trie memory usage

e

a l

l

s

e

l

s

b

y

s

l

o

r

e

h

t

h

e 5

7

3

1

6

4

0

How much memory does the trie above use? There are 7 keys, 19
characters, and the alphabet is 256 characters.
A. > 100 bytes [150927] C. > 10000 bytes [150949]
B. > 1000 bytes [150933]

pollEv.com/jhug text to 37607

key value

by 4

sea 6

sells 1

she 0

shells 3

shore 7

the 5

Trie memory usage

e

a l

l

s

e

l

s

b

y

s

l

o

r

e

h

t

h

e 5

7

3

1

6

4

0

How much memory does the trie above use?
C. > 10000 bytes

Every node has 256 links, each link is 8 bytes. With 19 nodes,
this comes to at least 19*8*256 which is more than 10 kilobytes.

pollEv.com/jhug text to 37607

key value

by 4

sea 6

sells 1

she 0

shells 3

shore 7

the 5

Given a search string of length L, and a trie of N random nodes on an R character

alphabet:

・What is the average number of nodes examined on a search hit?

・What is the average number of nodes examined on a search miss?
55

Trie timing analysis

e

a l

l

s

e

l

s

b

y

s

l

o

r

e

h

t

h

e 5

7

3

1

6

4

0

key value

by 4

sea 6

sells 1

she 0

shells 3

shore 7

the 5

Given a search string of length L, and a trie of N random nodes on an R character

alphabet:

・What is the average number of nodes examined on a search hit?

– Always L, so average is L.

・What is the average number of nodes examined on a search miss?

56

Trie timing analysis

e

a l

l

e

l

b

y

s

o

r

h

t

h

e 56

4

0

Given a search string of length L, and a trie of N random nodes on an R character

alphabet:

・What is the average number of nodes examined on a search hit?

– Always L, so average is L.

・What is the average number of nodes examined on a search miss? logR N

– Every level deep reduces the search space by a factor of R.

– With random keys, tree will be of depth logR N.
57

Trie timing analysis

e

a l

l

e

l

b

y

s

o

r

h

t

h

e 56

4

0

58

String symbol table implementations cost summary

R-way trie.

・Method of choice for small R.

・Too much memory for large R.

Challenge. Use less memory, e.g., 65,536-way trie for Unicode!

character accesses (typical case)character accesses (typical case)character accesses (typical case)character accesses (typical case) dedupdedup

implementation
search

hit

search

miss
insert

space

(references)
moby.txt actors.txt

red-black BST L + lg 2 N lg 2 N lg 2 N 4N 1.40 97.4

hashing

(linear probing)
L L L 4N to 16N 0.76 40.6

R-way trie L lg N L (R+1) N 1.12
out of

memory

sɹǝʇʇǝן ǝɥʇ ןןɐ ɟo
suoısɹǝʌ uʍop-ǝpısdn

sɐɥ ǝpoɔıun

59

60

61

62

63

64

public class TrieST<Value>
{
 private static final int R = 256;
 private Node root = new Node();

 private static class Node
 { /* see previous slide */ }

 public void put(String key, Value val)
 { root = put(root, key, val, 0); }

 private Node put(Node x, String key, Value val, int d)
 {
 if (x == null) x = new Node();
 if (d == key.length()) { x.val = val; return x; }
 char c = key.charAt(d);
 x.next[c] = put(x.next[c], key, val, d+1);
 return x;
 }

 ⋮

65

R-way trie

extended ASCII

 ⋮

 public boolean contains(String key)
 { return get(key) != null; }

 public Value get(String key)
 {
 Node x = get(root, key, 0);
 if (x == null) return null;
 return (Value) x.val;
 }

 private Node get(Node x, String key, int d)
 {

 }

}

66

R-way trie

 ⋮

 public boolean contains(String key)
 { return get(key) != null; }

 public Value get(String key)
 {
 Node x = get(root, key, 0);
 if (x == null) return null;
 return (Value) x.val;
 }

 private Node get(Node x, String key, int d)
 {
 if (x == null) return null;
 if (d == key.length()) return x;
 char c = key.charAt(d);
 return get(x.next[c], key, d+1);
 }

}
67

R-way trie

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ R-way tries

‣ ternary search tries

‣ character-based operations

5.2 TRIES

69

Ternary search tries

・Store characters and values in nodes (not keys).

・Each node has 3 children: smaller (left), equal (middle), larger (right).

Jon L. Bentley* Robert Sedgewick#

Abstract
We present theoretical algorithms for sorting and

searching multikey data, and derive from them practical C
implementations for applications in which keys are charac-
ter strings. The sorting algorithm blends Quicksort and
radix sort; it is competitive with the best known C sort
codes. The searching algorithm blends tries and binary
search trees; it is faster than hashing and other commonly
used search methods. The basic ideas behind the algo-
rithms date back at least to the 1960s but their practical
utility has been overlooked. We also present extensions to
more complex string problems, such as partial-match
searching.

1. Introduction
Section 2 briefly reviews Hoare’s [9] Quicksort and

binary search trees. We emphasize a well-known isomor-
phism relating the two, and summarize other basic facts.

The multikey algorithms and data structures are pre-
sented in Section 3. Multikey Quicksort orders a set of II
vectors with k components each. Like regular Quicksort, it
partitions its input into sets less than and greater than a
given value; like radix sort, it moves on to the next field
once the current input is known to be equal in the given
field. A node in a ternary search tree represents a subset of
vectors with a partitioning value and three pointers: one to
lesser elements and one to greater elements (as in a binary
search tree) and one to equal elements, which are then pro-
cessed on later fields (as in tries). Many of the structures
and analyses have appeared in previous work, but typically
as complex theoretical constructions, far removed from
practical applications. Our simple framework opens the
door for later implementations.

The algorithms are analyzed in Section 4. Many of the
analyses are simple derivations of old results.

Section 5 describes efficient C programs derived from
the algorithms. The first program is a sorting algorithm

Fast Algorithms for Sorting and Searching Strings

that is competitive with the most efficient string sorting
programs known. The second program is a symbol table
implementation that is faster than hashing, which is com-
monly regarded as the fastest symbol table implementa-
tion. The symbol table implementation is much more
space-efficient than multiway trees, and supports more
advanced searches.

In many application programs, sorts use a Quicksort
implementation based on an abstract compare operation,
and searches use hashing or binary search trees. These do
not take advantage of the properties of string keys, which
are widely used in practice. Our algorithms provide a nat-
ural and elegant way to adapt classical algorithms to this
important class of applications.

Section 6 turns to more difficult string-searching prob-
lems. Partial-match queries allow “don’t care” characters
(the pattern “so.a”, for instance, matches soda and sofa).
The primary result in this section is a ternary search tree
implementation of Rivest’s partial-match searching algo-
rithm, and experiments on its performance. “Near neigh-
bor” queries locate all words within a given Hamming dis-
tance of a query word (for instance, code is distance 2
from soda). We give a new algorithm for near neighbor
searching in strings, present a simple C implementation,
and describe experiments on its efficiency.

Conclusions are offered in Section 7.

2. Background
Quicksort is a textbook divide-and-conquer algorithm.

To sort an array, choose a partitioning element, permute
the elements such that lesser elements are on one side and
greater elements are on the other, and then recursively sort
the two subarrays. But what happens to elements equal to
the partitioning value? Hoare’s partitioning method is
binary: it places lesser elements on the left and greater ele-
ments on the right, but equal elements may appear on
either side.

* Bell Labs, Lucent Technologies, 700 Mountam Avenue, Murray Hill.
NJ 07974; jlb@research.bell-labs.com.

Princeton University. Princeron. NJ. 08514: rs@cs.princeton.edu.

Algorithm designers have long recognized the desir-
irbility and difficulty of a ternary partitioning method.
Sedgewick [22] observes on page 244: “Ideally, we would
llke to get all [equal keys1 into position in the file, with all

360

・Store characters and values in nodes (not keys).

・Each node has 3 children: smaller (left), equal (middle), larger (right).

70

Ternary search tries

TST representation of a trie

each node has
three links

link to TST for all keys
that start with s

link to TST for all keys
that start with
a letter before s

t

h

e 8

a

r

e 12

s

h u

e 10

e

l

l

s 11

l

l

s 15

r 0

e

l

y 13

o

7

r

e

b

y 4

a 14

t

h

e 8

a

r

e 12

s

h
u

e 10

e

l

l

s 11

l

l

s 15

r 0

e

l

y 13

o

7

r

e

b

y 4

a
14

71

Search hit in a TST

o

r

e 7

t

h

e 5

b

y 4

a

get("sea")

e

h

s

e

l

l

s 1

6

l

s

l

3

0

a

l

e

h

s

return value associated

with last key character

6

Note: Key is “sea”, not “shela”!

72

Search miss in a TST

o

r

e 7

t

h

e 5

b

y 4

a

get("shelter")

e

h

s

e

l

l

s 1

6

l

s

l

3

0e

h

s

l

l

no link to t

(return null)

Ternary search trie construction demo

73

ternary search trie

Ternary search trie construction demo

74

put("she", 0)

h

s

value is in node

corresponding to

last character

key is sequence

of characters from

root to value

using middle links

e 0

Ternary search trie construction demo

75

put("she", 0)

e

h

s

0

l

e

Ternary search trie construction demo

76

put("sells", 1)

e

h

s

s 1

0

l

h

s

Ternary search trie construction demo

77

ternary search trie

e

h

s

e

l

l

s 1

0

a2

ll

l

s 1

ee

Ternary search trie construction demo

78

put("sea", 2)

e

h

s

0

h

s

a

Ternary search trie construction demo

79

ternary search trie

e

h

s

e

l

l

s 1

2

0

s 3

l

a

Ternary search trie construction demo

80

put("shells", 3)

e

h

s

e

l

l

s 1

2

l

0e

h

s

a

Ternary search trie construction demo

81

ternary search trie

e

h

s

e

l

l

s 1

2

l

s

l

3

0

b

y 4

a

Ternary search trie construction demo

82

put("by", 4)

e

h

s

e

l

l

s 1

2

l

s

l

3

0

s

b

y 4

a

Ternary search trie construction demo

83

ternary search trie

e

h

s

e

l

l

s 1

2

l

s

l

3

0

e 5

h

tb

y 4

a

Ternary search trie construction demo

84

put("the", 5)

e

h

s

e

l

l

s 1

2

l

s

l

3

0

s

t

h

e 5

b

y 4

a

Ternary search trie construction demo

85

ternary search trie

e

h

s

e

l

l

s 1

2

l

s

l

3

0

a

l

l

s 1

26

overwrite

old value with

new value

a

l

ee

t

h

e 5

b

y 4

Ternary search trie construction demo

86

put("sea", 6)

e

h

s

l

s

l

3

0

h

s

t

h

e 5

b

y 4

a

Ternary search trie construction demo

87

ternary search trie

e

h

s

e

l

l

s 1

6

l

s

l

3

0

e 7

r

o

t

h

e 5

b

y 4

a

Ternary search trie construction demo

88

put("shore", 7)

e

h

s

e

l

l

s 1

6

l

s

l

3

0e

h

s

o

r

e 7

t

h

e 5

b

y 4

a

Ternary search trie construction demo

89

ternary search trie

e

h

s

e

l

l

s 1

6

l

s

l

3

0

Ternary search trie construction demo

90

ternary search trie

e

a

l

l

s

e

l

s

b

y h

l

o

r

e

t

h

e

s

5

7

3

1

6

4

0

Ternary search trie construction demo

91

ternary search trie

e

a

l

l

s

e

l

s

b

y h

l

o

r

e

t

h

e

s

5

7

3

1

6

4

0

Follow links corresponding to each character in the key.

・If less, take left link; if greater, take right link.

・If equal, take the middle link and move to the next key character.

Search hit. Node where search ends has a non-null value.

Search miss. Reach a null link or node where search ends has null value.

92

Search in a TST

TST search example

return value
associated with

last key character

match: take middle link,
move to next char

mismatch: take left or right link,
 do not move to next char

t

h

e 8

a

r

e 12

s

h
u

e 10

e

l

l

s 11

l

l

s 15

r

e

l

y 13

o

7

r

e

b

y 4

a14

get("sea")

A TST node is five fields:

・A value.

・A character c.

・A reference to a left TST.

・A reference to a middle TST.

・A reference to a right TST.

93

TST representation in Java

private class Node
{
 private Value val;
 private char c;
 private Node left, mid, right;
}

Trie node representations

s

e h u

link for keys
that start with s

link for keys
that start with su

h
ue

standard array of links (R = 26) ternary search tree (TST)

s

Ternary search trie construction demo

94

ternary search trie

e

a

l

l

s

e

l

s

b

y

h

l

o

r

e

t

h

e

s

5

7
3

1

6

4 0

How much memory does the trie above use (there are 19 nodes)?
A. > 200 bytes [153565] C. > 20000 bytes [153568]
B. > 2000 bytes [153567]

pollEv.com/jhug text to 37607

private class Node
{
 private Value val;
 private char c;
 private Node left, mid, right;
}

Ternary search trie construction demo

95

ternary search trie

e

a

l

l

s

e

l

s

b

y

h

l

o

r

e

t

h

e

s

5

7
3

1

6

4 0

How much memory does the trie above use (there are 19 nodes)?
A. >200 bytes

At 64 bytes per node, we fall short of 2000 bytes per trie.

pollEv.com/jhug text to 37607

private class Node
{
 private Value val;
 private char c;
 private Node left, mid, right;
}

26-way trie. 26 null links in each leaf.

TST. 3 null links in each leaf.

96

26-way trie vs. TST

26-way trie (1035 null links, not shown)

TST (155 null links)

now
for
tip
ilk
dim
tag
jot
sob
nob
sky
hut
ace
bet
men
egg
few
jay
owl
joy
rap
gig
wee
was
cab
wad
caw
cue
fee
tap
ago
tar
jam
dug
and

97

TST: Java implementation

public class TST<Value>
{
 private Node root;

 private class Node
 { /* see previous slide */ }

 public void put(String key, Value val)
 { root = put(root, key, val, 0); }

 private Node put(Node x, String key, Value val, int d)
 {
 char c = key.charAt(d);
 if (x == null) { x = new Node(); x.c = c; }
 if (c < x.c) x.left = put(x.left, key, val, d);
 else if (c > x.c) x.right = put(x.right, key, val, d);
 else if (d < key.length() - 1) x.mid = put(x.mid, key, val, d+1);
 else x.val = val;
 return x;
 }

 ⋮

98

String symbol table implementation cost summary

Remark. Can build balanced TSTs via rotations to achieve L + log N
worst-case guarantees.

Bottom line. TST is as fast as hashing (for string keys), space efficient.

character accesses (typical case)character accesses (typical case)character accesses (typical case)character accesses (typical case) dedupdedup

implementation
search

hit

search

miss
insert

space

(references)
moby.txt actors.txt

red-black BST L + lg 2 N lg 2 N lg 2 N 4 N 1.40 97.4

hashing

(linear probing)
L L L 4 N to 16 N 0.76 40.6

R-way trie L lg N L (R + 1) N 1.12
out of

memory

TST L + lg N lg N L + lg N 4 N 0.72 38.7

99

T9 texting

Goal. Type text messages on a phone keypad.

Multi-tap input. Enter a letter by repeatedly pressing a key.

Ex. hello: 4 4 3 3 5 5 5 5 5 5 6 6 6

T9 text input.

・Find all words that correspond to given sequence of numbers.

・Press 0 to see all completion options.

Ex. hello: 4 3 5 5 6

Q. How to implement? www.t9.com

"a much faster and more fun way to enter text"

Armstrong and Miller

100

Trie

Design a string symbol table for handling t9 texting.

・What are the keys?

・What are the values?

・Which implementation is best?

Bonus: Can you think of a case where we’d want a red-black BST or hash table?
101

character accesses (typical case)character accesses (typical case)character accesses (typical case)character accesses (typical case)

implementation
search

hit

search

miss
insert

space

(references)

red-black BST L + lg 2 N lg 2 N lg 2 N 4 N

hashing

(linear probing)
L L L 4 N to 16 N

R-way trie L lg N L (R + 1) N

TST L + lg N lg N L + lg N 4 N

www.t9.com

Trie

Design a string symbol table for handling t9 texting.

・What are the keys?

・What are the values?

・Which implementation is best?

Bonus: Can you think of a case where we’d want a red-black BST or hash table?
102

character accesses (typical case)character accesses (typical case)character accesses (typical case)character accesses (typical case)

implementation
search

hit

search

miss
insert

space

(references)

red-black BST L + lg 2 N lg 2 N lg 2 N 4 N

hashing

(linear probing)
L L L 4 N to 16 N

R-way trie L lg N L (R + 1) N

TST L + lg N lg N L + lg N 4 N

www.t9.com

Trie

Design a string symbol table for handling t9 texting.

・What are the keys? Strings from the alphabet {2, ..., 9}

・What are the values? Sets of english words, e.g. {“SHIV”, “PIGT”}

・Which implementation is best?

– R-way trie is probably best.

Bonus: Can you think of a case where we’d want a red-black BST or hash table?
103

character accesses (typical case)character accesses (typical case)character accesses (typical case)character accesses (typical case)

implementation
search

hit

search

miss
insert

space

(references)

red-black BST L + lg 2 N lg 2 N lg 2 N 4 N

hashing

(linear probing)
L L L 4 N to 16 N

R-way trie L lg N L (R + 1) N

TST L + lg N lg N L + lg N 4 N

www.t9.com

104

A letter to t9.com

To: info@t9support.com
Date: Tue, 25 Oct 2005 14:27:21 -0400 (EDT)

Dear T9 texting folks,

I enjoyed learning about the T9 text system
from your webpage, and used it as an example
in my data structures and algorithms class.
However, one of my students noticed a bug
in your phone keypad

 http://www.t9.com/images/how.gif

Somehow, it is missing the letter 's'. (!)

Just wanted to bring this information to
your attention and thank you for your website.

Regards,
Kevin

where the @#$% is the 's' ???

105

A world without 's' ?

To: "'Kevin Wayne'" <wayne@CS.Princeton.EDU>
Date: Tue, 25 Oct 2005 12:44:42 -0700

Thank you Kevin.

I am glad that you find T9 o valuable for your
cla. I had not noticed thi before. Thank for
writing in and letting u know.

Take care,

Brooke nyder
OEM Dev upport
AOL/Tegic Communication
1000 Dexter Ave N. uite 300
eattle, WA 98109

ALL INFORMATION CONTAINED IN THIS EMAIL IS CONSIDERED
CONFIDENTIAL AND PROPERTY OF AOL/TEGIC COMMUNICATIONS

106

TST with R2 branching at root

Hybrid of R-way trie and TST.

・Do R 2-way branching at root.

・Each of R 2 root nodes points to a TST.

Q. What about one- and two-letter words?

TST TST TST TSTTST

…

array of 262 roots

aa ab ac zy zz

107

String symbol table implementation cost summary

Bottom line. Faster than hashing for our benchmark client.

character accesses (typical case)character accesses (typical case)character accesses (typical case)character accesses (typical case) dedupdedup

implementation
search

hit

search

miss
insert

space

(references)
moby.txt actors.txt

red-black BST L + lg 2 N lg 2 N lg 2 N 4 N 1.40 97.4

hashing

(linear probing)
L L L 4 N to 16 N 0.76 40.6

R-way trie L lg N L (R + 1) N 1.12
out of

memory

TST L + lg N lg N L + lg N 4 N 0.72 38.7

TST with R2 L + lg N lg N L + lg N 4 N + R2 0.51 32.7

108

TST vs. hashing

Hashing.

・Need to examine entire key.

・Search hits and misses cost about the same.

・Performance relies on hash function.

・Does not support ordered symbol table operations.

TSTs.

・Works only for strings (or digital keys).

・Only examines just enough key characters.

・Search miss may involve only a few characters.

・Supports ordered symbol table operations (plus others!).

Bottom line. TSTs are:

・Faster than hashing (especially for search misses).

・More flexible than red-black BSTs. [stay tuned]

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ R-way tries

‣ ternary search tries

‣ character-based operations

5.2 TRIES

Find all keys in a symbol table starting with a given prefix.

Ex. Autocomplete in a cell phone, search bar, text editor, or shell.

・User types characters one at a time.

・System reports all matching strings.

110

Prefix matches

Character-based operations. The string symbol table API supports several

useful character-based operations.

Prefix match [autocomplete]. Keys with prefix sh: she, shells, and shore.

Wildcard match [crosswords]. Keys that match IR..E: IRATE and IRENE.

Longest prefix [routing]. Key that is the longest prefix of shellsort: shells.

111

String symbol table API

key value

by 4

sea 6

sells 1

she 0

shells 3

shore 7

the 5

To iterate through all keys in sorted order:

・Do inorder traversal of trie; add keys encountered to a queue.

・Maintain sequence of characters on path from root to node.

112

Warmup: ordered iteration

o

r

e 7

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

b
by
s

se
sea
sel
sell

sells
sh
she

shell
shells

sho
shor
shore

t
th

the

by

by sea

by sea sells

by sea sells she

by sea sells she shells

by sea sells she shells shore

by sea sells she shells shore the

Collecting the keys in a trie (trace)

key q

keysWithPrefix(""); keys()

To iterate through all keys in sorted order:

・Do inorder traversal of trie; add keys encountered to a queue.

・Maintain sequence of characters on path from root to node.

・Fill in the blanks below.

113

Ordered iteration: Java implementation

public Iterable<String> keys()
{
 Queue<String> queue = new Queue<String>();
 collect(root, "", queue);
 return queue;
}

private void collect(Node x, String prefix, Queue<String> q)
{
 if (x == null) return;
 if (x.val != null) ??????????????
 for (char c = 0; c < R; c++)
 collect(??????????????);
}

sequence of characters

on path from root to x

private static class Node
{
 private Object val;
 private Node[] next = new Node[R];
}

To iterate through all keys in sorted order:

・Do inorder traversal of trie; add keys encountered to a queue.

・Maintain sequence of characters on path from root to node.

・Fill in the blanks below.

114

Ordered iteration: Java implementation

public Iterable<String> keys()
{
 Queue<String> queue = new Queue<String>();
 collect(root, "", queue);
 return queue;
}

private void collect(Node x, String prefix, Queue<String> q)
{
 if (x == null) return;
 if (x.val != null) ??????????????
 for (char c = 0; c < R; c++)
 collect(??????????????);
}

sequence of characters

on path from root to x

private static class Node
{
 private Object val;
 private Node[] next = new Node[R];
}

To iterate through all keys in sorted order:

・Do inorder traversal of trie; add keys encountered to a queue.

・Maintain sequence of characters on path from root to node.

・Fill in the blanks below.

115

Ordered iteration: Java implementation

public Iterable<String> keys()
{
 Queue<String> queue = new Queue<String>();
 collect(root, "", queue);
 return queue;
}

private void collect(Node x, String prefix, Queue<String> q)
{
 if (x == null) return;
 if (x.val != null) q.enqueue(R);
 for (char c = 0; c < R; c++)
 collect(x.next[c], prefix + c, q);
}

sequence of characters

on path from root to x

Find all keys in a symbol table starting with a given prefix.

116

Prefix matches in an R-way trie

public Iterable<String> keysWithPrefix(String prefix)
{
 Queue<String> queue = new Queue<String>();
 Node x = get(root, prefix, 0);
 collect(x, prefix, queue);
 return queue;
}

root of subtrie for all strings

beginning with given prefix

o

r

e 7

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

find subtrie for all
keys beginning with "sh"

o

r

e 7

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

collect keys
in that subtrie

keysWithPrefix("sh");

Pre!x match in a trie

sh
she
shel
shell
shells

sho
shor
shore

she

she shells

she shells shore

key q

o

r

e 7

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

find subtrie for all
keys beginning with "sh"

o

r

e 7

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

collect keys
in that subtrie

keysWithPrefix("sh");

Pre!x match in a trie

sh
she
shel
shell
shells

sho
shor
shore

she

she shells

she shells shore

key qkey queue

o

r

e 7

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

find subtrie for all
keys beginning with "sh"

o

r

e 7

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

collect keys
in that subtrie

keysWithPrefix("sh");

Pre!x match in a trie

sh
she
shel
shell
shells

sho
shor
shore

she

she shells

she shells shore

key q

Use wildcard . to match any character in alphabet.

117

Wildcard matches

co....er

coalizer

coberger

codifier

cofaster

cofather

cognizer

cohelper

colander

coleader

...

compiler

...

composer

computer

cowkeper

.c...c.

acresce

acroach

acuracy

octarch

science

scranch

scratch

scrauch

screich

scrinch

scritch

scrunch

scudick

scutock

Implicit wildcard for basic autocorrect.

・Walk down all character paths adjacent to typed characters.

118

Wildcard matches

helo
help
yelp
deli

119

Patricia trie

Patricia trie. [Practical Algorithm to Retrieve Information Coded in Alphanumeric]

・Remove one-way branching.

・Each node represents a sequence of characters.

・Implementation: one step beyond this course.

Applications.

・Database search.

・P2P network search.

・IP routing tables: find longest prefix match.

・Compressed quad-tree for N-body simulation.

・Efficiently storing and querying XML documents.

Also known as: crit-bit tree, radix tree.

1

1 2

2

put("shells", 1);
put("shellfish", 2);

Removing one-way branching in a trie

h

e

l

f

i

s

h

l

s

s s

shell

fish

internal
one-way

branching

external
one-way

branching

standard
trie

no one-way
branching

120

String symbol tables summary

A success story in algorithm design and analysis.

Red-black BST.

・Performance guarantee: log N key compares.

・Supports ordered symbol table API.

Hash tables.

・Performance guarantee: constant number of probes.

・Requires good hash function for key type.

Tries. R-way, TST.

・Expected performance: log N characters accessed on a miss!

・Supports character-based operations.

Bottom line. TSTs are extremely fast.

Swype

121

