Announcements A 1 go rl th ms ROBERT SEDGEWICK | KEVIN WAYNE

Exam Regrades
* Due by Wednesday’s lecture.

Teaching Experiment: Dynamic Deadlines (WordNet)
* Right now, WordNet is due at 11 PM on April 8th.
 Starting Tuesday at 11 PM:
- Every submission that passes all Dropbox tests shortens the time
limit by 30 minutes.

4.3 MINIMUM SPANNING TREES

» MST Basics, Kruskal, Prim
» Why Kruskal and Prim work

- Maximum of 12 hours per day. y Kruskal /mp/emenfaﬁon

- 3 hour grace period still applies. Algorithms
* Email will be sent out every night at midnight with new deadline. \
* lam lying.

» Prim Implementation

» Harder Problems

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Dynamlc Deadlmes for Encouragmg Earlier Partlmpatlon on Assignments,” Garcia, Dan. SIGCSE 2013

Minimum spanning tree and edge weighted graphs

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

4.3 MINIMUM SPANNING TREES —O— //ﬂ
» MST Basics, Kruskal, Prim >< /C<

graph G

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Minimum spanning tree

Drawing conventions

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.

spanning tree T: cost=50=4+6+8+5+11+9+7

Brute force. Try all spanning trees? There are ~VV of them.

Textbook Convention. Edges are drawn with length proportional to weight.
Constraint. This convention constrains the set of possible graphs.

Allowable graph

Cannot be drawn with length = weight

Allowable graph
Can be drawn with length = weight

Drawing convention

Drawing convention

Textbook Convention #2. Edges are straight lines and never cross.
Constraint. This convention constrains the set of possible graphs.

http://en.wikipedia.org/wiki/File:Complete_graph K7.sv
Textbook graphs typically avoid crossings because they’re hard to read

Textbook Convention #2. Edges are straight lines and never cross.
Constraint. This convention constrains the set of possible graphs.

Q: How hard is it to determine whether a graph can be redrawn in a plane?

http://www.cs.princeton.edu/courses/archive/spring13/c0s226/studyGuide.html

Kruskal's algorithm demo Kruskal's algorithm demo

Consider edges in ascending order of weight. Consider edges in ascending order of weight.

* Add next edge to tree T unless doing so would create a cycle. * Add next edge to tree T unless doing so would create a cycle.
graph edges graph edges

sorted by weight sorted by weight

@ 0-7 l16 0-7 l16

0. 0.
2-3 0.17 2-3 0.17
@ 1-7 0.19 @ 1-7 0.19
@ 0-2 0.26 @ 0-2 0.26
@ 5-7 0.28 @ 5-7 0.28
@ @ 1-3 0.29 @ @ 1-3 0.29
1-5 0.32 1-5 0.32
@ 2-7 0.34 @ 2-7 0.34
4-5 0.35 4-5 0.35
@ @ 1-2 0.36 @ @ 1-2 0.36
4-7 0.37 4-7 0.37
0-4 0.38 0-4 0.38
an edge-weighted graph 6-2 0.40 an edge-weighted graph 6-2 0.40
3-6 0.52 3-6 0.52
6-0 0.58 6-0 0.58
6-4 0.93 6-4 0.93
9 10
Kruskal's algorithm demo Kruskal's algorithm demo
Consider edges in ascending order of weight. Consider edges in ascending order of weight.
* Add next edge to tree T unless doing so would create a cycle. * Add next edge to tree T unless doing so would create a cycle.
does not
inMST —> 0-7 0.16 0-7 0.16

©

4"

does not create a cycle

O—
©

\i
(2
(9

O

inMST —> 2-3 0.17

Kruskal's algorithm demo

Consider edges in ascending order of weight.
* Add next edge to tree T unless doing so would create a cycle.

does not create a cycle
0-7 0.16

2-3 0.17

o inMST — 1-7 0.19

©

(©)
® ©

pollEv.com/jhug text to 37607

Q: Which edge comes next?
A. 4-5 [127350]
B. 4-0 [127809]
C. 2-0 [127963]

Kruskal's algorithm demo

Consider edges in ascending order of weight.
* Add next edge to tree T unless doing so would create a cycle.

Kruskal's algorithm demo

Consider edges in ascending order of weight.
* Add next edge to tree T unless doing so would create a cycle.

0-7 0.16
2-3 0.17
1-7 0.19
0-2 0.26
inMST —> 5-7 0.28

does not create a cycle

0-7 0.16
2-3 0.17
o e 1-7 0.19
@ inMST —> 0-2 0.26
does not create a cycle
Q: Which edge comes next?
C. 2-0 [127963]
14
Kruskal's algorithm demo
Consider edges in ascending order of weight.
* Add next edge to tree T unless doing so would create a cycle.
0-7 0.16
2-3 0.17
1-7 0.19
0-2 0.26
5-7 0.28
1-3 0.29
1-5 0.32
2-7 0.34
4-5 0.35

Q: Which edge comes next?

Kruskal's algorithm demo Prim's algorithm demo
Consider edges in ascending order of weight. Start with vertex 0 and greedily grow tree T.
* Add next edge to tree T unless doing so would create a cycle. * Add to 7 the min weight edge with exactly one endpoint in T.
» Repeat until -1 edges.
creates a cycle
0-7 0.16 0-7 0.16
2-3 0.17 2-3 0.17
1-7 0.19 1-7 0.19
0-2 0.26 g‘i g'ig
5'? 0'?8 1-3 0.29
notin MST — 1-3 0.29 1-5 0.32
2-7 0.34
4-5 0.35
1-2 0.36
@ @ 4-7 0.37
0-4 0.38
6-2 0.40
o N 3-6 0.52
an edge-weighted grap 6-0 0.58
6-4 0.93
17
Prim's algorithm demo Prim's algorithm demo
 Start with vertex 0 and greedily grow tree T. « Start with vertex 0 and greedily grow tree T.
* Add to 7 the min weight edge with exactly one endpoint in T. * Add to 7 the min weight edge with exactly one endpoint in T.
» Repeat until V-1 edges. » Repeat until -1 edges.
0-7 0.16
2-3 0.17
1-7 0.19
0-2 0.26
5-7 0.28
1-3 0.29
1-5 0.32
2-7 0.34
4-5 0.35
1-2 0.36
4-7 0.37
0-4 0.38
6-2 0.40
o N 3-6 0.52
an edge-weighted grap 6-0 0.58
6-4 0.93
19

Prim's algorithm demo

 Start with vertex 0 and greedily grow tree T.
* Add to 7 the min weight edge with exactly one endpoint in T.
» Repeat until -1 edges.

min weight edge with edges with exactly
exactly one endpoint in T one endpoint in T
(sorted by weight)

inMsST —> 0-7 0.16
0-2 0.26
0-4 0.38
6-0 0.58

Prim's algorithm demo

 Start with vertex 0 and greedily grow tree T.
* Add to 7 the min weight edge with exactly one endpoint in T.
» Repeat until -1 edges.

MST edges
0-7

Prim's algorithm demo

 Start with vertex 0 and greedily grow tree T.
* Add to 7 the min weight edge with exactly one endpoint in T.
» Repeat until V-1 edges.

2-3 0.17
1-7 0.19
0-2 0.26
5-7 0.28
2-7 0.34
4-7 0.37
0-4 0.38
6-0 0.58
pollEv.com/jhug text to 37607
Which edge is added next to the MST?

[149931] C. 6-0 [149934]

Q:
A. 2-3
B. 1-7 [149933]

Prim's algorithm demo

« Start with vertex 0 and greedily grow tree T.
* Add to 7 the min weight edge with exactly one endpoint in T.
» Repeat until -1 edges.

pollEv.com/jhug text to 37607

Q: Which edge is added next to the MST?
B. 1-7

DO AN VO RN
O B NNNNNW
OO0 oo oo oo

.17
.19
.26
.28
.34
.37
.38
.58

Prim's algorithm demo

 Start with vertex 0 and greedily grow tree T.
* Add to 7 the min weight edge with exactly one endpoint in T.
» Repeat until -1 edges.

min weight edge with edges with exactly
exactly one endpoint in T one endpoint in T

(sorted by weight)

Prim's algorithm demo

 Start with vertex 0 and greedily grow tree T.
* Add to 7 the min weight edge with exactly one endpoint in T.
» Repeat until -1 edges.

MST edges
0-7 1-7

in MST —> 0.19
0.26
0.28
0.34
0.37
0.38
0.58
MST edges
0-7
Prim's algorithm demo
 Start with vertex 0 and greedily grow tree T.
* Add to 7 the min weight edge with exactly one endpoint in T.
» Repeat until V-1 edges.
min weight edge with edges with exactly
exactly one endpoint in T one endpoint in T

in MST —>

MST edges
0-7 1-7

OO BNRNRREUVO
T 1T
O A NNNUVIWSNN
O OO0 o0 oo oo

(sorted by weight)

.26
.28
02
.32
.34
.36
.37
.38
.58

Prim's algorithm demo

« Start with vertex 0 and greedily grow tree T.
* Add to 7 the min weight edge with exactly one endpoint in T.
» Repeat until -1 edges.

MST edges
0-7 1-7 0-2

MST

pollEv.com/jhug text to 37607
Q: What is the weight of the MST?
A. 45 [540123] D. 60 [520105]
B. 50 [540124] E. 65 [370101]
C. 55 [520104]

MST

pollEv.com/jhug text to 37607

Q: What is the weight of the MST?
C. 55

4.3 MINIMUM SPANNING TREES

» Why Kruskal and Prim work

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.
Def. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.

crossing edge separating

/ gray and white vertices

O—

\

minimum-weight crossing edge
must be in the MST

Cut property: correctness proof

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.
Def. A crossing edge connects a vertex in one set with a vertex in the other.

Cut property. Given any cut, the crossing edge of min weight is in the MST.
Pf. Suppose min-weight crossing edge e is not in the MST.

* Adding e to the MST creates a cycle.

* Some other edge f'in cycle must be a crossing edge.

* Removing fand adding e is also a spanning tree.

 Since weight of ¢ is less than the weight of f;

that spanning tree is lower weight.
* Contradiction. =

the MST does
not contain e

adding e to MST
creates a cycle

Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.
Def. A crossing edge connects a vertex in one set with a vertex in the other.

0 ©)

©
® ©

pollEv.com/jhug text to 37607

Q: How many distinct cuts are there for the graph above?

A. 7 [229703] D. 16 [229801]
B. 14 [229704] E. 30 [229802]
C. 15 [229705] F. 32 [229803]

Extra: How does the number of distinct cuts grow with V for a general graph?

Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.
Def. A crossing edge connects a vertex in one set with a vertex in the other.

0 ©)

©
® ©

Q: How many distinct cuts are there for the graph above? C. 15

Choice of cut is basically a 5 bit binary number: 32 total choices.
Two of these involve an empty set. Total -> 30.
Half are redundant (e.g. 00100 is the same thing as 11011). Total -> 15.

Cut property

Def. A cut in a graph is a partition of its vertices into two (nonempty) sets.
Def. A crossing edge connects a vertex in one set with a vertex in the other.

0 ©)

©
® ©

Q: How many distinct cuts are there for the graph above? C. 15

Extra: How does the number of distinct cuts grow with V for a general graph?
2V-1-]

226 MST algorithms

Fundamental Idea * x

* Our algorithms grow an MSSapling until it becomes a full MST.

* The MSSapling starts as V disjoint components.

» Each step of the algorithm connects two MSSapling components.
- Given 2 cuts, always connect by the smallest connecting edge.
- This smallest edge belongs to MST by cut property.
- Each connection reduces number of components by 1.

* Once the MSSapling has 1 component, it is the MST.

Greedy MST algorithm: correctness proof

Proposition. Once the MSSapling has 1 component, it is the MST.

Pf.
* Any edge in the MSSapling is in the MST (via cut property).
» Fewer than V-1 black edges = There is more than one component.

NN

fewer than V-1 edges colored black a cut with no black crossing edges

4.3 MINIMUM SPANNING TREES

» Why Kruskal and Prim work

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

226 MST algorithms

Fundamental Idea

* Our algorithms grow an MSSapling until it becomes a full MST.

» The MSSapling starts as V disjoint components.

» Each step of the algorithm connects two MSSapling components.
- Given 2 cuts, always connect by the smallest connecting edge.
- This smallest edge belongs to MST by cut property.
- Each connection reduces number of components by 1.

* Once the MSSapling has 1 component, it is the MST.

Kruskal’s and Prim’s
» Specific ways to pick our two MSSapling components.

40

Kruskal's algorithm demo

Consider edges in ascending order of weight.
* Add next edge to tree T unless doing so would create a cycle
(cycle equivalent to having a black crossing edge).

sorted by weight

graph edges

|

Kruskal's algorithm demo

Consider edges in ascending order of weight.
* Add next edge to tree T unless doing so would create a cycle
(cycle equivalent to having a black crossing edge).

inMST — 0-7 0.16

O— @

@

©

does not create a cycle

®

42

0-7 0.16
2-3 0.17
@ 1-7 0.19
@ 0-2 0.26
@ 5-7 0.28
@ @ 1-3 0.29
1-5 0.32
@ 2-7 0.34
4-5 0.35
@ @ 1-2 0.36
4-7 0.37
0-4 0.38
an edge-weighted graph 6-2 0.40
3-6 0.52
6-0 0.58
6-4 0.93

41

Kruskal's algorithm demo
Consider edges in ascending order of weight.
* Add next edge to tree T unless doing so would create a cycle
(cycle equivalent to having a black crossing edge).
does not

0-7 0.16

\i
(2
(©)

®

inMST —> 2-3 0.17

43

Kruskal's algorithm demo

Consider edges in ascending order of weight.
* Add next edge to tree T unless doing so would create a cycle
(cycle equivalent to having a black crossing edge).

does not create a cycle
0-7 0.16

2-3 0.17

o inMST — 1-7 0.19

©

©
©

text to 37607

®

pollEv.com/jhug

Q: How many components are there?

A. 1 [219103] D. 4 [602202]
B. 2 [219104] E. 5 [602302]
C

. 3 [602201]

44

Kruskal's algorithm demo

Consider edges in ascending order of weight.
* Add next edge to tree T unless doing so would create a cycle
(cycle equivalent to having a black crossing edge).

does not create a cycle
0-7 0.16

2-3 0.17

o inMST — 1-7 0.19

0
©
® ©

Q: How many components are there?
5

©

45

Kruskal's algorithm demo

Consider edges in ascending order of weight.
* Add next edge to tree T unless doing so would create a cycle
(cycle equivalent to having a black crossing edge).

0-7
2-3
1-7
in MST —> 0-2

0 ()
0
@ ®

does not create a cycle

©

0.16
0.17
0.19
0.26

46

4.3 MINIMUM SPANNING TREES

» Kruskal Implementation

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Kruskal's algorithm implementation

Kruskal’s algorithm
» Given a collection of all the edges in a graph:
- Take out the minimum edge.
- Add this edge to the MST as long as no cycle is created.

Challenges.
* What is the smallest weight edge that has not been considered?
* Would adding edge v—w to tree T create a cycle?

In Groups of 3.
* Choose appropriate data structures and algorithms to solve
these two subproblems.
e Extra task: How much time does your scheme take to perform
each task above? To build the entire MST?

private Queue<Edge> mst;

4-5
1-2
4-7
0-4
6-2
3-6
6-0
6-4

graph edges
sorted by weight

O O O O O O O O O O O o o o oo

16
17
19
26
28
29
32
34
35
36
37
38
40
52

.58

93
48

Debrief - which data structures should we use?

Challenges.
* What is the smallest weight edge that has not been considered?
- MinPQ<Edge> - compared by weight

graph edges
sorted by weight

Kruskal's algorithm: Java implementation - live coding answer.

public class KruskalMST
{

private Queue<Edge> mst = new Queue<Edge>(Q);

public KruskalMST(EdgeWeightedGraph G)
{

UF uf = new UF(G.VQ);

MinPQ<Edge> pq = new MinPQ<Edge>(Q);

for (Edge e : G.edges())
pq.insert(e);

while (!pg.isEmpty() && mst.size() == G.VQO-1) {
Edge e = pg.delMin(Q);
int v = e.either(); int w=e.other(v);
if (uf.connected(v, w))

continue;

uf.union(v, w); mst.enqueue(e);

}

}

public Iterable<Edge> edges()
{ return mst; 1}

- Edge[] - sorted (comparing by weight) l
» Would adding edge v—w to tree T create a cycle? 0-7 0.16
. - 2-3 0.17
- [array that tracks connected components], a.k.a. Union find 1-7 0.19
- DFS based graph search every time [very slow] 0-2 0.26
- DYNAMIC CONNECTIVITY - UF is fast, DFS is slow 5-7 0.28
1-3 0.29
. . . 1-5 0.32
+ Calls which interact with edges: 2.7 0.34
- intv = e.either(); 4-5 0.35
- int w = e.other(v); 12 Qo3
4-7 0.37
- mst.enqueue(e); 0-4 0.38
6-2 0.40
3-6 0.52
6-0 0.58
private Queue<Edge> mst; 6-4 0.93
49
Kruskal's algorithm: Java implementation - (book implementation)
public class KruskalMST
{
private Queue<Edge> mst = new Queue<Edge>(Q);
public KruskalMST(EdgeWeightedGraph G)
{
MinPQ<Edge> pq = new MinPQ<Edge>Q); <—T—— build priority queue
for (Edge e : G.edges()) @7 S810)
pg.insert(e);
UF uf = new UF(G.VQ);
while (!pq.isEmpty() && mst.size() < G.VQ-1)
Edge e = pq.deIMin(); <«<—t—— greedily add edges to MST
int v = e.either(), w = e.other(v);
1f (luf.connected(v, w)) <«<—+—— edge v-w does not create cycle
uf.union(v, w); <«——— merge sets
mst.enqueue(e); <—T—— add edge to MST
}
}
}
public Iterable<Edge> edges()
{ return mst; }
}

Kruskal's algorithm: Java implementation - (book implementation)

public class KruskalMST
{

private Queue<Edge> mst = new Queue<Edge>(Q);

public KruskalMST(EdgeWeightedGraph G)

{
MinPQ<Edge> pq = new MinPQ<Edge>Q); <—T—— build priority queue
for (Edge e : G.edges()) @7 S810)
pg.insert(e);

UF uf = new UF(G.VQ);

while (!pq.isEmpty() && mst.size() < G.VQ-1)

Edge e = pq.delMin(Q);
int v = e.either(), w = e.other(v);
uf.union(v, w);

if (luf.connected(v, w))

{
} El
. gE
| 1
¥ build pq could be E

3

delete-min E Ig E
public Iterable<Edge> edges()

{ return mst; } union \" log* V

connected E log* V

Kruskal's algorithm: running time

Proposition. Kruskal's algorithm computes MST in time proportional to

Elog E (in the worst case).

build pq 1
delete-min E
union \
connected E

time per op

How do we get time E?

Construct array of edges
and pass to MinPQ
constructor.

t amortized bound using weighted quick union with path compression

recall: log*V < 5 in this universe

l

Remark. If edges are already sorted, order of growth is E log* V.

4.3 MINIMUM SPANNING TREES

Algorithms

» Prim Implementation

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Prim's algorithm

 Starting with vertex 0.

* Add to 7 the min weight edge with exactly one endpoint in T.

» Repeat until V-1 edges.

Three flavors of Prim’s

Prim’s algorithm
* Intuitive - easy to discover
* Lazy - easy to code version of human
* Eager - optimized version of human

Prim’s algorithm implementation Prim’s algorithm implementation

Prim’s algorithm Prim’s algorithm
* In Kruskal’s, picked MSSaplings by tracking all of the edges in * In Kruskal’s, picked MSSaplings by tracking all of the edges in
the entire graph and selecting the smallest one. the entire graph and selecting the smallest one.
* In Prim’s, what is the most natural thing to track? * In Prim’s, what is the most natural thing to track?

- All outbound edges from core of the MSSapling.

Prim’s algorithm implementation Prim’s algorithm implementation
Intuitive Prim’s algorithm Intuitive Prim’s algorithm
» Given a collection C of all edges outbound from core: » Given a collection C of all edges outbound from core:

- Add C’s minimum edge v-w to the MSSapling. - Add C’s minimum edge v-w to the MSSapling.

Prim’s algorithm implementation

Intuitive Prim’s algorithm
» Given a collection C of all edges outbound from core:
- Add C’s minimum edge v-w to the MSSapling.

- Add to C any outward pointing edges from w.

Prim’s algorithm implementation

Intuitive Prim’s algorithm
» Given a collection C of all edges outbound from core:
- Add C’s minimum edge v-w to the MSSapling.
- Add to C any outward pointing edges from w.

Prim’s algorithm implementation

Intuitive Prim’s algorithm
» Given a collection C of all edges outbound from core:
- Add C’s minimum edge v-w to the MSSapling.
- Add to C any outward pointing edges from w.

- Remove from C any edges v-x, where x is also in the core.

Prim’s algorithm implementation

Intuitive Prim’s algorithm
» Given a collection C of all edges outbound from core:
- Add C’s minimum edge v-w to the MSSapling.
- Add to C any outward pointing edges from w.
- Remove from C any edges v-x, where x is also in the core.

Prim’s algorithm implementation

Intuitive Prim’s algorithm
» Given a collection C of all edges outbound from core:
- Add C’s minimum edge v-w to the MSSapling.
- Add to C any outward pointing edges from w.
- Remove from C any edges v-x, where x is also in the core.

» Turns out this algorithm is a pain to implement (not in textbook).

Prim’s algorithm implementation

Lazy Prim’s algorithm
» Given a collection C of all edges outbound from core:
- Add C’s minimum edge v-w to the MSSapling
- If it doesn’t create a cycle, otherwise delete v-w.

- Add to C any outward pointing edges from w.

* Much easier to implement.

Prim's algorithm (lazy) demo

 Start with vertex 0 and greedily grow tree T.
* Add to 7 the min weight edge with exactly one endpoint in T.
» Repeat until V-1 edges.

0-7
2-3
1-7
0-2
5-7
1-3
1-5
2-7
4-5
1-2
4-7
0-4
an edge-weighted graph 6-2

3-6

6-0

6-4

O O O O O O O O O O O o o o oo

.16
.17
.19
.26
.28
.29
.32
.34
.35
.36
.37
.38
.40
.52
.58
.93

Prim’s algorithm implementation

Lazy Prim’s algorithm
» Given a collection C of all edges outbound from core:
- Add C’s minimum edge v-w to the MSSapling
- If it doesn’t create a cycle, otherwise delete v-w.
- Add to C any outward pointing edges from w.

Lazy Prim's algorithm: running time Prim's algorithm: lazy implementation

Proposition. Lazy Prim's algorithm computes the MST in time proportional
public class LazyPrimMST

to E log E and extra space proportional to E (in the worst case). {
private boolean[] marked; // MST vertices
private Queue<Edge> mst; // MST edges
delete min E log E public LazyPrimMST(WeightedGraph G)
{
insert E log E pg = new MinPQ<Edge>();

mst = new Queue<Edge>Q);
marked = new boolean[G.V(Q];
visit(G, 0); <—F— assume G is connected

while (!pqg.isEmpty() && mst.size() < G.VQ - 1)
{ repeatedly delete the
Edge e = pq.delMinQ); min weight edge e = v-w from PQ
int v = e.either(), w = e.other(v);

ES— if both endpoi inT

if (marked[v] & marked[w]) continue; * BRI e IS 1

mst. engueue (e) ; <«——+—— add edge e to tree

if (!marked[v]) visit(G, v); <« addvorwto tree

if ('marked[w]) visit(G, w);

}
}
}
69 70
Prim's algorithm: lazy implementation Prim’s algorithm demo

Eager Prim’s algorithm

private void visit(WeightedGraph G, int v) » Given a collection C of all edges-eutbound-from vertices
{ adjacent to core:

marked[v] = true; <« addvtoT , o .

For (Edoe & Coadi(v) - Add-E'sminimum-edge-v-w-to-the- MSSapling-

if (!marked[e.other(v)1) « L foreachedge e = v-w, add to - Remove vertex w that is closest to core, and add edge ?-w.
pq.insert(e); PQ if w not already in T A

} - Add-to Cany outward pointing edgesfrom w-
public Iterable<Edge> mst() h) Y S ’) ’
{ return mst; } - Update distance to each vertex adjacent to core.

71 72

Prim's algorithm (eager) demo

 Start with vertex 0 and greedily grow tree T.
* Add to 7 the min weight edge with exactly one endpoint in T.
» Repeat until -1 edges.

Prim's algorithm (eager) demo

 Start with vertex 0 and greedily grow tree T.
* Add to 7 the min weight edge with exactly one endpoint in T.
» Repeat until -1 edges.

v edgeTo[] distTo[]
0-7 0.16
0-2 0.26
0-4 0.38
6-0 0.58

vertices on PQ
(sorted by weight)

add vertices 7, 2, 4, and 6 to PQ

IndexMinPQ<Double> pq = new IndexMinPQ<Double>(G.V());
pg.insert(7, 0.16); pq.insert(2, 0.26);

74

0-7 0.16
2-3 0.17
1-7 0.19
0-2 0.26
5-7 0.28
1-3 0.29
1-5 0.32
2-7 0.34
4-5 0.35
1-2 0.36
4-7 0.37
0-4 0.38
an edge-weighted graph 6-2 0.40
3-6 0.52
6-0 0.58
6-4 0.93
73
Prim's algorithm (eager) demo
 Start with vertex 0 and greedily grow tree T.
* Add to 7 the min weight edge with exactly one endpoint in T.
» Repeat until V-1 edges.
decrease key of vertex 3
from 0.29 t0 0.17
v edgeTo[] distTo[]
— 2 0-2 0.26
2-3 0.17
3 3 029
5 5-7 0.28
4 0-4 0.38
6 —6-0- 0.58
6-2 0.40

decrease key of vertex 6
from 0.58 to 0.40

MST edges
0-7 1-7 0-2

pg.change(3, 0.17); pq.change(6, 0.4);

75

Prim's algorithm (eager) demo

« Start with vertex 0 and greedily grow tree T.
* Add to 7 the min weight edge with exactly one endpoint in T.
» Repeat until -1 edges.

v edgeTo[] distTo[]
0 - -

7 0-7 0.16

1 1-7 0.19

2 0-2 0.26

3 2-3 0.17

5 5-7 0.28
4 4-5 0.35

6 6-2 0.40

MST edges
0-7 1-7 0-2 2-3 5-7 4-5 6-2

76

Eager Prim's algorithm: which priority queue?

Depends on PQ implementation: Vinsert, ¥ delete-min, E decrease-key.

- implemen(ation
1 \ 1 V2

unordered array
binary heap log V log V log V Elog VvV
d-way heap
dlogd V dloga V loga V Elo \
(Johnson 1975) 9 9 9 9
Fibonacci heap 1 log V * - E+Viog V
(Fredman-Tarjan 1984) 9 9
+ amortized

Bottom line.
» Array implementation optimal for dense graphs.
» Binary heap much faster for sparse graphs.
* 4-way heap worth the trouble in performance-critical situations.
* Fibonacci heap best in theory, but not worth implementing.

77

4.3 MINIMUM SPANNING TREES

Algorithms

» Harder Problems

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

B level problems

Suppose the that the MST of the graph below contains the edges with
weights x, y, and z.

A 130 B s 7 S— C 20 D ——\/ — E
110 /00 140 S 120 QQ 60)0 50
F —— X — G 40 H 30 10 J

* True or false: The minimum weight edge from every node must be part
of the MST.
* List the weights of the other edges in the MST:
_10

* What are the possible values for the weights of x, y, and z?

79

B level problems

Suppose the that the MST of the graph below contains the edges with
weights x, y, and z.

A 130 B z C 20 D y

Q
110 140 S 120 B 60)0 0
F X G 10 H 2n 10 J

* True or false: The minimum weight edge from every node must be part
of the MST - true by cut property!
* List the weights of the other edges in the MST:
_10 30 _50 _20 _40 100
* What are the possible values for the weights of x, y, and z?

80

B level problems

Suppose the that the MST of the graph below contains the edges with
weights x, y, and z.

A 130 B z C 20. D - E
Q

110 140 S 120 E) 60 2 ,o

F X G 40 H 20. 10 _]

* True or false: The minimum weight edge from every node must be part
of the MST - true by cut property!
* List the weights of the other edges in the MST:
_10 30 _50 _20 _40 100
* What are the possible values for the weights of x, y, and z?

- x<=110,y<="7?
81

B level problems

Suppose the that the MST of the graph below contains the edges with
weights x, y, and z.

A 130 B z C 20. D -
Q

110 140 S 120 E) 60 2

F X G 40 H 20. 10

* True or false: The minimum weight edge from every node must be part
of the MST - true by cut property!
* List the weights of the other edges in the MST:
_10 30 _50 _20 _40 100
* What are the possible values for the weights of x, y, and z?
- x<=110,y <= 60,

m

e ———
[}

82

B level problems

Suppose the that the MST of the graph below contains the edges with
weights x, y, and z.

A 130 B z C 20 D y E
Q

110 140 S 120 E) 60 2 0

F X G 40 H 20. 10 _]

* True or false: The minimum weight edge from every node must be part
of the MST - true by cut property!
* List the weights of the other edges in the MST:
_10 30 _50 _20 _40 100
* What are the possible values for the weights of x, y, and z?
- x<=110,y<=60, z <= 80

83

A level problems

* Suppose you know the MST of G. Now a new edge v-w of weight c is
added to G, resulting in a new graph G’. Design a O(V) algorithm to
determine if the MST for G is also an MST for G’.

* Bonus: Given a graph G and its MST, if we remove an edge from G that is
part of the MST, how do we find the new MST in O(E) time?

84

A level problems

* Suppose you know the MST of G. Now a new edge v-w of weight c is
added to G, resulting in a new graph G’. Design a O(V) algorithm to
determine if the MST for G is also an MST for G’.

Hint: Consider the blue path.

* Bonus: Given a graph G and its MST, if we remove an edge from G that is
part of the MST, how do we find the new MST in O(E) time?

85

A level problems

* Suppose you know the MST of G. Now a new edge v-w of weight c is
added to G, resulting in a new graph G’. Design a O(V) algorithm to
determine if the MST for G is also an MST for G’.

Hint: Consider the blue path.

 If any edge on the blue path is longer than c:
- Replace that edge with c - you get a new MST with shorter distance.
* If every edge on the blue path is shorter than c:
- Then we know original MST was the best.
* Finding the blue path: Run DFS from one of c’s vertices to the other, only

taking steps along the MST.

86

A level problems

» Given a graph G and its MST, if we remove an edge from G that is part of
the MST, how do we find the new MST in O(E) time?

87

