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Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?
* Thousands of practical applications.
* Hundreds of graph algorithms known.
* Interesting and broadly useful abstraction.

» Challenging branch of computer science and discrete math.

The Internet as mapped by the Opte Project

http://en.wikipedia.org/wiki/Internet




Protein-protein interaction network

Reference: Jeong et al, Nature Review | Genetics

Map of science clickstreams

Engincering

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004803

America according to the Facebook graph

Socali

"How to split up the US" by Pete Warden

One week of Enron emails
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Terrorist network

The evolution of FCC lobbying coalitions

Fred Willamson & Associates
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“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010

Framingham heart study

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, =30) and green denotes a nonobese person. The colors of the
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
denotes a familial tie.

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007

Sexual/romantic network of a high school




Graph applications

communication telephone, computer fiber optic cable

circuit gate, register, processor wire
mechanical joint rod, beam, spring
financial stock, currency transactions

transportation
internet
game
social relationship
neural network
protein network

chemical compound

street intersection, airport
class C network
board position
person, actor
neuron
protein

molecule

highway, airway route
connection
legal move
friendship, movie cast
synapse
protein-protein interaction

bond

Graph terminology

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

vertex

]cy[le}of edge i
ength 5 \
path of
« length 4
vertex of
degree 3\
connected

components

Some graph-processing problems

Path. Is there a path between s and ¢?
Shortest path. What is the shortest path between s and ¢?

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once.

Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?

Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges
Graph isomorphism. Do two adjacency lists represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?

Algorithms
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Graph representation

Graph drawing. Provides intuition about the structure of the graph.

Graph representation

Vertex representation.
e This lecture: use integers between 0 and V- 1.
» Applications: convert between names and integers with symbol table.

two drawings of the same graph

Caveat. Intuition can be misleading.

(a3 (0
L= T L=

arallel
pcdgcs

7
.o‘llo

self;laop

Anomalies.

Graph API

pubTlic class Graph

Graph(int V)
Graph(In in)
void addEdge(int v, int w)
Iterable<Integer> adj(int v)
int VO

int EQ

In in = new In(args[0]);
Graph G = new Graph(in);

for (int v = 0; v < G.VQ; v++)
for (int w : G.adj(v))
StdOut.printin(v + "-" + w);

create an empty graph with V vertices

—

create a graph from input stream

add an edge v-w

vertices adjacent to v

number of vertices

number of edges

read graph from

input stream

print out each
edge (twice)

Graph API: sample client

Graph input format.

tinyG. txt
V—13
13<E
05
3 O
1 (®
12 ©)0,
4
s (3) O,
2 X4
OO

noNooRouwa Lo A
=
N

In in = new In(args[0]);
Graph G = new Graph(in);

for (int v = 0; v < G.VQ; v++)
for (int w : G.adj(v))
StdOut.printin(v + "-" + w);

% java Test tinyG.txt

0-6

0-2

0-1

0-5

1-0

2-0

3-5

3-4

12-11

12-9

read graph from
input stream
. printouteach

edge (twice)




Typical graph-processing code Set-of-edges graph representation

public class Graph Maintain a list of the edges (linked list or array).

Graph(int V) create an empty graph with V vertices
Graph(In in) create a graph from input stream
void addEdge(int v, int w) add an edge v-w o 0 1
L 0 2
Iterable<Integer> adj(int v) vertices adjacent to v
. OROR0O 0 ¢
int VO number of vertices 0 6
3 4
int EQ number of edges e ° 3 5
4 5
0% i ¢
// degree of vertex v in graph G 7 8
public static int degree(Graph G, int v) 9 10
: (o o 11
int degree = 0; ‘ 9 12
for (int w : G.adj(v)) 0 @ 11 12
degree++; _
return degree;
}
21
Adjacency-matrix graph representation Adjacency-list graph representation
Maintain a two-dimensional V-by-V boolean array; Maintain vertex-indexed array of lists.

for each edge v—w in graph: adj[vl[w] = adj[w][v] = true.

two entries

o for each edge \ o
2

o
w
o
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o
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Adjacency-list graph representation: Java implementation

public class Graph
{

private final int V; ey s

private Bag<Integer>[] adj; M T (i B i )

public Graph(int V)

{
this.V = V; n
adj = (Bag<Integer>[]) new Bag[V]; <—+— cfstemswgmp

Wi vertices
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>();

}

public void addEdge(int v, int w)

{ ) add edge v-w
adj[v].add(w); <1 (parallel edges and
adj [w].add(v) H self-loops allowed)

}

pub'[ ic Iterabl e<Integer> adj (int v) <«—+—— iterator for vertices adjacent to v

{ return adj[v]; }

}

Graph representations

In practice. Use adjacency-lists representation.
* Algorithms based on iterating over vertices adjacent to v.
» Real-world graphs tend to be sparse.

AN

huge number of vertices,
small average vertex degree

sparse (E =200) dense (E=1000)

Two graphs (V =50)

Graph representations

In practice. Use adjacency-lists representation.
* Algorithms based on iterating over vertices adjacent to v.
» Real-world graphs tend to be sparse.

AN

huge number of vertices,

small average vertex degree

. edge between iterate over vertices
representation space add edge X
v and w? adjacent to v?
E 1 E

list of edges
adjacency matrix V2 0= 1
adjacency lists E+V 1 degree(v) degree(v)

* disallows parallel edges
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Maze exploration

Maze graph.
* Vertex = intersection.
» Edge = passage.

i B

e

intersection passage

Goal. Explore every intersection in the maze.

Trémaux maze exploration

Algorithm.

* Unroll a ball of string behind you.

* Mark each visited intersection and each visited passage.

* Retrace steps when no unvisited options.

g

Trémaux maze exploration

Algorithm.
* Unroll a ball of string behind you.
* Mark each visited intersection and each visited passage.
* Retrace steps when no unvisited options.

First use? Theseus entered Labyrinth to kill the monstrous Minotaur;
Ariadne instructed Theseus to use a ball of string to find his way back out.

Claude Shannon (with Theseus mouse)

— T——
Maze exploration
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Depth-first search

Goal. Systematically search through a graph.
Idea. Mimic maze exploration.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked

vertices w adjacent to v.

Typical applications.
* Find all vertices connected to a given source vertex.
* Find a path between two vertices.

Design challenge. How to implement?

Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.
* Create a Graph object.
* Pass the Graph to a graph-processing routine.
* Query the graph-processing routine for information.

public class Paths

Paths(Graph G, int s) find paths in G from source s

boolean hasPathTo(int v) is there a path from s to v?

Iterable<Integer> pathTo(int v) path from s to v; null if no such path

Paths paths = new Paths(G, s);
for (int v = 0; v < G.VQ; v++)
if (paths.hasPathTo(v))
StdOut.printin(v);

print all vertices
connected to s

Depth-first search demo

To visit a vertex v: @
¢ Mark vertex v as visited.

» Recursively visit all unmarked vertices adjacent to v.

0 ° e tinyG. txt
Va3

13<F

05

43

01

ONNOBROENO =0, 012
6 4

54

02

(H—») (D)—2) 510"

9 10

06

78

9 11

> 53

graph G

Depth-first search demo

To visit a vertex v:
* Mark vertex v as visited.
» Recursively visit all unmarked vertices adjacent to v.

v marked[] edgeTo[v]

0 T
1 T
2 T
3 T
4 T
5 T
6 T
7 F
8 F
9 F
10 F
vertices reachable from 0 :; E

o A OO 1 O O




Depth-first search

Goal. Find all vertices connected to s (and a corresponding path).
Idea. Mimic maze exploration.

Algorithm.
» Use recursion (ball of string).
» Mark each visited vertex (and keep track of edge taken to visit it).
* Return (retrace steps) when no unvisited options.

Data structures.
* boolean[] marked to mark visited vertices.
e int[] edgeTo to keep tree of paths.
(edgeTo[w] == v) means that edge v-w taken to visit w for first time

Depth-first search

public class DepthFirstPaths
{ marked[v] = true
private boolean[] marked; «——F— ifvconnected to s
pr1_vate '!nt[] edgeTo; <«———— edgeTo[v] = previous
private int s; vertex on path from s to v
public DepthFirstSearch(Graph G, int s)
{
e <«<———— initialize data structures
} dfs(G, s); <«—————— find vertices connected to s
private void dfs(Graph G, int v)
{ recursive DFS does the work
marked[v] = true;
for CGint w : G.adj(v))
if (!marked[w])
{
dfs(G, w);
edgeTo[w] = v;
}
}
3

Depth-first search properties

Proposition. DFS marks all vertices connected to s in time proportional to
the sum of their degrees.

Pf. [correctness] source

set of marked

/ vertices

* If w marked, then w connected to s (why?)
e If w connected to s, then w marked.
(if w unmarked, then consider last edge
on a path from s to w that goes from a

N no such edge
set of «— can exist
unmarked

vertices “\\_

marked vertex to an unmarked one).

Pf. [running time]
Each vertex connected to s is visited once.

Depth-first search properties

Proposition. After DFS, can find vertices connected to s in constant time
and can find a path to s (if one exists) in time proportional to its length.

Pf. edgeTo[] is parent-link representation of a tree rooted at s.

public boolean hasPathTo(int v)
{ return marked[v]; }

public Iterable<Integer> pathTo(int v) Q e edgeTo[]
{
if (!'hasPathTo(v)) return null; o
Stack<Integer> path = new Stack<Integer>(Q);
for (int x = v; x !=s; x = edgeTo[x]) e e @
path.push(x);
path.push(s);
return path;

VA WN R
wwN o N

40




Depth-first search application: flood fill

Challenge. Flood fill (Photoshop magic wand).

Assumptions. Picture has millions to billions of pixels.

Solution. Build a grid graph.
e Vertex: pixel.
* Edge: between two adjacent gray pixels.
» Blob: all pixels connected to given pixel.

41
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Breadth-first search demo

Repeat until queue is empty: °
* Remove vertex v from queue.

* Add to queue all unmarked vertices adjacent to vand mark them.

graph G

tinyCG. txt

o{<
\b']

O WWOKHENNOO®
NUARNWDAOV

43

Breadth-first search demo

Repeat until queue is empty:
* Remove vertex v from queue.

» Add to queue all unmarked vertices adjacent to vand mark them.

done

A\

vi A W N — O

edgeTo[] distTo[]

o N N O O

- N N = =

44




Breadth-first search Breadth-first search properties

Proposition. BFS computes shortest paths (fewest number of edges)
from s to all other vertices in a graph in time proportional to £ + V.

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to ¢ that uses fewest number of edges. Pf. [correctness] Queue always consists of zero or more vertices of

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

- remove the least recently added vertex v

- add each of v's unvisited neighbors to the queue,

and mark them as visited.

4

d

Intuition. BFS examines vertices in increasing distance from s.

45

distance k from s, followed by zero or more vertices of distance £+ 1.

Pf. [running time] Each vertex connected to s is visited once.

graph dist=0 dist=1 dist = 2

46

Breadth-first search

public class BreadthFirstPaths
{
private boolean[] marked;
private int[] edgeTo;
private int[] distTo;

private void bfs(Graph G, int s) {
Queue<Integer> q = new Queue<Integer>();
q.enqueue(s);
marked[s] = true;
distTo[s] = 0;

while (!q.isEmpty()) {
int v = g.dequeue();
for (int w : G.adj(v)) {
if (Imarked[w]) {
q.enqueue(w);

marked[w] = true;
edgeTo[w] = v;
distTo[w] = distTo[v] + 1;

initialize FIFO queue of
vertices to explore

found new vertex w

via edge v-w

47

Breadth-first search application: routing

Fewest number of hops in a communication network.

v SATELLITE CIRCUIT

o wp
o e
& PLURIBUS MP

(NOTE THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL
SATELLITE CONNECTIONS )

NAMES SHOWN ARE IMP NAMCS, NOT (NECESSARILY) HOST NAMES

ARPANET, July 1977

48




Breadth-first search application: Kevin Bacon numbers

Kevin Bacon numbers.

ano The Oracle of Bacon.

<> llcle](<]l+] (= acen o s

THE ORACLE
OF BACON

Buzz Mauro
Sweet Dreams (2005
Tatana Ramiez
Interior de unn;n‘SO‘! (2005)

Carlta's s-u- (2004) |
Paula I:-ms [0}
FrostNioon (2008)
K Bacsn

o acen 10 ‘suzz wauro T i) (Ve vy 3>

http:/ /oracleofbacon.org

Endless Games board game

Deg
Uma Thurman
Be c;;‘(‘;oos)
Scott ‘Adsit
who acted in

The Informant! (2009)
i3

Matt Damon

SixDegrees iPhone App

49

Kevin Bacon graph

* Include one vertex for each performer and one for each movie.
» Connect a movie to all performers that appear in that movie.

« Compute shortest path from s = Kevin Bacon.

Nicole Has Landed Srid

John
Gielgud
Portrait
of a Lady

Murder on the
orient Express
Xathieen
Quinlan
An Anerican John Animal
Haunting Belushi House. performer
/ vertex

Bi11
movie Paxton
vertex

Paul

Herbert

Meryl
streep

Serretta
Wilson
Yves
Aubert

Eternal Sunshine]

the Spotless
Mind

Breadth-first search application: Erdés numbers

hand-drawing of part of the Erdés graph by Ron Graham
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Graph-processing challenge 1 Intuition: think about it as a dating graph

Problem. Is a graph bipartite?

o’
] \o:*:r
% ot &, !
(03 0-1 ‘: % 12232 3 7
0-2
(S o TS 4 » S - o \
0-5 - - | 2
OROROF: RTINS S "
T Sk 7
O O = oo ¥ =Sy \
- o Y
° 4-5 of .*—p’r’_* iy
4-6 ¢ aZeR. -
Ahén % 1
LY

#ANNDI—lOOOO
oV hWWoO VN

——— — ® Male
¢ Female

® .
{0, 3,41}

Graph-processing challenge 1 Graph-processing challenge 2

Problem. Is a graph bipartite? Problem. Find a cycle.

ORONO,
How difficult? e o

* Any programmer could do it.

(6
How difficult? e o

* Any programmer could do it.

-h-l;NNll—lOOOO
OV hAWWOoO VNP

¥ « Typical diligent algorithms student could do it. ° ) ¥« Typical diligent algorithms student could do it. °
* Hire an expert. \ + Hire an expert. \ 0-5-4-6-0
* Intractable. simple DFS-based solution ) * Intractable. simple DFS-based solution
* No one knows. (see textboold - N e e, (see textbook)

* Impossible. * Impossible.

#ANNDI—lOOOO
oV hWWwWoO VN

A BDNNBREOOOO
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Bridges of Kénigsberg Graph-processing challenge 3
The Seven Bridges of Koénigsberg. [Leonhard Euler 1736] Problem. Find a (general) cycle that uses every edge exactly once.
“...in Konigsberg in Prussia, there is an island A, called the 01
Kneiphof; the river which surrounds it is divided into two branches ... 0:2
and these branches are crossed by seven bridges. Concerning these 0-5
bridges, it was asked whether anyone could arrange a route in such a g_g
way that he could cross each bridge once and only once.” How difficult? 2-3
* Any programmer could do it. 2-4
. . . . 3-4
» Typical diligent algorithms student cou o it.
YV oT | dil tal th tudent Id do it -
C .
* Hire an expert. \ 4-6
0-1-2-3-4-2-0-6-4-5-0
A 0 * Intractable. Eulerian tour
« No one knows. (classic graph-processing problem)
B
* Impossible.
Euler tour. Is there a (general) cycle that uses each edge exactly once?
Answer. Yes iff connected and all vertices have even degree.
57
Graph-processing challenge 4 Graph-processing challenge 5
Problem. Find a cycle that visits every vertex exactly once. Problem. Are two graphs identical except for vertex names?
O, 0-1 O, 0-1
0-5 0-5
OO o ORORONY
How difficult? 1-2 How difficult? 34
O ONES O ONEES
« Any programmer could do it. / 3-4 « Any programmer could do it. / 4-5
. - . . 3-5 . - . . 4-6
» Typical diligent algorithms student could do it. ° A » Typical diligent algorithms student could do it. °
* Hire an expert. 4-6 * Hire an expert.
0-5-3-4-6-2-1-0
Y « Intractable. ~__ * Intractable. 3) 0-4
Hamiltonian cycle 0-5
* No one knows. - ¥+ No one knows. e
classical NP-complete problem) 0-6
+ Impossible. + Impossible. \ (4) 1-4
graph isomorphism is e ﬂ 1-5
longstanding open problem o 2-4
3-4
o
0<4, 13, 2<2, 3<6, 4<5, 5<0, 6<1
59




Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

How difficult?

A DB WwWwoOOOoOOo

(o BV BV, I e I I S )

X 0
+ Any programmer could do it. "
. O,

Typical diligent algorithms student could do it.
* Hire an expert.
* Intractable. a

« No one knows. linear-time DFS-based planarity algorithm

discovered by Tarjan in 1970s
° |mpOSSIb|e. (too complicated for most practitioners) a




