
Announcements

New Website Feature (Summary Page)

・Coursera viewing guide

・Most important points from each lecture

・Suggested problems (time permitting)

Very Short Survey after Class

・If you’re surveyed out, wait until the one in two weeks (after midterm)
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How many BSTs?

4

How many of the figures above are BSTs? 

A. 1        [117608]                C. 3         [118189]
B. 2        [118183]                D. 4         [118192]

pollEv.com/jhug              text to 37607



Basics question #2
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Give an example of a single letter key which, when inserted, will increase 

the height of the tree.

Text:    702802 followed by a letter. 
Example: 702802 Z

pollEv.com/jhug              text to 37607



Symbol table group work

Groups of 3.

・Come up with one application of a symbol table and one application of an 

ordered symbol table.

・Given a symbol table, how do you implement: a) an array b) a set c) a 

symbol table that allows look-up by key OR value?

・Other than being an equivalence relation, what are the rules for 

implementing an equals() method? When should you use equals() to 

implement a symbol table? When should you use compareTo()?

・What is the advantage of disallowing null keys?

・What is the advantage of disallowing null values?

・Bonus: How would you design an efficient data structure that keeps 

getting new words and can be asked for the M most popular words at any 

point? Can you find a solution that uses memory proportional to M?
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application purpose of search key value

dictionary find definition word definition

pg 102



Context

7

application purpose of search key value

dictionary find definition word definition

encyclopedia find info

username/pw log in username password

histogram count occurrrences item count

spell checker find spell errors misspelled words correctly spelled words

Notes

・Ordered symbol table: can get minimum or maximum elements

・Ceiling:  [first item bigger than or equal to x]

・Select:  Get kth element (e.g. 3rd place)

・Rank: What place is element in (Green Bay Packers are ...computing... #3)



Symbol table basics

Given a symbol table, how do you implement: a) an array b) a set c) a 

symbol table that goes allows look-up by key or value?

・Array: 

– key:     successive integers as keys

– value: thing you’re putting in array

– put(0, ‘first thing’), put (1, ‘second thing’)

・Set: (able to see if a thing is there or not, only allow one copy)

– Keys with no values it seems...

– Key:      thing you’re storing

– Value:   [dummy value]]

・Both way lookup symbol table

– Have one symbol table for key -> value

– Another for value -> key

– Every time you    s1.put(key, value)      you also s2.put(value, key)

– One issue: Would have to ensure that each value is mapped to by 

only one key

8



Symbol table basics

Other than being an equivalence relation, what are the rules for 

implementing an equals() method? When should you use equals() to 

implement a symbol table? When should you use compareTo()?

・Check that the two things being compared are not the same exact 

reference [just saves time]

・Check that the two objects are the same class

・Cast from Object ot the appropriate class

・Return false if the instance variables do not match

When do use each?

・equals():          primitive types 

・compareTo(): object  --- but there’s no natural ordering of say... 

pictures

・equals:          there is not a natural order

・compareTo:   if there’s a natural order
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Symbol table basics

What is the advantage of disallowing null keys?

・key.compareTo(x.key): //allows us to do this lazily  

What is the advantage of disallowing null values?

・Waste of space

・Iterate through symbol table, would have nulls: Not inherently a problem

・Client safety (in 226 return ‘null’ as the value to indicate a thing is 

missing from the table, we’ll see this soon)

・If we allowed null, we’d need to use exceptions to handle missing things

Bonus: How would you design an efficient data structure that keeps getting 

new words and can be asked for the M most popular words at any point?

・Approach: N space: Ordered symbol table, key: word, value: count. Use 

select to get top M words. When new word arrives, get the value, and 

increase by one (if not there, you’d make a new entry with value 1).

・Can you do it in M space? PQ ?? No!  Have to track old word counts.
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Associative arrays are pretty darn fundamental

Almost as much as arrays

Key part of most programming languages.

Known by many names

・ Dictionary, map, associative array, symbol table

12



Java: Interface Map

Implementations

・TreeMap

・ConcurrentSkipListMap

・EnumMap

・HashMap

・HashTable

・ConcurrentHashMap

・LinkedHashMap

・WeakHashMap
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Python

(and Perl, and many other languages)

Totally baked into the language.

aa = {‘foo’: ‘bar’, 1: 2}

print aa[1]
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Crazy stuff

There’s a language that doesn’t even have arrays, only associative arrays

PHP

There’s a language where objects are merely associative arrays

obj.var gets translated to obj[var]

Javascript
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Associative arrays and functions

Close connection: f(x, y, z) vs. aa.get([x, y, z])

Associative arrays (lookup tables) are one way to implement functions.

Simple lookup table (regular array): log tables
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Oldest lookup table? [5th century AD] Sine function

मिख भिख फिख धिख णिख ञिख ङिख ह+झ +क.क .क/ग 1घ.क .क3व |
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Associative arrays and chess

Minor revolution in chess playing

17

Black wins in 154 moves



Implementation of a symbol table (a.k.a. associative array)
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A B C D E F G

Ordered Linked List

・Slow to find items we want (even though we’re in order)



Implementation of a symbol table (a.k.a. associative array)
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A B C D E F G

Ordered Linked List

・Slow to find items we want (even though we’re in order)

・Adding (random) express lanes: Skip list (won’t discuss in 226)



Implementation of a symbol table (a.k.a. associative array)
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A B C D E F G

Ordered Linked List to BST

・Slow to find items we want (even though we’re in order)

・Move pointer to middle: Can’t see earlier elements



Implementation of a symbol table (a.k.a. associative array)
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A B C D E F G

Ordered Linked List to BST

・Slow to find items we want (even though we’re in order).

・Pointer in middle, flip left links: Search time is halved.



Implementation of a symbol table (a.k.a. associative array)
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A B C D E F G

Ordered Linked List to BST

・Slow to find items we want (even though we’re in order).

・Pointer in middle, flip left links: Search time is halved.

・Can do better: Dream big!



Implementation of a symbol table (a.k.a. associative array)
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A B C D E F G

Ordered Linked List to BST

・Slow to find items we want (even though we’re in order).

・Pointer in middle, flip left links: Search time is halved.

・Allow every node to make big jumps.



Implementation of a symbol table (a.k.a. associative array)
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A B C D E F G

Ordered Linked List to BST

・Slow to find items we want (even though we’re in order).

・Pointer in middle, flip left links: Search time is halved.

・Allow every node to make big jumps.



Implementation of a symbol table (a.k.a. associative array)
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A B C D E F G

Ordered Linked List to BST

・Slow to find items we want (even though we’re in order).

・Pointer in middle, flip left links: Search time is halved.

・Allow every node to make big jumps.

A

B

C

D

E

F

G



Implementation of a symbol table (a.k.a. associative array)
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Binary Search Tree of height h

・Insert and search now take h+1 calls to compare() in the worst case.

– lg N if tree is balanced!

・Practical trees will be built from disordered data.

– Goal is to maintain reasonable balance after put() and delete().

A

B

C

D

E

F

G



27

BST insertion:  random order visualization

Ex.  Insert keys in random order.



Proposition.  [Reed, 2003]  If N distinct keys are inserted in random order,

expected height of tree is ~ 4.311 ln N.

But…   Worst-case height is N.

(exponentially small chance when keys are inserted in random order)

Proposition.  If N distinct keys are inserted into a BST in random order,

the expected number of compares for a search/insert is ~ 2 ln N.

Pf.  1-1 correspondence with quicksort partitioning.
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BSTs:  mathematical analysis

How Tall is a Tree? 

Bruce Reed 
CNRS, Paris, France 

reed@moka.ccr.jussieu.fr 

ABSTRACT 
Let H~ be the height of a random binary search tree on n 
nodes. We show that  there exists constants a = 4.31107.. .  
and/3 = 1.95.. .  such that E(H~) = c~logn - / 3 1 o g l o g n  + 
O(1), We also show that  Var(H~) = O(1). 

Categories and Subject Descriptors 
E.2 [Data  S t ruc tu res ] :  Trees 

1. THE RESULTS 
A binary search tree is a binary tree to each node of which 
we have associated a key; these keys axe drawn from some 
totally ordered set and the key at v cannot be larger than 
the key at its right child nor smaller than the key at its left 
child. Given a binary search tree T and a new key k, we 
insert k into T by traversing the tree starting at the root 
and inserting k into the first empty position at which we 
arrive. We traverse the tree by moving to the left child of the 
current node if k is smaller than the current key and moving 
to the right child otherwise. Given some permutation of 
a set of keys, we construct a binary search tree from this 
permutation by inserting them in the given order into an 
initially empty tree. 
The height Hn of a random binary search tree T,~ on n 
nodes, constructed in this manner starting from a random 
equiprobable permutation of 1 , . . . ,  n, is known to be close 
to a l o g n  where a = 4.31107...  is the unique solution on 
[2, ~ )  of the equation a log((2e)/a) = 1 (here and elsewhere, 
log is the natural logarithm). First, Pittel[10] showed that  
H,~/log n --~ 3' almost surely as n --+ c~ for some positive 
constant 7. This constant was known not to exceed c~ [11], 
and Devroye[3] showed that "7 = a, as a consequence of the 
fact that E(Hn) ~ c~logn. Robson[12] has found that Hn 
does not vary much from experiment to experiment, and 
seems to have a fixed range of width not depending upon n. 
Devroye and Reed[5] proved that  Var(Hn) = O((log log n)2), 
but this does not quite confirm Robson's findings. It is the 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, to republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
STOC 2000 Portland Oregon USA 
Copyright ACM 2000 1-58113-184-4/00/5...$5.00 

3 purpose of this note to prove that  for /3 -- ½ + ~ ,  we 
have: 

THEOREM 1. E(H~) = ~ l o g n  - / 3 1 o g l o g n  + O(1) and 
Var(Hn) = O(1) . 

R e m a r k  By the definition of a,  /3 = 3~ 7"g~" The first defi- 
nition given is more suggestive of why this value is correct, 
as we will see. 
For more information on random binary search trees, one 
may consult [6],[7], [1], [2], [9], [4], and [8]. 
R e m a r k  After I announced these results, Drmota(unpublished) 
developed an alternative proof of the fact that  Var(Hn) = 
O(1) using completely different techniques. As our two 
proofs illuminate different aspects of the problem, we have 
decided to submit the journal versions to the same journal 
and asked that they be published side by side. 

2. A MODEL 
If we construct a binary search tree from a permutation 
of 1, ..., n and i is the first key in the permutation then: 
i appears at the root of the tree, the tree rooted at the 
left child of i contains the keys 1, ..., i - 1 and its shape 
depends only on the order in which these keys appear in 
the permutation, mad the tree rooted at the right child of i 
contains the keys i + 1, ..., n and its shape depends only on 
the order in which these keys appear in the permutation. 
From this observation, one deduces that  Hn is also the num- 
ber of levels of recursion required when Vazfilla Quicksort 
(i.e. the version of Quicksort in which the first element in 
the permuation is chosen as the pivot) is applied to a random 
permutation of 1, ..., n. 
Our observation also allows us to construct Tn from the top 
down. To ease our exposition, we think of T,~ as a labelling 
of a subtree of T~,  the complete infinite binary tree. 
We will expose the key associated with each node t of T~. 
To underscore the relationship with Quicksort, we refer to 
the key at t as the pivot at t. Suppose then that we have 
exposed the pivots for some of the nodes forming a subtree 
of Too, rooted at the root of T~.  Suppose further that for 
some node t of T~¢, all of the ancestors of t are in T,~ and 
we have chosen their pivots. Then, these choices determine 
the set of keys Kt which will appear at the (possibly empty) 
subtree of T,~ rooted at t, but  will have no effect on the order 
in which we expect the keys in Kt to appear. Indeed each 
permutation of Kt is equally likely. Thus, each of the keys 
in Kt will be equally likely to be the pivot. We let nt be 
the number of keys in this set and specify the pivot at t by 
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Remark.  Correspondence is 1-1 if array has no duplicate keys.

29

Correspondence between BSTs and quicksort partitioning
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Symbol table implementations

30

implementation

guaranteeguarantee average caseaverage case
ordered operations

implementation

search insert search hit insert
ops? on keys

sequential search

(unordered list)
N N N/2 N no equals()

binary search

(ordered array)
lg N N lg N N/2 yes compareTo()

BST N N 1.39 lg N 1.39 lg N yes compareTo()
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Recursive BST code

Suggested Exercise

・Complete an implementation of the API above.

・We’ll do get() and put() in lecture.

・Try the delete methods on your own.

・On assignment 5 (kdtree) you’ll get plenty of practice with recursive 

search tree search and construction.

32

 private class BST<Key extends<Comparable<Key>, Value> {
    private Node root;

  public Value get(Key key)
  public void put(Key key, Value val)
  public void deleteMin(Node x)
  public void delete(Node x)

 }

private class Node {
   Key key;
   Value value;
   Node left, right;
}



Recursive BST code

33

 private class BST<Key extends<Comparable<Key>, Value> {
    private Node root;

  public Value get(Key key)
  public void put(Key key, Value val)

 }

private class Node {
   Key key;
   Value value;
   Node left, right;
}

public Value get(Key key) {
  return get(root, key);
}

private Value get(Node x, key key) {
   if (x == null)  return null;

   int cmp = key.compareTo(x.key);
   if (cmp == 0)   return x.value;
   if (cmp < 0)    return get(x.left, key);
   if (cmp > 0)    return get(x.right, key);
   
}



Recursive BST code

34

public void put(Key key, Value val) {

}



Recursive BST code
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public void put(Key key, Value val) {
  root = put(root, key, val);
}

private Node put(Node x, Key key, Value val) {
if (x == null)

return new Node(key, val);

int cmp = key.compareTo(x.key);
if (cmp == 0)       x.value = val;
else if (cmp < 0)   x.left = put(x.left, key, val);
else if (cmp > 0)   x.right = put(x.right, key, val);
return x;

}



Recursive BST code

Deletion

・Conceptually not so bad (will discuss in a few slides).

・Clean implementation is rather tricky.

36

 private class BST<Key extends<Comparable<Key>, Value> {
    private Node root;

  public Value get(Key key)
  public void put(Key key, Value val)
  public void deleteMin(Node x)
  public void delete(Node x)

 }

private class Node {
   Key key;
   Value value;
   Node left, right;
}



Recursive BST code (group problem)

37

What operation does the code perform?

A. Floor(key)    [703632]  D. Maximum key            [703635]
B. Ceiling(key)  [703633]  E. Key passed as argument [703636]
C. Minimum key   [703634]  F. Median key             [703637]

Note: y = floor(x) is smallest x in tree s.t. y <= x

pollEv.com/jhug              text to 37607



mystery(root, M, null)
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S
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C

A

N

R
H

L

K
P

> 0null

< 0null

S > 0

S < 0

R < 0

P < 0

N N/A

What operation does the code perform?

Ceiling



mystery(root, M, null)
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What operation does the code perform?

Ceiling



Iterative code for BSTs

40

 private class BST<Key extends<Comparable<Key>, Value> {
    private Node root;

  public void put(Key key, Value val)
 }

private class Node {
   Key key;
   Value value;
   Node left, right;
}

public void put(Key key, Value val) {
   Start with x = root;
   repeat until found or inserted:
      compare key to x.key:
          if less and nothing to the left, insert;

 if less and something to the left, x = x.left;
 if more and nothing to the right, insert;
 if more and something to the right, x = x.right;
 if equal, replace value;

}

See online slides for iterative source code example.
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To delete a node with key k:  search for node t containing key k.

Case 0.  [0 children]  Delete t by setting parent link to null.

Example. delete(H)

Recursive Call. Much like put(), visited nodes return a new pointer to their 

parent. Example: When     x = I: x.left = delete(x.left(), H);  

                           When     x = H: return null;
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Hibbard deletion
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To delete a node with key k:  search for node t containing key k.

Case 1.  [1 child]  Delete t by replacing parent link.

Example. delete(R)
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Hibbard deletion
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To delete a node with key k:  search for node t containing key k.

Case 2.  [2 children]  Delete t by replacing parent link.

Example. delete(L)
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Hibbard deletion
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Choosing a replacement.

・Successor: N

・Predecessor: K

P



To delete a node with key k:  search for node t containing key k.

Case 2.  [2 children]  Delete t by replacing parent link.

Example. delete(L)
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Hibbard deletion
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Choosing a replacement.

・Successor: N    [by convention]

・Predecessor: K
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To delete a node with key k:  search for node t containing key k.

Case 2.  [2 children]  Delete t by replacing parent link.

Example. delete(L)
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Hibbard deletion
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Four pointers must change.

・Parent of deleted node

・Parent of successor

P
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・Left child of successor

・Right child of successor

Available for garbage collection
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Hibbard deletion:  analysis

Unsatisfactory solution.  Not symmetric.

Surprising consequence.  Trees not random (!)  ⇒  sqrt (N) per op.

Longstanding open problem.  Simple and efficient delete for BSTs.



Next lecture.  Guarantee logarithmic performance for all operations.
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ST implementations:  summary

implementation

guaranteeguaranteeguarantee average caseaverage caseaverage case
ordered operations

implementation

search insert delete search hit insert delete
iteration? on keys

sequential search

(linked list)
N N N N/2 N N/2 no equals()

binary search

(ordered array)
lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N √N yes compareTo()

other operations also become √N

if deletions allowed
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Algorithms

‣ Basics and group work

‣ Mini lecture on symbol tables and 
BSTs

‣ Recursive and Iterative BST code

‣ Mini lecture on Hibbard delete

‣ Deeper thinking
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Design Problem

Solo

・Erweiterten Netzwerk is a new German minimalist social networking 

site that provides only two operations for its logged-in users.

–                  : Enter another user’s username and click the Neu button. 

This marks the two users as friends.

–                                         : Type in another user’s username and 

determine whether the two users are in the same extended network 

(i.e. there exists some chain of friends between the two users).
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Identify at least one API that Erweiterten Netzwerk should use: 

A. Queue       [77170]    D. Priority Queue       [78510]
B. Union-find  [77173]    E. Symbol Table         [78580]
C. Stack       [77654]    F. Randomized Queue     [78635]

Note: There may be more than one ‘good’ answer.

pollEv.com/jhug              text to 37607



Design Problem

Groups of 3 (design problem)

・Erweiterten Netzwerk is a new German minimalist social networking 

site that provides only two operations for its logged-in users.

–                  : Enter another user’s username and click the Neu button. 

This marks the two users as friends.

–                                         : Type in another user’s username and 

determine whether the two users are in the same extended network 

(i.e. there exists some chain of friends between the two users).

・In a group: What is the worst case order of growth of the running time 

that Erweiterten Netzwerk can guarantee for M operations and N 

users?
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B. Union-find  [77173]    E. Symbol Table         [78580]



Amortized Time

Groups of 3

・Your symbol table implementation supports the insert and search 

operations in amortized 4 lg N compares. Which of the following are 

true?

– I. Starting from an empty data structure, and sequence of N insert 

and search operations uses at most 4 N lg N compares.

– II. Any sequence of N insert and search operations uses at most           

4 N lg  N compares.

– III. Starting from an empty data structure, the expected number of 

compares for N insert and search operations is 4 N lg N, but there is 

a (small) probability that it will take more.
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Which of the following are true?

A. I only          [704403]     D. I, II, and III   [704406]

B. I and II only   [704404]     E. None             [704407]

C. I and III only  [704405]

pollEv.com/jhug              text to 37607


