Announcements

New Website Feature (Summary Page)

Coursera viewing guide

* Most important points from each lecture

Suggested problems (time permitting)

II_--

2 2/6
3 2/11
4 2/13
5 2/18
6 2/20
7 2/25
8 2/27
9 3/4
10 3/6

Intro - Union Find

Analysis of Algorithms lup -
Stacks and Queues lup -
Elementary Sorts lup -
Mergesort lup -
Quicksort lup -
Priority Queues lup -

4up
4up
4up
4up
4up
4up

lup - 4up

Lectures and dates below are still tent

Elementary Symbol Tables - BSTs lup -
Balanced Search Trees lup -
Hash Tables - Searching Applications lup -

Very Short Survey after Class

4up
4up
4up

* If you’re surveyed out, wait until the one in two weeks (after midterm)

A 1 g() I 1 { h Ims ROBERT SEDGEWICK | KEVIN WAYNE

3.1 AND 3.2

» Basics and group work
» Mini lecture on symbol tables and
BSTs
» Recursive and lterative BST code
| » Mini lecture on Hibbard delete

http://algs4.cs.princeton.edu 4 Deeper fhlnl(lng

Algorithms

3.1 AND 3.2

» Basics and group work

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

How many BSTs?

pollEv.com/jhug text to 37607

How many of the figures above are BSTs?

A. 1 [117608] C. 3 [118189]
B. 2 [118183] D. 4 [118192]

Basics question #2

pollEv.com/jhug text to 37607

Give an example of a single letter key which, when inserted, will increase
the height of the tree.

Text: 702802 followed by a letter.
Example: 702802 Z

Symbol table group work

Groups of 3.
« Come up with one application of a symbol table and one application of an

ordered symbol table.

dictionary find definition word definition

e Given a symbol table, how do you implement: a) an array b) a set c) a
symbol table that allows look-up by key OR value?
« Other than being an equivalence relation, what are the rules for
implementing an equals () method? When should you use equals() to
U /irvnplement a symbol table? When should you use compareTo()?
 What is the advantage of disallowing null keys?
 What is the advantage of disallowing null values?
 Bonus: How would you design an efficient data structure that keeps
getting new words and can be asked for the M most popular words at any

point? Can you find a solution that uses memory proportional to M?

Context

dictionary find definition word definition
encyclopedia find info
username/pw log in username password
histogram count occurrrences item count
spell checker find spell errors misspelled words correctly spelled words
Notes

* Ordered symbol table: can get minimum or maximum elements

* Ceiling: [first item bigger than or equal to x]

« Select: Get kth element (e.g. 3rd place)

 Rank: What place is element in (Green Bay Packers are ...computing... #3)

Symbol table basics

Given a symbol table, how do you implement: a) an array b) a set ¢) a
symbol table that goes allows look-up by key or value?
e Array:
- key: successive integers as keys
- value: thing you’re putting in array
- put(0, “first thing’), put (1, ‘second thing’)
« Set: (able to see if a thing is there or not, only allow one copy)
- Keys with no values it seems...
- Key: thing you’re storing
- Value: [dummy value]]
 Both way lookup symbol table
- Have one symbol table for key -> value
- Another for value -> key
- Every time you sl.put(key, value) you also s2.put(value, key)
- One issue: Would have to ensure that each value is mapped to by
only one key

Symbol table basics

Other than being an equivalence relation, what are the rules for
implementing an equals() method? When should you use equals() to
implement a symbol table? When should you use compareTo()?

e Check that the two things being compared are not the same exact

reference [just saves time]

 Check that the two objects are the same class

e Cast from Object ot the appropriate class

* Return false if the instance variables do not match

When do use each?
. 150): L
ptetures

e equals: there is not a natural order
e compareTo: if there’s a natural order

Symbol table basics

What is the advantage of disallowing null keys?

 key.compareTo(x.key): //allows us to do this lazily

What is the advantage of disallowing null values?

« Waste of space

* lterate-through-symbeoltablewould-havenuls: Not inherently a problem

* Client safety (in 226 return ‘null’ as the value to indicate a thing is
missing from the table, we’ll see this soon)

* If we allowed null, we’d need to use exceptions to handle missing things
Bonus: How would you design an efficient data structure that keeps getting
new words and can be asked for the M most popular words at any point?

* Approach: N space: Ordered symbol table, key: word, value: count. Use
select to get top M words. When new word arrives, get the value, and
increase by one (if not there, you’d make a new entry with value 1).

« Canyou do itin M space? PQ ?? No! Have to track old word counts.

3.1 AND 3.2

» Mini lecture on symbol tables and

Algorithms iy

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Associative arrays are pretty darn fundamental

Almost as much as arrays

Key part of most programming languages.

Known by many names
Dictionary, map, associative array, symbol table

Java: Interface Map

Implementations

TreeMap
ConcurrentSkipListMap
EnumMap

HashMap

HashTable
ConcurrentHashMap
LinkedHashMap
WeakHashMap

Python

(and Perl, and many other languages)

Totally baked into the language.

aa = {‘foo’: ‘bar’, 1: 2}

print aal1]

Crazy stuff

There’s a language that doesn’t even have arrays, only associative arrays

PHP

There’s a language where objects are merely associative arrays
obj.var gets translated to obj[var]

Javascript

Associative arrays and functions

Close connection: f(x, y, z) vs. aa.get([x, vy, z])

Associative arrays (lookup tables) are one way to implement functions.

Simple lookup table (regular array): log tables

Oldest lookup table? [5th century AD] Sine function

TN AT B &g UT ST ST 6% Tehieh (ST Aeffep [eherd |
Eelich [Tl &Y b Tobel T AT S § W B & el 1-37ef-5I1 ||

Associative arrays and chess

Minor revolution in chess playing

)

Black wins in 154 moves

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List
* Slow to find items we want (even though we’re in order)

— (W)= —(O——E—(—(©

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List
* Slow to find items we want (even though we’re in order)
* Adding (random) express lanes: Skip list (won’t discuss in 226)

— (A= —(O—0)—(—()—(c)
— -

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List to BST
* Slow to find items we want (even though we’re in order)
 Move pointer to middle: Can’t see earlier elements

(WD—(&—() 'é (&) —(©)

20

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List to BST
« Slow to find items we want (even though we’re in order).
* Pointer in middle, flip left links: Search time is halved.

(W) é {()—(—(©)

21

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List to BST

« Slow to find items we want (even though we’re in order).
* Pointer in middle, flip left links: Search time is halved.

* Can do better: Dream big!

D O———@

22

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List to BST

« Slow to find items we want (even though we’re in order).
* Pointer in middle, flip left links: Search time is halved.

* Allow every node to make big jumps.

D O ——@

23

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List to BST

« Slow to find items we want (even though we’re in order).
* Pointer in middle, flip left links: Search time is halved.

* Allow every node to make big jumps.

D O ——@

24

Implementation of a symbol table (a.k.a. associative array)

Ordered Linked List to BST

« Slow to find items we want (even though we’re in order).
* Pointer in middle, flip left links: Search time is halved.

* Allow every node to make big jumps.

—G—® N\ O—@

25

Implementation of a symbol table (a.k.a. associative array)

Binary Search Tree of height h

* Insert and search now take h+1 calls to compare() in the worst case.
- Ig N if tree is balanced!

* Practical trees will be built from disordered data.
- Goal is to maintain reasonable balance after put() and delete().

26

BST insertion: random order visualization

Ex. Insert keys in random order.

N =255

max = 16
avg = 9.1
opt=7.0

= e

27

BSTs: mathematical analysis

Proposition. [Reed, 2003] If Ndistinct keys are inserted in random order,
expected height of tree is ~4.311 In N.

How Tall is a Tree?

Bruce Reed
CNRS, Paris, France

reed@moka.ccr.jussieu.fr

ABSTRACT

Let H, be the height of a random binary search tree on n
nodes. We show that there exists constants o = 4.31107...
and B8 = 1.95... such that E(H,) = alogn — Bloglogn +
O(1), We also show that Var(H,) = O(1).

But... Worst-case height is N.
(exponentially small chance when keys are inserted in random order)

Proposition. If Ndistinct keys are inserted into a BST in random order,
the expected number of compares for a search/insert is ~ 2 In N.
Pf. 1-1 correspondence with quicksort partitioning.

28

Correspondence between BSTs and quicksort partitioning

0O 1 2 3 4 5 6 7 8 9 1011 12 13
P S E UDOMYTH I CA L
P S E UDOMYTH I CA L
H L EADUOMCI|I P T Y U S
b CEAHOMIL I
A C D E
A C
C
E
I M L O
I M L
L M
L
S T U Y
S
U
A CDEMH I L MOZPS TUY

Remark. Correspondence is 1-1 if array has no duplicate keys.

29

Symbol table implementations

guarantee average case

ordered operations

implementation
: : : ops? on keys
search insert search hit insert

sequential search

equals
(unordered list) N N N/2 N no q O
binary search la N N lg N N/2 compareTo()
(ordered array) g g yes p
BST N N 1.391gN 1.391IgN yes compareTo()

—O—EO—O—0—EO—FE—0©

3.1 AND 3.2

Algorithms

» Recursive and lterative BST code

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Recursive BST code

private class BST<Key extends<Comparable<Key>, Value> {
private Node root;

private class Node {
Key key;
Value value;
Node left, right;

public Value get(Key key)

public void put(Key key, Value val)
public void deleteMin(Node x)

public void delete(Node x) }

r

Suggested Exercise
« Complete an implementation of the API above.
« We'll do get() and put() in lecture.
 Try the delete methods on your own.
 On assignment 5 (kdtree) you’ll get plenty of practice with recursive
search tree search and construction.

32

Recursive BST code

private class BST<Key extends<Comparable<Key>, Value> {

private Node root;

public Value get(Key key)
public void put(Key key, Value val)

public Value get(Key key) {

}

return get(root, key);

private Value get(Node x, key key) {

1if (x == null) return null;

int cmp = key.compareTo(x.key);
it (cmp == 0) return x.value;

if (cmp < 0) return get(x.left, key);
if (cmp > 0) return get(x.right, key);

private class Node {
Key key;
Value value;
Node Teft, right;

33

Recursive BST code

public void put(Key key, Value val) {

}

34

Recursive BST code

public void put(Key key, Value val) {
root = put(root, key, val);
}

private Node put(Node x, Key key, Value val) {
if (X == null)
return new Node(key, val);

int cmp = key.compareTo(x.key);

if (cmp == 0) x.value = val;

else if (cmp < 0) x.left = put(x.left, key, val);
else if (cmp > 0) x.right = put(x.right, key, val);
return X;

35

Recursive BST code

private class BST<Key extends<Comparable<Key>, Value> {
private Node root;

private class Node {

public Value get(Key key) Key key:

public void put(Key key, Value val) Value value:
public void deleteMin(Node x) Node left, right
public void delete(Node x) }

r

Deletion
* Conceptually not so bad (will discuss in a few slides).
e Clean implementation is rather tricky.

36

Recursive BST code (group problem)

public Key mystery(Key key) {
Node best = mystery(root, key, null);
if (best == null) return null;
return best.key;

}

private Node mystery(Node x, Key key, Node best) {
if (x == null) return best;
int cmp = key.compareTo(x.key);
if (cmp < 0) return mystery(x.left, key, x);
else if (cmp > 0) return mystery(x.right, key, best);
else return Xx;

} pollEv.com/jhug text to 37607

What operation does the code perform?

A. Floor(key) [703632] D. Maximum key [703635]
B. Ceiling(key) [703633] E. Key passed as argument [703636]
C. Minimum key [703634] F. Median key [703637]

Note: y = floor(x) is smallest x in tree s.t. y <= x

37

mystery(root, M, null)

private Node mystery(Node x, Key key, Node best) {

if (x == null) return best;

int cmp = key.compareTo(x.key);

if (cmp < 0) return mystery(x.left, key, x);
else if (cmp > 0) return mystery(x.right, key, best);
else return Xx;

What operation does the code perform?

null e <0 Ceiling

38

mystery(root, M, null)

private Node mystery(Node x, Key key, Node best) {

if (x == null) return best;

int cmp = key.compareTo(x.key);

if (cmp < 0) return mystery(x.left, key, x);
else if (cmp > 0) return mystery(x.right, key, best);
else return Xx;

What operation does the code perform?

Ceiling

39

lterative code for BSTs

private class BST<Key extends<Comparable<Key>, Value> {
private Node root; _
private class Node {
public void put(Key key, Value val) Key key;
1 Value value;

Node Teft, right;

public void put(Key key, Value val) {
Start with x = root;
repeat until found or inserted:
compare key to x.key:

if less and nothing to the left, insert;
if less and something to the left, x = x.left;
if more and nothing to the right, insert;
if more and something to the right, x = x.right;
if equal, replace value;

See online slides for iterative source code example.

40

3.1 AND 3.2

Algorithms

» Mini lecture on Hibbard delete

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Hibbard deletion

To delete a node with key k: search for node t containing key k.
Case 0. [0 children] Delete t by setting parent link to null.

Example. delete(H)

Recursive Call. Much like put (), visited nodes return a new pointer to their
parent. Example: When x = I: x.left = delete(x.left(), H);
When x = H: return null;

Available for garbage collection

42

Hibbard deletion

To delete a node with key k: search for node t containing key k.
Case 1. [1 child] Delete t by replacing parent link.

Example. delete(R)

Available for garbage collection

43

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children] Delete t by replacing parent link.

Example. delete(L)

Choosing a replacement.
 Successor: N
* Predecessor: K

44

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children] Delete t by replacing parent link.

Example. delete(L)

Choosing a replacement.
e Successor: N [by convention]
* Predecessor—K

45

Hibbard deletion

To delete a node with key k: search for node t containing key k.

Case 2. [2 children] Delete t by replacing parent link.

Example. delete(L)

Four pointers must change Available for garbage collection

* Parent of deleted node » Left child of successor
* Parent of successor * Right child of successor

46

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

N =150

max = 16
avg = 9.3
opt=6.4

Surprising consequence. Trees not random (!) = sqrt (V) per op.
Longstanding open problem. Simple and efficient delete for BSTs.

47

ST implementations: summary

guarantee average case

ordered operations

implementation : :
: _ : iteration? on keys
search insert delete | search hit insert delete

sequential search
(linked list)

N N N/2 N N/2 no equals()

binary search
gN N N Ilg N N/2 N/2 yes compareTo()
(ordered array)

BST N N N 1.391gN 1.391g N @ yes compareTo()

other operations also become /N

if deletions allowed

Next lecture. Guarantee logarithmic performance for all operations.

48

3.1 AND 3.2

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu 4 Deeper fhlnl(lng

Design Problem

Solo
« Erweiterten Netzwerk is a new German minimalist social networking
site that provides only two operations for its logged-in users.

- g1 Neu : Enter another user’s username and click the Neu button.

This marks the two users as friends.

- Erweiterten Netzwerk : Type in another user’s username and
determine whether the two users are in the same extended network
(i.e. there exists some chain of friends between the two users).

pollEv.com/jhug text to 37607

Identify at least one API that Erweiterten Netzwerk should use:

A. Queue [77170] D. Priority Queue [78510]
B. Union-find [77173] E. Symbol Table [78580]
C. Stack [77654] F. Randomized Queue [78635]

Note: There may be more than one ‘good’ answer.

50

Design Problem

Groups of 3 (design problem)
« Erweiterten Netzwerk is a new German minimalist social networking
site that provides only two operations for its logged-in users.

- g1 Neu : Enter another user’s username and click the Neu button.

This marks the two users as friends.

- Erweiterten Netzwerk : Type in another user’s username and
determine whether the two users are in the same extended network
(i.e. there exists some chain of friends between the two users).

B. Union-find [77173] E. Symbol Table [78580]

* In a group: What is the worst case order of growth of the running time
that Erweiterten Netzwerk can guarantee for M operations and N
users?

51

Amortized Time

Groups of 3
* Your symbol table implementation supports the insert and search

operations in amortized 4 |lg N compares. Which of the following are

true?

- L. Starting from an empty data structure, and sequence of N insert
and search operations uses at most 4 N Ig N compares.

- II. Any sequence of N insert and search operations uses at most
4 Nlg N compares.

— [1I. Starting from an empty data structure, the expected number of
compares for N insert and search operations is 4 N Ig N, but there is
a (small) probability that it will take more.

pollEv.com/jhug text to 37607
Which of the following are true?
A. T only [704403] D. I, II, and III [704406]
B. T and II only [704404] E. None [704407]
C. I and III only [704405]

52

