A 1 g() I 1 { h Ims ROBERT SEDGEWICK | KEVIN WAYNE

1.3 BAGS, QUEUES, AND STACKS

» stacks
» resizing arrays

» queues

Algorithms

» generics

» iterafors

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu } Gpp/icafions

Stacks and queues

Fundamental data types.
* Value: collection of objects.

 Operations: insert, remove, iterate, test if empty.
* |Intent is clear when we insert.
* Which item do we remove?

stack push
pop
queue
enqueue S50 N N N N N N dequeue

Stack. Examine the item most recently added. <«— LIFO = "lastin first out"

Queue. Examine the item least recently added. <— FiFo = “first in first out"

Client, implementation, interface

Separate interface and implementation.
Ex: stack, queue, bag, priority queue, symbol table, union-find,

Benefits.
e Client can't know details of implementation =
client has many implementation from which to choose.
 Implementation can't know details of client needs =
many clients can re-use the same implementation.
 Design: creates modular, reusable libraries.
 Performance: use optimized implementation where it matters.

Client: program using operations defined in interface.
Implementation: actual code implementing operations.

Interface: description of data type, basic operations.

1.3 BAGS, QUEUES, AND STACKS

» stacks

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Stack API

Warmup API. Stack of strings data type.

public class StackOfStrings

StackOfStrings() create an empty stack

void push(String item) insert a new string onto stack

remove and return the string

String pop()

most recently added

boolean 1isEmpty() is the stack empty?

Warmup client. Reverse sequence of strings from standard input.

Stack test client

Read strings from standard input.

« If string equals "-", pop string from stack and print.

* Otherwise, push string onto stack.

public static void main(String[] args)

{
StackOfStrings stack = new StackOfStrings();
while (!StdIn.isEmpty())

{
String s = StdIn.readString(Q);
if (s.equals("-")) StdOut.print(stack.pop());
else stack.push(s);

}

% more tobe.txt
to be or not to - be - - that - - - 1is

% java StackOfStrings < tobe.txt
to be not that or be

Stack: linked-list representation

Maintain pointer to first node in a linked list; insert/remove from front.

StdIn StdOut

-to to
null
be be -
. — o
first —
insert at front or or
—— = to
t
not L I -
— e// to
null
to to
— not/ or
— e be// to
null
- to nci/y or | e
— — | to
remove from front wull
. . be
of linked list be —=—[not] s
— — be// to
null
t
- be no | > or
— | > | be
| — —>| to
null
or
- not —1— [pe
—1 | to
null

Stack pop: linked-list implementation

inner class

private class Node
{
String item;
Node next;

save item to return

String item = first.item;

delete first node

first = first.next;

first —| or

first \
be

to

null

to

null

return saved item

return item;

Stack push: linked-list implementation

inner class

private class Node
{
String item;
Node next;

save a link to the list

Node oldfirst = first;

oldfirst

first —| or

null
create a new node for the beginning
first = new Node();
oldfirst
first —
or
— = to
—
null
set the instance variables in the new node
first.item = "not";
first.next = oldfirst;
first — not 5 3 e
— e to

null

Stack: linked-list implementation in Java

public class LinkedStackOfStrings
{

private Node first = null;

private class Node

{
String item;
Node next;
}
public boolean isEmpty()
{
return first == null;
}
public void push(String item)
{...
ks
public String pop()
{...
}

private inner class
(access modifiers don't matter)

Stack: linked-list implementation performance

Proposition. Every operation takes constant time in the worst case.

Proposition. A stack with N items uses ~ 40 N bytes.

inner class

private class Node
{
String item;
Node next;

object
overhead

extra
overhead

item

next

> references

16 bytes (object overhead)

8 bytes (inner class extra overhead)
8 bytes (reference to String)

8 bytes (reference to Node)

40 bytes per stack node

Remark. This accounts for the memory for the stack
(but not the memory for strings themselves, which the client owns).

Stack: array implementation

Array implementation of a stack.
e Use array s[] to store N items on stack.
 push(): add new item at s[N].
* pop(): remove item from s[N-1].

s[] to be or not to be null null null null
0 1 2 3 4 5 3) 7 8 9
N

Defect. Stack overflows when N exceeds capacity. [stay tuned]

capacity =10

Stack: array implementation

public class FixedCapacityStackOfStrings
{

private String[] s;

private int N = 0;

a cheat
(stay tuned)

public FixedCapacityStackOfStrings(int capacity)
{ s = new String[capacity]; }

public boolean isEmpty()
{ return N == 0; }

public void push(String item)
{ Ss[N++] = item; }

public String pop(Q)
{ return s[--N]; }

} AN

use to index into array;

then increment N

decrement N;

then use to index into array

Stack considerations

Overflow and underflow.
* Underflow: throw exception if pop from an empty stack.

* Overflow: use resizing array for array implementation. [stay tuned]

Null items. We allow null items to be inserted.

Loitering. Holding a reference to an object when it is no longer needed.

public String pop() public String pop()
{ return s[--N]; } {

String item = s[--N];
loitering s[N] = null;
return item;

this version avoids "loitering":
garbage collector can reclaim memory
only if no outstanding references

1.3 BAGS, QUEUES, AND STACKS

» resizing arrays

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Stack: resizing-array implementation

Problem. Requiring client to provide capacity does not implement API!
Q. How to grow and shrink array?

First try.
* push(Q): increase size of array s[] by 1.
 pop(): decrease size of array s[] by 1.

Too expensive.
* Need to copy all items to a new array.
e Inserting first N items takes time proportionalto 1 +2+...+N ~ N2/2.

T

infeasible for large N

Challenge. Ensure that array resizing happens infrequently.

Stack: resizing-array implementation

Q. How to grow array? “repeated doubling"

A. If array is full, create a new array of twice the size, and copy items.

public ResizingArrayStackOfStrings()
{ s = new String[1l]; }

public void push(String item)

{
if (N == s.length) resize(2 * s.length);
S[N++] = item;

}

private void resize(int capacity)
{
String[] copy = new String[capacity];
for (int i = 0; i < N; i++)
copy[i] = s[il];
S = COopy;

see next slide

l

Consequence. Inserting first N items takes time proportional to N (not N2).

Stack: amortized cost of adding to a stack

Cost of inserting first N items. N + 2+4+8+...+N) ~ 3N.

128 —

cost (array accesses)

t t

1 array access k array accesses to double to size k
per push (ignoring cost to create new array)

one gray dot 128
for each operation

64

red dots give cumulative average 3

S

number of push() operations 128

Stack: resizing-array implementation

Q. How to shrink array?

First try.
* push(): double size of array s[] when array is full.
* pop(): halve size of array s[] when array is one-half full.

Too expensive in worst case.

* Consider push-pop-push-pop-... sequence when array is full.
 Each operation takes time proportional to N.

N=>5 to be or not to null null null
N=4 to be or not
N =25 to be or not to null null null

N =4 to be or not

Stack: resizing-array implementation

Q. How to shrink array?

Efficient solution.

* push(): double size of array s[] when array is full.

 pop(): halve size of array s[] when array is one-quarter full.

public String pop()

{
String item = s[--N];
S[N] = null;

if (N> 0 & N == s.length/4) resize(s.length/2);
return item;

Invariant. Array is between 25% and 100% full.

Stack: resizing-array implementation trace

all
push() pop(D) N a.length - 1 ; = p : 2 .
0 1 null
to 1 to
be 2 2 be
or 3 4 or null
not 4 not
to 5 8 to null null null
- to 4 null
be 5 be
- be 4 null
- not 3 null
that 4 that
- that 3 null
- or 2 4 null null
- be 1 2 null
is 2 is

Trace of array resizing during a sequence of push() and pop() operations

21

Stack resizing-array implementation: performance

Amortized analysis. Average running time per operation over
a worst-case sequence of operations.

Proposition. Starting from an empty stack, any sequence of M push and

pop operations takes time proportional to M.

construct 1

pUSh 1 N \
& doubling and
1 1 1 halving operations

order of growth of running time
for resizing stack with N items

22

Stack resizing-array implementation: memory usage

Proposition. Uses between ~ 8 N and ~ 32 N bytes to represent a stack

with N items.
e ~8N when full.
e ~32 N when one-quarter full.

public class ResizingArrayStackOfStrings
{

private String[] s; T
private int N = 0; <«

8 bytes (reference to array)
24 bytes (array overhead)

8 bytes x array size
——— 4 bytes (int)

— 4 bytes (padding)

Remark. This accounts for the memory for the stack

(but not the memory for strings themselves, which the client owns).

23

Stack implementations: resizing array vs. linked list

Tradeoffs. Can implement a stack with either resizing array or linked list;
client can use interchangeably. Which one is better?

Linked-list implementation.
* Every operation takes constant time in the worst case.
* Uses extra time and space to deal with the links.

Resizing-array implementation.

* Every operation takes constant amortized time.
* Less wasted space.

N=4 to be or not null null null null

first — not

null

1.3 BAGS, QUEUES, AND STACKS

» queues

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Queue API

public class

QueueOfStrings

void
String

boolean

int

QueueOfStrings()
enqueue(String item)
dequeue()

1isEmpty ()

size()

create an empty queue

insert a new string onto queue

remove and return the string

least recently added

is the queue empty?

number of strings on the queue

enqueue

dequeue

26

Queve: linked-list representation

Maintain pointer to first and last nodes in a linked list;
insert/remove from opposite ends.

StdIn StdOut

tO to
null
be to | >[b
. — e
first ull last
t N\
or 4 >[be
— | or
null
t
not - > [be
—_— or// not
null
tO to
— = | > | or
— t
e no//
be
B to — = | > | not
— //r to
remove from front ull
of linked list be L N -
p— t
el o//
or
- be //V not o
— | | > | be

null

to

null

be

null

insert at end
of linked list

27

Queve dequeve:

linked-list implementation

inner class

private class Node
{
String item;
Node next;

save item to return
String item = first.item;

delete first node

first = first.next;

Tast
first —| to \
> be
—
——1 | or
null
) Tast
f1rst-_______~__~§§§§*‘ \\
be
—— | or
null

return saved item

return item;

Remark. ldentical code to linked-list stack pop().

Quevue enqueue: linked-list implementation

inner class

private class Node
{
String item;
Node next;

save a link to the last node

Node oldlast = last;

oldlast
Jast
first —- to - \
— e//r or
null
create a new node for the end
last = new Node();
last.item = "not";
oldlast
first —| to \ last
— or
null not
null
link the new node to the end of the list
oldlast.next = last;
oldlast
last
first — to \ \
— be
— not

null

29

Queve: linked-list implementation in Java

pubTlic class LinkedQueueOfStrings
{

private Node first, last;

private class Node
{ /* same as 1in LinkedStackOfStrings */ }

public boolean isEmpty()
{ return first == null; }

public void enqueue(String item)

special cases for

{
Node oldlast = last;
last = new Node();
last.item = 1item;
last.next = null;
if (isEmpty()) first = Tlast; =
else oldlast.next = last;
}
public String dequeue()
{
String item = first.item;
first = first.next;
if (isEmpty()) last = null;
return item;
¥

/ empty queue

30

Quevue: resizing array implementation

Array implementation of a queue.
e Use array q[] to store items in queue.

enqueue(): add new item at q[tail].

dequeue(): remove item from q[head].

Update head and tail modulo the capacity.

Add resizing array.

qll null null the best of times null null null null
0 1 2 3 4 5 6 7 8 9
head tail capacity = 10

Q. How to resize?

31

1.3 BAGS, QUEUES, AND STACKS

Algorithms

» generics

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Parameterized stack

We implemented: StackOfStrings.
We also want: StackOfURLs, StackOfInts, StackOfVans,

Attempt 1. Implement a separate stack class for each type.
* Rewriting code is tedious and error-prone.

 Maintaining cut-and-pasted code is tedious and error-prone.

@#%$*! most reasonable approach until Java 1.5.

33

Parameterized stack

We implemented: StackOfStrings.
We also want: StackOfURLs, StackOfInts, StackOfVans,

Attempt 2. Implement a stack with items of type Object.
e Casting is required in client.
e Casting is error-prone: run-time error if types mismatch.

StackOfObjects s = new StackOfObjects();
Apple a = new Apple();

Orange b = new Orange();

s.push(a);

s.push(b);

a = (App1e1\(s-p0p());

AN

run-time error

34

Parameterized stack

We implemented: StackOfStrings.
We also want: StackOfURLs, StackOfInts, StackOfVans,

Attempt 3. Java generics.
* Avoid casting in client.
* Discover type mismatch errors at compile-time instead of run-time.

Stack<Apple> s = new Stack<Apple>(Q);
Apple a = new Apple();

Orange b = new Orange();

s.push(a);

s.push(b);

a = s.popQ);

compile-time error

A

Guiding principles. Welcome compile-time errors; avoid run-time errors.

35

Generic stack: linked-list implementation

public class LinkedStackOfStrings
{

private Node first = null;

private class Node

{
String item;
Node next;

}

public boolean isEmpty()
{ return first == null; }

public void push(String item)

{
Node oldfirst = first;
first = new Node();
first.item = item;
first.next = oldfirst;

}

public String pop()

{
String item = first.item;
first = first.next;
return item;

}

public class Stack<Item>

private Node first = nu

private class Node

{

Item item;
Node next;

}

public boolean isEmpty,
{ return first == n

{
Node oldfir
first =
first.it
first.n
}
pubTi
{
Item item = first.item;
first = first.next;
return item;
}

gendric type name

36

Generic stack: array implementation

public class FixedCapacityStackOfStrings
{

private String[] s;

private int N = 0;

public ..StackOfStrings(int capacity)
{ s = new String[capacity]; }

public boolean isEmpty()
{ return N == 0; }

public void push(String item)
{ s[N++] = item; }

public String pop(Q)
{ return s[--N]; }

the way it should be

public class FixedCapacityStack<Item>
{

private Item[] s;

private int N = O;

public FixedCapacityStack(int capacity)
{ s = new Item[capacity]; }

public boglean isEmpty()

{ N==20; }
publi¢g void push(Item item)
{ sAN++] = item; }

pdblic Item pop()
return s[--N]; }

@#$*! generic array creation not allowed in Java

37

Generic stack: array implementation

public class FixedCapacityStackOfStrings
{

private String[] s;

private int N = 0;

public ..StackOfStrings(int capacity)
{ s = new String[capacity]; }

public boolean isEmpty()
{ return N == 0; }

public void push(String item)
{ s[N++] = item; }

public String pop(Q)
{ return s[--N]; }

the way it is

public class FixedCapacityStack<Item>
{

private Item[] s;
private int N = 0;

public FixedCapacityStack(int capacity)
{ s = (Item[]) new Object[capacity]; }

public boolean isEmpty()
{

[N++] = item; }

ublic Item pop(Q)
{ return s[--N]; 1}

the ugly cast

38

Unchecked cast

% javac FixedCapacityStack.java
Note: FixedCapacityStack.java uses unchecked or unsafe operations.
Note: Recompile with -XTint:unchecked for details.

% javac -Xlint:unchecked FixedCapacityStack.java
FixedCapacityStack.java:26: warning: [unchecked] unchecked cast
found : java.lang.Object[]
required: Item[]
a = (Item[]) new Object[capacity];
A
1 warning

39

Generic data types: autoboxing

Q. What to do about primitive types?

Wrapper type.
e Each primitive type has a wrapper object type.
 EX: Integer is wrapper type for int.

Autoboxing. Automatic cast between a primitive type and its wrapper.

Stack<Integer> s = new Stack<Integer>();
s.push(17); // s.push(Integer.valueOf(17));
int a = s.popQ); // int a = s.pop().intValue();

Bottom line. Client code can use generic stack for any type of data.

40

1.3 BAGS, QUEUES, AND STACKS

Algorithms

» iferafors

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

lteration

Design challenge. Support iteration over stack items by client,
without revealing the internal representation of the stack.

1 N
s[] it was the best of times null null null null
0 1 2 3 4 5 6 7 8 9
first current

' '

times — > of —> best —> the —> was — > it — aull

Java solution. Make stack implement the java.lang.Iterable interface.

42

lterators

Q. Why make data structures Iterable ?

A

. What is an Iterable?

. What is an Iterator ?
Has methods hasNext() and next().

. Java supports elegant client code.

“foreach” statement (shorthand)

for (String s : stack)
StdOut.printin(s);

Has a method that returns an Iterator.

Iterable interface

public interface Iterable<Item>

{

Iterator<Item> iterator();

}

Iterator interface

public interface Iterator<Item>
{

boolean hasNext();

Item next();

. optional; use
void remove(); .

at your own risk

equivalent code (longhand)

Iterator<String> i = stack.iterator();
while (i.hasNext())

{

String s = i.next(Q);
StdOut.printin(s);

43

Stack iterator: linked-list implementation

import java.util.Iterator;

public class Stack<Item> implements Iterable<Item>

{
public Iterator<Item> iterator() { return new ListIterator(); }
private class ListIterator implements Iterator<Item>
{
private Node current = first;
public boolean hasNext() { return current != null; }
public void remove() { /* not supported */ }
public Item next() \
{ | \ throw UnsupportedOperationException
Item 1tem = current.item ’ throw NoSuchElementException
Current_ = current.next; if no more items in iteration
return item;
}
}
}
first current

v v

times — > of — > best — > the —™ > was — > it T ull

44

Stack iterator: array implementation

import java.util.Iterator;

public class Stack<Item> implements Iterable<Item>

{
public Iterator<Item> iterator()
{ return new ReverseArrayIterator(); }
private class ReverseArraylterator implements Iterator<Item>
{
private int i = N;
public boolean hasNext() { return i > O; }
public void remove() { /* not supported */ }
public Item next() { return s[--1]; }
}
}
1 N
s[] it was the best of times null null null null

0 1 2 3 4 5 6 7 8 9

45

lteration: concurrent modification

Q. What if client modifies the data structure while iterating?
A. A fail-fast iterator throws a java.util.ConcurrentModificationException.

concurrent modification

for (String s : stack)
stack.push(s);

To detect:
e Count total number of push() and pop() operations in Stack.
e Save counts in *Iterator subclass upon creation.
 If, when calling next() and hasNext(), the current counts do not equal
the saved counts, throw exception.

46

1.3 BAGS, QUEUES, AND STACKS

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu } app/icaﬁons

Java collections library

List interface. java.util.List is APl for an sequence of items.

public interface

List<Item> implements Iterable<Item>

boolean
int
void
Item
Item
boolean

Iteartor<Item>

List()

isEmpty ()

size()

add(Item 1item)
get(int index)
remove(int index)
contains(Item item)

iterator()

create an empty list
is the list empty?
number of items
append item to the end
return item at given index
return and delete item at given index
does the list contain the given item?

iterator over all items in the list

Implementations. java.util.ArraylList uses resizing array,

java.util.LinkedList uses linked list. ;§:>.

operations are efficient 48

caveat: only some

Java collections library

java.util.Stack.
e Supports push(), pop(), and and iteration.
 Extends java.util.Vector, which implements java.util.List interface
from previous slide, including get() and remove().
» Bloated and poorly-designed API (why?)

Java 1.3 bug report (June 27, 2001)

The iterator method on java.util.Stack iterates through a Stack from
the bottom up. One would think that it should iterate as if it were
popping off the top of the Stack.

status (closed, will not fix)

It was an incorrect design decision to have Stack extend Vector ("is-a"
rather than "has-a"). We sympathize with the submitter but cannot fix
this because of compatibility.

49

Java collections library

java.util.Stack.
Supports push(), pop(), and and iteration.

 Extends java.util.Vector, which implements java.util.List interface

from previous slide, including get() and remove().
» Bloated and poorly-designed API (why?)

ABAD

DESIGN!
N\\\\\

N\ X2

A

java.util.Queue. An interface, not an implementation of a queue.

Best practices. Use our implementations of Stack, Queue, and Bag.

50

War story (from Assignment 1)

Generate random open sites in an N-by-N percolation system.
e Jenny: pick (i, j) at random; if already open, repeat.
Takes ~ ¢1 N? seconds.
 Kenny: create a java.util.ArrayList of N2 closed sites.
Pick an index at random and delete.
Takes ~ ¢» N* seconds.

Why is my program sow

Pre—

Lesson. Don't use a library until you understand its API!

This course. Can't use a library until we've implemented it in class.

51

Stack applications

Parsing in a compiler.

Java virtual machine.

Undo in a word processor.

Back button in a Web browser.

PostScript language for printers.

Implementing function calls in a compiler.

Compilers

, Principles, Techniques,
and Tool

il dg d To ls”
\ B

(N ‘(‘ s s
P Copy Chrl4C
Adobe’ PostScript’ 3" .

S s

Jeffrey D. Ullma

Dijkstra's two-stack algorithm demo

O

infix expression value stack

(fully parenthesized)

\

operand

operator stack

23
«w

operator

53

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

infix expression value stack operator stack

(fully parenthesized)

(1 + ((2 + 3) * (4 ¥ 5)

\ \

operand operator

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

1
value stack operator stack
+ ((2 + 3) (4 5)

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

1
value stack operator stack
-+ ((2 + 3) (4 5)

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

1 +
value stack operator stack
(¢ 2 + 3) (4 5)

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

1 +
value stack operator stack
((2 + 3) (4 5)

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

1 +
value stack operator stack
(2 + 3) (4 5)

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

1 +
value stack operator stack
2 + 3) (4 5)

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

2
1 +
value stack operator stack
+ 3) (4 5)

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

2
1 +
value stack operator stack
+ 3) (4 5)

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

2 +
1 +
value stack operator stack
3) (4 5)

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

2 +
1 +
value stack operator stack
3) (4 5)

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

3

2 +

1 +
value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

3

2 +

1 +
value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

1 +

value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

1 +

value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

5
1 +
value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

5
1 +
value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

5
1 +
value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

5
1 +
value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

5
1 +
value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

4
5
1 +
value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

4
5
1 +
value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

4
5
1 +
value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

4
5
1 +
value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

5

4

5

1 +
value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

5

4

5

1 +
value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

5 * 4
5
1 +
value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

5 ¢ 4 = 20
5
1 +
value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

20
5
1 +
value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

20

1 +

value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

20 ~* 5

1 +

value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

20 ~* 5 = 100

1 +

value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

100

1 +

value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

100

1 +

value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

100 + 1

value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

100 + 1 = 101

value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

101

value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

101

value stack operator stack

Dijkstra's two-stack algorithm

Value: push onto the value stack.

Operator: push onto the operator stack.

Left parenthesis: ignore.

Right parenthesis: pop operator and two values; push the result of
applying that operator to those values onto the operand stack.

101

result

