COS 226, SPRING 2013

ALGORITHMS
AND
DATA STRUCTURES

JosH HUG
ARVIND NARAYANAN

UNIVERSITY

http:/ /www.princeton.edu/~co0s226

COS 226 course overview

What is COS 2267
* Intermediate-level survey course.

Programming and problem solving, with applications.

Algorithm: method for solving a problem.
Data structure: method to store information.

Sometimes called: Job Interview 101.

data structures and algorithms

data types stack, queue, bag, union-find, priority queue
sorting quicksort, mergesort, heapsort, radix sorts
searching BST, red-black BST, hash table
graphs BFS, DFS, Prim, Kruskal, Dijkstra
strings KMP, regular expressions, tries, data compression

advanced B-tree, suffix array, maxflow, simplex

Why study algorithms?

Their impact is broad and far-reaching.

Mysterious Algorithm Was 4% of
Trading Activity Last Week

oNnBC T TextSize -
Published: Monday, 8 Oct 2012 | 4:27 PMET

By: John Melloy
EiRecommend 24 [Twitter 2K R+ 99 [[Linkedin 330 3 Share

A single mysterious computer program that placed orders — and then
subsequently canceled them — made up 4 percent of all quote traffic in the U.S.
stock market last week, according to the top tracker of high-frequency trading
activity. The motive of the algorithm is still unclear.

The program placed orders in 25-
millisecond bursts involving about 500
stocks, according to Nanex, a market data
firm. The algorithm never executed a single
trade, and it abruptly ended at about 10:30
a.m. ET Friday.

Why study algorithms?

Their impact is broad and far-reaching.

Internet. Web search, packet routing, distributed file sharing, ...
Biology. Human genome project, protein folding, ...

Computers. Circuit layout, file system, compilers, ...

Computer graphics. Movies, video games, virtual reality, ...
Security. Cell phones, e-commerce, voting machines, ...
Multimedia. MP3, JPG, HDTV, song recognition, face recognition, ...
Social networks. Recommendations, dating, advertisements, ...

Physics. N-body simulation, particle collision simulation, ...

Why study algorithms?

To become a proficient programmer.

“The difference between a bad programmer and a good one is whether
[the programmer] considers code or data structures more important. Bad
programmers worry about the code. Good programmers worry about

data structures and their relationships.”

— Linus Torvalds (creator of Linux)

“ Algorithms + Data Structures = Programs. ” — Niklaus Wirth |

Why study algorithms?

For intellectual stimulation.

Frank Nelson Cole
“On the Factorization of Large Numbers”

American Mathematical Society, 1903

267-1 = 193,707,721 x 761,838,257,287

Why study algorithms?

They may unlock the secrets of life and of the universe.

Scientists are replacing mathematical models with computational models.

“ Algorithms: a common language for nature, human, and computer. © — Avi Wigderson

Why study algorithms?

Cisco SYSTEMS

M@

For fun and profit. P

S

Apple Computer

Go gle _

jse STREET

'&‘ RSA
Morgan Stanl‘ey N E T I: I' | x Adobe SECURITY"
DEShaw&Co ORACLE C

YaHoO! amazoncom Microesoftt pr ¢ X A R

AAAAAAAAAAAAAAAA

<||l

Why study algorithms?

Everyone else is doing it, so why shouldn’t we?

GRAPH NUMBER OF STUDENTS ENROLLED IN"INTROTO COMPUTER SCIENCE

200

1 compscigraph

Dot-com boom

100 ' !

50

o
o

http://valedailynews.com/blog/2013/01/29/computer-science-dept-overworked-understaffed/

The usual suspects

Lectures. Introduce new material.

Precepts. Discussion, problem-solving, background for assignments.

LO1

PO1

P02

PO3

P08

PO5

PO5A

PO6

PO6A

PO7

P04

MW 11-12:20

Th 11:00 - 11:50

Th 12:30-1:20

Th 1:30-2:20

F10:00-11:00

F11:00-11:50

F11:00-11:50

F2:30 - 3:20

F 2:30 - 3:20

F2:30 - 3:20

F 3:30 - 4:20

McCosh 10

Friend 109

Babst 105

Babst 105

Friend 109

Friend 109

Friend 108

Friend 109

Friend 108

CS102

Friend 109

Josh Hug
Arvind Narayanan

Josh Hug
Maia Ginsburg f
Arvind Narayanan
Maia Ginsburg *
Nico Pegard
Stefan Munezel
Diego Perez Botero
Dushant Arora
Jennifer Guo

Diego Perez Botero

t lead preceptor

Where to get help?

Piazza. Online discussion forum.
* Low latency, low bandwidth.
* Mark solutlon-reveallng quesuons http:/ /www.piazza.com/class#fall2012/cos226
as private.

 TAs will answer In-lecture questions.

« Course announcements.

Office hours.
* High bandwidth, high latency.
° See Web for Schedule_ http:/ /www.princeton.edu/~cos226

Computing laboratory.
 Undergrad lab TAs in Friend 017.
* For help with debugging.

 See web for schedule.

http://www.princeton.edu/~cos226

Coursework and grading

Programming assignments. 45%
* Due on Tuesdays at 11pm via electronic submission.
* See web for collaboration and lateness policy.

Exercises. 15%
 Due on Sundays at 11pm in Blackboard.

Exams. 15% + 25%
 Midterm (in class on Monday, March 11).
* Final (to be scheduled by Registrar).

Programs

Staff discretion. To adjust borderline cases.

 Report errata. Midterm
e Contribute to Piazza discussions.
.. . Exercises
« Attend and participate in precept/lecture.

 Answering in lecture-questions using a device.

Resources (textbook)

Required reading. Algorithms 4t edition by R. Sedgewick and K. Wayne,
Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.

Available in hardcover and Kindle.
« Online: Amazon ($60 to buy), Chegg ($40 to rent), ...
* Brick-and-mortar: Labyrinth Books (122 Nassau St). «—

30% discount with
PU student ID

* On reserve: Engineering library.

Resources (web)

Course content. wPRmCETON Computer Science 226

UNIVERSITY Algorithms and Data Structures
c Spring 2012
 Course info.

Course Information | Assignments | Exercises | Lectures | Exams | Booksite

* Prog ing assig
Programming assignments. COURSE INFORMATION

1 Description. This course surveys the most important algorithms and data structures in use on computers today.

° EX e rc I S e S o Particular emphasis is given to algorithms for sorting, searching, and string processing. Fundamental algorithms
in a number of other areas are covered as well, including geometric and graph algorithms. The course will
. concentrate on developing implementations, understanding their performance characteristics, and estimating

° Le Ct u re S I I d e S . their potential effectiveness in applications.
e Exam arch ive. http://www.princeton.edu/~co0s226
[]

Submit assignments.

ALGORITHMS, 4TH EDITION

essential information that
every serious programmer
needs to know about
algorithms and data structures

Booksites.
e Brief summary of content.

Algorithms

* Download code from book.

Textbook. The textbook Algorithms, 4th Edition by Robert Sedgewick and Kevin
Wayne [Amazon - Addison-Wesley] surveys the most important algorithms and
data structures in use today. The textbook is organized into six chapters:

ALGORITHMS, 4TH EDITION . e . . .
GORITHMS, - e Chapter 1: Fundamentals introduces a scientific and engineering basis for

LIRdAmently comparing algorithms and making predictions. It also includes our
2. Sorting programming model.
3. Searching e Chapter 2: Sorting considers several classic sorting algorithms, including

insertion sort, mergesort, and quicksort. It also includes a binary heap
4. Graphs implementation of a priority queue.

5. Strings

6. Context
e

Chapter 3: Searching describes several classic symbol table
implementations, including binary search trees, red-black trees, and hash
tables.

http:/ /www.algs4.princeton.edu

Resources (Coursera) and Flipped Lectures

Coursera Course
e Lectures by Bob Sedgewick.
- Same content as ours.
 Don’t submit assignments!
- Violates course policy.

The Flipped Lecture Experiment
* Weeks 4-6 (and more?).

 Watch lectures on Coursera.

* Activities in Lecture.
- Big picture mini-lectures.
- Interesting anecdotes.
- Solo/group work.
- Old exam problems.
- Guest speakers.
- Open Q&A.

-0 R -)

= =g

PRINCETON Algorithms, Part |
UNIVERSITY by Robert Sedgewick and Kevin Wayne

Lectures

Having trouble viewng lectures? Try cha

— > Algorithms, Part|
Syllabus v Course Introduction (9:22)
Schedule

https://class.coursera.org/algs4partl-002/class

2/4 Intro - Union Find lup - 4up Quick find - O

26 alysis of Algorithms lup - 4up ° Bin h

2/11 Stacks and Queues lup - 4up ijk

2/13 Elementary Sorts lup - 4up Sel CGraham
/18 Mergesort lup - 4up 2 ging
120 Quicksort lup - 4up 23 Partitioning

2725 Priority Queues lup - 4up 24 Heap - Heapsort

227 Elementary Symbol Tables - BSTs lup - 4up 3.1-32 BST

4 Balanced Search Trees lup - 4up a3 2.2 tree - Red black BST
6 Hash Tables - Searching Applications lup - 4up 34.35 linear probing

3/11 Midterm Exam

3/13 Geometric Applications of BSTs lup - 4up Kd tree - Interval search tree

Resources (web)

(8] cos 226 - Google Search "
+ -:lhttp://www.google.com/search?client=safari&rls=en&q=226&ie=UTF—8&oe=UTF—8#sclient=psy&hl=en&c| ¢] (Q' 226

Web Images Videos Maps News Shopping Gmail more -

Google o

Advanced search

Q, Everything cos(226) = 0.981111354

More More about calculator.

Search for documents containing the terms cos 226.
Show search tools

Search Help Give us feedback

Google Home Advertising Programs Business Solutions Privacy About Google

http://www.princeton.edu/~cos226

Resources (web)

Google

*4 Everything
Images

il Videos

& News

¥ More

Any time
Latest
Past 2 days

All results
Sites with images

¥ More search tools

Web |Images Videos Maps News Shopping Gmail more v Web History | Search settings | Sign in
Instantison v
‘ 226 Search
About 236,000,000 results (0.18 seconds) Advanced search

Area codes 519 and 226 - Wikipedia, the free encyclopedia

The 226 area code was first proposed as a result of an NPA exhaustion study conducted in the
1990s. The issue was raised with the CRTC by telecommunications ...
en.wikipedia.org/wiki/Area_codes_518_and_226 - Cached - Similar

226 - Wikipedia, the free encyclopedia

226. From Wikipedia, the free encyclopedia. Jump to: navigation, search. This article is
about the year 226. For the number 226, see 226 (number). ...
en.wikipedia.org/wiki/226 - Cached - Similar

COS 226, Fall 2010: Home Page

Princeton COS 226: Data Structures and Algorithms. ... Computer Science 226. Algorithms
and Data Structures Fall 2010 ...

www.princeton.edu/~c0s226/ - Cached - Similar

Images for 226 - Report images

TER T seat

203 1% s s0en.

226 - Google Search (@)
N | | http://www.googIe.com/#sclient=psy&hl=en&q=+226&aq=f&z{.}'V (|z(Google Q @v

il

http://www.princeton.edu/~cos226

Resources (web)

226 - Google Search

(&)
(&) (8] [<1»] (4] (A.A) (1) (0) (8] (&S] (2] [226

Images Maps Play YouTube News Gmail Documents Calendar

Search About 949,000,000 results (0.14 seconds)
| web COS 226, Fall 2012: Home Page

www.princeton.edu/~cos226/

Images Princeton COS 226: Data Structures and Algorithms. ... Computer Science 226.
Algorithms and Data Structures Fall 2012 ...

Maps

Videos 226 - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/226

News Year 226 (CCXXVI) was a common year starting on Sunday (link will display the full
calendar) of the Julian calendar. At the time, it was known as the Year of the ...

Shopping

More Area codes 519 and 226 - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Area_codes_519_and_226
519 is the telephone area code which covers most of southwestern Ontario and was
introduced in 1953 from portions of area codes 416 and 613. In 1957, parts ...

Metro Route 226 Timetable, Weekday
metro.kingcounty.gov/tops/bus/schedules/s226_0_.html

Metro Route 226 Timetable, Weekday. ... 226. Weekday: June 9 thru September 28,

2012. Rider Alert! Between June 9 & September 28, 2012, this route may be ...

More ~

http://www.princeton.edu/~cos226

Resources (web)

GO ugle 226

Web Images Maps Shopping More ~ Search tools

About 694,000,000 results (0.23 second...

226 - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/226

226. From Wikipedia, the free encyclopedia. Jump to: navigation, search ... Year 226
(CCXXVI) was a common year starting on Sunday (link will display the full ...

Area codes 519 and 226 - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Area_codes_519_and_226

519 is the telephone area code which covers most of southwestern Ontario and was
introduced in 1953 from portions of area codes 416 and 613. In 1957, parts ...

COS 226, Spring 2013: Home Page

www.princeton.edu/~cos226/

If you are unable to enroll in a COS 226 lecture or precept because it is closed, please
contact our undergraduate coordinator, Colleen Kenny-McGinley ...

What's ahead?

Lecture 1. [today] Union find.
Lecture 2. [Wednesday] Analysis of algorithms.

Precept 1. [Thursday/Friday] Meets this week.

Exercise 1. Due via Bb submission at 11pm on Sunday, February 10th.
Assignment 1. Due via electronic submission at 11pm on Tuesday,
February 12th. Pro tip: Start early.

Right course? See me.
Placed out of COS 1267 Review Sections 1.1-1.2 of Algorithms, 4th edition
(includes command-line interface and our 1/O libraries).

Not registered? Go to any precept this week [only if not registered!].

Change precept? Use SCORE. < see Colleen Kenny-McGinley in CS 210
if the only precept you can attend is closed

20

A 1 g() I 1 { h Ims ROBERT SEDGEWICK | KEVIN WAYNE

1.5 UNION-FIND

» dynamic connectivity
» quick find

» quick union

Algorithms

» Improvements

» applications

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Subtext of today’s lecture (and this course)

Steps to developing a usable algorithm.

Model the problem.

Find an algorithm to solve it.

Fast enough? Fits in memory?

If not, figure out why.

Find a way to address the problem.
Iterate until satisfied.

The scientific method.

Mathematical analysis.

22

1.5 UNION-FIND

» dynamic connectivity

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Dynamic connectivity

Given a set of N objects.
 Union command: connect two objects.
* Find/connected query: is there a path connecting the two objects?

connected(0, 7) e e e e 9

connected(8, 9)
union(5, 0)
union(7, 2)
union(6, 1)
union(l, 0)
connected(0, 7)

Connectivity example

Q. Is there a path connecting p and ¢ ?

1

]

]

11

!

1

P

Lﬁw Amtmim 33 g
= St 111, zamﬂ.lﬁ
S33aslb 225858 eyl
m‘_rl s 11 uywul
qﬂnan 11! Tmlm 1 L 1o
] L.l g) 1 T 3
- eeglisfyet 3 Slgise
: ot b 1t 1511
171 HHLlHlHH ! I*LHALTHl
Nees ! !) ,%H S0
eejais=dsesostsle o8 13sgta
23885 Sags: S38s
:%ux T
=]
e e
! sags : felegais
e b e ﬁIH: B
ﬁﬂurﬂw . =0 1
HH 4 1553 Sies
Ses St giist =
Shi T e o hne

A. Yes.

25

Modeling the obijects

Applications involve manipulating objects of all types.

Pixels in a digital photo.

Computers in a network.

Friends in a social network.
Transistors in a computer chip.
Elements in a mathematical set.
Variable names in Fortran program.
Metallic sites in a composite system.

When programming, convenient to name objects O to N -1.

Use integers as array index.
Suppress details not relevant to union-find.

N

can use symbol table to translate from site

names to integers: stay tuned (Chapter 3)

26

Modeling the connections

We assume "is connected to" is an equivalence relation:

» Reflexive: pis connected to p.
 Symmetric: if p is connected to ¢, then ¢ is connected to p.

* Transitive: if p is connected to ¢ and ¢ is connected to 7,
then p is connected to r.

Connected components. Maximal set of objects that are mutually

connected.

rI (3)
(4) (5 (&) (D
{03 {1453 {23671}

3 connected components

27

Implementing the operations

Find query. Check if two objects are in the same component.

Union command. Replace components containing two objects
with their union.

{0}y{1453}r{23671} {0}Y{1234567}

~__ N

3 connected components 2 connected components
28

Union-find data type (API)

Goal. Design efficient data structure for union-find.
« Number of objects N can be huge.
 Number of operations M can be huge.
* Find queries and union commands may be intermixed.

public class UF

initialize union-find data structure with

UF(int N
() N objects (0 to N — 1)

void union(int p, int q) add connection between p and q

boolean connected(int p, int q) are p and q in the same component?

29

Dynamic-connectivity client

* Read in number of objects N from standard input.

* Repeat:
- read in pair of integers from standard input

- if they are not yet connected, connect them and print out pair

public static void main(String[] args)
{
int N = StdIn.readInt();
UF uf = new UF(N);
while (!StdIn.isEmpty())
{
int p = StdIn.readInt();
int q = StdIn.readInt();
if (luf.connected(p, q))
{
uf.union(p, q);
StdOut.printin(p + " " + q);

% more tinyUF.txt
10
4

N O O W
= B~ U100 W

N o
N O

30

1.5 UNION-FIND

» quick find
Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Quick-find [eager approach]

Data structure. _ _
if and only if

* Integer array id[] of size N.
* Interpretation: p and q are connected iff they have the same id.

0, 5 and 6 are connected

id[] 0 1 1 8 8 0 0 1 8 8 1, 2, and 7 are connected

3, 4, 8, and 9 are connected

32

Quick-find [eager approach]

Data structure.
* Integer array id[] of size N.
* Interpretation: p and q are connected iff they have the same id.

id[] 1 0

Find. id of p gives its component. id[6] = 0;id[1] = 1

. 6 and 1 are not connected
If p and g have the same id, they are connected.

Union. To merge components containing p and g, change all entries
whose id equals id[p] to id[q].

after union of 6 and 1

idll 1 1 1 T 1 1

T 11

problem: many values can change
33

Quick-find demo

34

Quick-find demo

id[]

1

1

Quick-find: Java implementation

public class QuickFindUF

{

private int[] 1id;

public QuickFindUF(int N)

{
id = new int[N];
for (int i = 0; i < N; i++)
id[i1] = 1;
}

public boolean connected(int p, int q)
{ return id[p] == id[ql; }

public void union(int p, int q)
{
int pid = id[p];
int gid = id[q]l;
for (int i = 0; i < id.length; i++)
if (id[i] == pid) 1id[i] = qid;

S

—

set id of each object to itself

(N array accesses)

check whether p and q
are in the same component

(2 array accesses)

change all entries with id[p] to id[q]

(at most 2N + 2 array accesses)

36

Quick-find is too slow

Cost model. Number of array accesses (for read or write).

R
N 1

quick-find

order of growth of number of array accesses

quadratic

Union is too expensive. It takes N2 array accesses to process a sequence of
N union commands on N objects.

37

Quadratic algorithms do not scale

Rough standard (for now).

a truism (roughly)

9 0
« 10° operations per second. rsiene

« 10° words of main memory. /
 Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.
* 10° union commands on 10° objects.
* Quick-find takes more than 10'8 operations.
* 30+ years of computer time! e

| quadratic
64T

Quadratic algorithms don't scale with technology.
 New computer may be 10x as fast.
e But, has 10x as much memory = 327

want to solve a problem that is 10x as big.

16T . . .
linearithmic

e With quadratic algorithm, takes 10x as long!

8T -
linear

I | |
size — 1K 2K 4K 8K

1.5 UNION-FIND

» quick union

Algorithms

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Quick-union [lazy approach]

Data structure.

* Integer array id[] of size N.
keep going until it doesn’t change

* Interpretation: id[i] is parent of i. _~" Gigorithm ensures no cycles)

e Root of i is id[id[id[...id[i]...]1].
©®© e © O
idl 0 1 9 4 9 6 6 7 8 9 ORORO

3

rootof 3is 9

40

Quick-union [lazy approach]

Data structure.
* Integer array id[] of size N.
* Interpretation: id[i] is parent of 1.
 Root of i is id[id[id[...id[i]...]]1].

OO & O ®
idl 0 1 9 4 9 6 6 7 8 9 ONON 5 X
» @

Find. Check if p and g have the same root. root of 3 is 9
root of 5is 6

3 and 5 are not connected
Union. To merge components containing p and g,

set the id of p's root to the id of q's root. © O (6) (@)

dll 0 1 9 4 9 6 6 7 8 6

T @ @

only one value changes

41

Quick-union demo

O

ORONONONONORORONONO

0 1 2 3 4 5 6 7 8 9

dll 0 1 2 3 4 5 6 7 8 9

42

Quick-union demo

Question: Worst case tree depth? Best Case?

8

8

Quick-union: Java implementation

public class QuickUnionUF

{

private int[] id;

public QuickUnionUF(int N)

{
id = new int[N];
for (int i = 0; i < N; i++) id[i] = 1;
}
private int root(int 1)
{
while (i !'= id[i]) i = id[i];
return 1i;
}

public boolean connected(int p, int q)

{
}

return root(p) == root(q);

public void union(int p, int q)

{

int i = root(p);
int j = root(q);
id[i] = J;

set id of each object to itself

(N array accesses)

chase parent pointers until reach root

(depth of i array accesses)

check if p and g have same root
(depth of p and g array accesses)

change root of p to point to root of g

(depth of p and q array accesses)

44

Quick-union is also too slow

Cost model. Number of array accesses (for read or write).

R

quick-find

quick-union N \ N <«<—— worst case

1 includes cost of finding roots

Quick-find defect.
* Union too expensive (N array accesses).
* Trees are flat, but too expensive to keep them flat.

Quick-union defect.
* Trees can get tall.
* Find too expensive (could be N array accesses).

45

1.5 UNION-FIND

Algorithms

» Improvements

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Improvement 1: weighting

Weighted quick-union.
* Modify quick-union to avoid tall trees.

« Keep track of size of each tree (number of objects).

« Balance by linking root of smaller tree to root of larger tree.

quick-union @ @
smaller /
tree @
smaller larger
tree
] ~—_ might put the free
arger larger tree lower
tree
weighted
@ ~always chooses the @
K better alternative /
larger smaller smaller larger
tree tree tree tree

\

reasonable alternatives:

union by height or "rank"

47

Weighted quick-union demo

O

ORONONONONORORONONO

48

Weighted quick-union demo

idll 6 2 6 4 6 6 6 2 4 4

Quick-union and weighted quick-union example

quick-union

° o e o 0 o ° o
——v—e
average distance to root: 5.11
weighted

) —— ; — . 417\ oo A oe m .o

average distance to root: 1.52

Quick-union and weighted quick-union (100 sites, 88 union() operations)

50

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array sz[i]
to count number of objects in the tree rooted at 1.

Find. ldentical to quick-union.

return root(p) == root(q);

Union. Modify quick-union to:
* Link root of smaller tree to root of larger tree.
* Update the sz[] array.

int 1 = root(p);
int j = root(q);
it (sz[i] < sz[jD) { id[i] = j; sz[j] += sz[i]; }
else { id[j] = 1; sz[i] += sz[j]; }

Weighted quick-union analysis

Running time.
* Find: takes time proportional to depth of p and 4.

 Union: takes constant time, given roots.
Ilg = base-2 logarithm

/

Proposition. Depth of any node x is at most Ig V.

g

e

N=10
depth(x) =3 < Ig N

52

Weighted quick-union analysis

Running time.

* Find: takes time proportional to depth of p and 4.

 Union: takes constant time, given roots.
Ilg = base-2 logarithm

/

Proposition. Depth of any node x is at most Ig V.

Pf. When does depth of x increase?

Increases by 1 when tree 7 containing x is merged into another tree 7>.
« The size of the tree containing x at least doubles since | T2| = | T1].
» Size of tree containing x can double at most Ig N times. Why?

53

Weighted quick-union analysis

Running time.
* Find: takes time proportional to depth of p and 4.
 Union: takes constant time, given roots.

Proposition. Depth of any node x is at most Ig V.

quick-find
quick-union N Nt N
weighted QU N Ig N f lg N

1 includes cost of finding roots

Q. Stop at guaranteed acceptable performance?
A. No, easy to improve further.

54

Improvement 2: path compression

Quick union with path compression. Just after computing the root of p,
set the id of each examined node to point to that root.

O o
® ©®
& ©® 6
® O
® 0
© ® @

55

Improvement 2: path compression

Quick union with path compression. Just after computing the root of p,
set the id of each examined node to point to that root.

root

O ©
0O e ®@ © ©
«© @

56

Improvement 2: path compression

Quick union with path compression. Just after computing the root of p,
set the id of each examined node to point to that root.

root

O ©
® @ @ © ©

57

Improvement 2: path compression

Quick union with path compression. Just after computing the root of p,
set the id of each examined node to point to that root.

58

Improvement 2: path compression

Quick union with path compression. Just after computing the root of p,
set the id[] of each examined node to point to that root.

59

Path compression: Java implementation

Two-pass implementation: add second loop to root() to set the id[]

of each examined node to the root.

Simpler one-pass variant: Make every other node in path point to its

grandparent (thereby halving path length).

private int root(int i)

{
while (i != id[i])
{
id[i] = id[id[i]]; <
i = id[il;
}
return 1i;
}

only one extra line of code !

In practice. No reason not to! Keeps tree almost completely flat.

60

Weighted quick-union with path compression: amortized analysis

Proposition. [Hopcroft-Ulman, Tarjan] Starting from an “m
1 0

empty data structure, any sequence of M union-find ops
on N objects makes < ¢ (N+ Mlg* N) array accesses.

2 1
« Analysis can be improved to N + M o(M, N). A 5
« Simple algorithm with fascinating mathematics. . 3
65536 4
265536 5

: i : . :) iterate log function
Linear-time algorithm for A union-find ops on N objects?

e Cost within constant factor of reading in the data.
* In theory, WQUPC is not quite linear.
* |In practice, WQUPC is linear.

Amazing fact. [Fredman-Saks] No linear-time algorithm exists.

AN

in "cell-probe" model of computation
61

Summary

Key point. Weighted quick union (with path compression) makes it possible
to solve problems that could not otherwise be addressed.

quick-find M N
quick-union M N
weighted QU N + M log N
QU + path compression N + M log N
weighted QU + path compression N+ MlIg*N

order of growth for M union-find operations on a set of N objects

Ex. [102 unions and finds with 10° objects]
« WQUPC reduces time from 30 years to 6 seconds.
* Supercomputer won't help much; good algorithm enables solution.

62

1.5 UNION-FIND

Algorithms

» applications

ROBERT SEDGEWICK | KEVIN WAYNE

http://algs4.cs.princeton.edu

Union-find applications

* Percolation.
« Games (Go, Hex).
v Dynamic connectivity.
* Least common ancestor.
* Equivalence of finite state automata.
« Hoshen-Kopelman algorithm in physics.
* Hinley-Milner polymorphic type inference.
e Kruskal's minimum spanning tree algorithm.
 Compiling equivalence statements in Fortran.
 Morphological attribute openings and closings.

« Matlab's bwlabel1() function in image processing.

64

Percolation

An abstract model for many physical systems:
* N-by-N grid of sites.
» Each site is open with probability p (or blocked with probability 1 - p).
« System percolates iff top and bottom are connected by open sites.

percolates does not percolate
. blocked

site

open —
site

open site connected to top W

N=38 no open site connected to top

65

Percolation

An abstract model for many physical systems:
* N-by-N grid of sites.
» Each site is open with probability p (or blocked with probability 1 - p).
« System percolates iff top and bottom are connected by open sites.

electricity material conductor insulated conducts
fluid flow material empty blocked porous

social interaction population person empty communicates

66

Likelihood of percolation

Depends on site vacancy probability p.

p low (0.4)

does not percolate

p medium (0.6)

percolates?

p high (0.8)

percolates

67

Percolation phase transition

When N is large, theory guarantees a sharp threshold p*.

e p>p*. almost certainly percolates.
« p <p*: almost certainly does not percolate.

Q. What is the value of p* ?

percolation ;
probability

’pz‘\-
OI““l I
1

0 0.593

N 100 site vacancy probability p

68

Monte Carlo simulation

* Initialize N-by-N whole grid to be blocked.
* Declare random sites open until top connected to bottom.

* Vacancy percentage estimates p*.

full open site
(connected to top)

empty open site
(not connected to top)

. blocked site

N=20 135 open sites

Dynamic connectivity solution to estimate percolation threshold

Q. How to check whether an N-by-N system percolates?

open site

. blocked site

70

Dynamic connectivity solution to estimate percolation threshold

Q. How to check whether an N-by-N system percolates?

* Create an object for each site and name them 0 to N2 1.

open site

. blocked site

ONONONONCO
ONONONONO
ONONCNCND
ONONC/NOND
OEONCNCIND)

71

Dynamic connectivity solution to estimate percolation threshold

Q. How to check whether an N-by-N system percolates?
* Create an object for each site and name them 0 to N2 1.
» Sites are in same component if connected by open sites.

N=5 o—o o ¢ o
o 6 6 ¢ o

® 6 6 0o

® 6 0 o

o 690

open site

. blocked site

72

Dynamic connectivity solution to estimate percolation threshold

Q. How to check whether an N-by-N system percolates?
* Create an object for each site and name them 0 to N2 1.
» Sites are in same component if connected by open sites.
* Percolates iff any site on bottom row is connected to site on top row.

brute-force algorithm: N2 calls to connected()

N=5 —9® & O O — wow
® 6 & ¢ o
® 6 &6 0o
® 6 o o
® 0@ — bvoomrow

open site

. blocked site

73

Dynamic connectivity solution to estimate percolation threshold

Clever trick. Introduce 2 virtual sites (and connections to top and bottom).
e Percolates iff virtual top site is connected to virtual bottom site.

N

efficient algorithm: only 1 call to connected()

virtual top site

o O
H <— bottom row

I

open site

. blocked site

virtual bottom site

74

Dynamic connectivity solution to estimate percolation threshold

Q. How to model opening a new site?

open this site

N=5 o—o o ¢ ©
o 6 6 ¢ o

® 6 6 0o

® 6 0 o

o 060

open site

. blocked site

75

Dynamic connectivity solution to estimate percolation threshold

Q. How to model opening a new site?

A. Mark new site as open; connect it to all of its adjacent open sites.

open site

. blocked site

open this site

N

up to 4 calls to union()

o—o o ¢ ©
o 6 6 ¢ o
o

® o O
O 00

76

Percolation threshold

Q. What is percolation threshold p* ?

A. About 0.592746 for large square lattices.
N

constant known only via simulation

percolation |
probability

’pf:
O‘1““| I
1

0 0.593

N 100 site vacancy probability p

Fast algorithm enables accurate answer to scientific question.

77

Subtext of today’s lecture (and this course)

Steps to developing a usable algorithm.

Model the problem.

Find an algorithm to solve it.

Fast enough? Fits in memory?

If not, figure out why.

Find a way to address the problem.
Iterate until satisfied.

The scientific method.

Mathematical analysis.

78

