5. Effective calculabili

function is said to be ‘effectively calcu
lable’ if its values can be found by some purely
mechanical process. Although it is fairly easy to get

an intuitive of this idea it is neverthcless desirable
to have some i expressible definition.

(Gmsm a]deﬁmuonm' ion was first given by gxde.l:;:’nncetog in 1934
3 fnl]owng in an suggestion
,mdguaincebeen by (chegng [2]). We shall
not be concerned much here with this particular definition. Another defini
tion of effective calculability has been given by Church (Church [3], 356-358)
who identifies it with ity. The author has recently suggested a definition
omupmdin% to the intuitive idea [1], see also Post [1]). It was
said above “a ion is eftectively calculable if its values can be found by some pure
ly mechanical process.” We may take this statement literally, understanding by a ly
ical process one which could be carried out by a machine. It is possiblé to give a
mathematical description, in a certain normal form, of the structures of these machines. T
he development of the idea leads to the author’s definition of a computable function, and
an identification of computability® with effective calculability. (*We shall use the expressio
n‘ table function” to mean a function calculable by a machine, and let ‘effectively ¢
alculable’ refer to the intuitive idea without particular identification with any one of these
itions. We do not restrict the values taken by a computable function to be natural num
bers; we may for instance have computable propositional functions.) It is not difficult thou
somewhat laborious, to prove these three definitions equivalent (Kleene [3], Turing [2]
. In the present paper we e considerable use of Church’s identification of effec
tive calculability with A-definability, or, what comes to the same, of the identification w
ith conmglh and one of the equivalence theorems. In most cases where we have to deal
with an ively calculable function we shall introduce the corres; ing W. F. F. with so
me such phrase as “the function fis effectively calculable, let /" be a A-defining it” or
“let F be a formula such that F (n) is convertible to... whenever n represents a gxitive integer”.
In such cases there is no difficulty in seeing how a machine could in principle be designed to calcu
late the values of the function concerned, and assuming this done the equivalence theorem can be
lied. A statement as to what the formula F acluallg is may be omitted. We may introduce imm
iately on this basis a W. F. F. o with the property that  (m, n) conv r if r is the greatest positive
integer for which m” divides n, if any, and is | if there is none. We also introduce Dt with the pr
operties: Dt (z, n) conv 3; Dt (1 + m, n) conv 2; Dt (n, n + m) conv 1. There is another point to
made clear in connection with the point of view we are adopting. It is intended that all pr
oofs that are given should be regarded no more critically than proofs in classical analysis.
The subject matter, roughly speaking, is constructive systems of logic. but as the purp
ose is directed towards choosing a particular constructive system of logic for pract
ical use; an attempt at this stage to put our theorems into constructive form w
ould be putting the cart before the horse. Those computable functions whic
h take only the values 0 and 1 are of particular importance since they dete
rmine and are determined by computable pro erties, as may be seen by r
eplacing ‘0’ and ‘1’ by ‘true’ and ‘false’. But besides this of proper
we may have to consider a different type, which is y speaking,
[ess constructive than the computable properties, but more 8o than the
Fuzml predicates of classical mathematics. Supy we have a com
gb ¢ function of the natural members taking numbers as values,
corresponding to this function there is the property of being a value o
f the function. Such a property we shall describe as “axiomatic’; the reason
for using this term is that it is possible to define such a property by giving a
set of axioms. the property to hold for a given argument if and only’if it is p
ossible to deduce that it holds from the axioms. Axiomatic propertics may
also be characterized in this way. A property 1 of ¥ositivc integers is axioma
tic if and only if there is a computable property ¢ of two positive integers such th
at P(x) is true if and only if there is a positive integer v such that ¢ (x, y) is true.
Or again %is axiomatic if and only if there is a W. F. F. F such that 1(n) is true if
and only if F (n) conv 2. er theoreti Bya et
(‘I belie ve there is no generally accepted meaning for this term, but it should be noticed that we are using
it in a rather restricted sense. The most generally accepted meaning is probably this: suppose we take an arbitrary
formula of the function calculus of first and replace the function variables by primitive recursive relations. The resulting formula
represents a tyrical number theoretic theorem in this [more general] sense.) we shall mean a theorem of the form ‘6 (x) vanishes for infin
itely many natural numbers x’, where 6 (x) is a primitive recursive® function. (Primitive recursive functions of natural numbers are
defined inductively as follows.* The class of primitive recursive function is more restricted than the computable functions, but has the advantage
that there is a process whereby one can tell of a set of equations whether it defines a primitive recursive function in the manner described above.
If § (x,,...,x) is primitive recursive than ¢ (x,,...,x) =0 is described as a primitive recursive between x,,...x,.) We shall say that a problem
is number th@oretic if it has been shown that any solution of the problem may be put in the form of a proof of 'one or more number theoretic
theorems. More accurately we may say that a class of problems is number theoretic if the solution of any one of them can be transformed (by a
uniform process) into the form of proofs of number theoretic theorems. I shall now draw a few co uences from the definitions of ‘number
theoretic theorems’, and in section 5 will try to justify confining our considerations to this of problem. An alternative form for number
theoretical theorems is ‘for each natural number x there exists a natural number y such that ¢ (x,y vanishes’, where ¢ (x,y) is primitive recursive
and conversely. In other words, there is a rule whereby given the function 0 (x) we can find a functions ¢ (xy), or given Ex.y) we can find a
function 6 (x), so that ‘O (x) vanishes infinitely often’is a necessary and sufficient condition for ‘for each .x there is y so that ¢ (x,y) =0’. In fact given
0 (x) we o, =00 +x (xgz where x (x,) is the (primitive recursive) function with the iesa(xy=1(y<x);
other hand we are given ¢ (x, y) we define 6 (x; by the equations 0, (0) =3; 6, }x +1)=3.2/3 (dl (x;)’ (j) (o, (xt)z -1, 0, (0, (x)); 6 (x) =9 (w,
6, (x) -1, 0, (6, (x)) wl w_ (x) is to be ed so as to mean ‘the largest s for which 7* divides x ‘and 2/3x to be defined primitive recursively sO
as ve its meaning if x is a multiple of 3. The function d (x) is to be defined by the equations & (0) = 0.8 (x + 1) = 1. It is easily verified
that the functions so defined have the desired properties. We shall now show that questions as to the truth of statements of form ‘does f (x) vanish
identically’, wbc:“erf ) is a computable function, can be reduced to questions as to the truth of number theoretical theorems. It is understood that
in each case the rule for the calculation offéx) is given and that one 1s satisfied that this rule is valid, i.e. that the machine which should calculate (x) is
circle free (‘l\ll'% [1], 232;. The function f (s) being table is general recursive in the Herbrand-Gddel sense, and therefore by a general theorem
due to Klfetcl:l‘( et;n [31,727. 'Supg.)ose (x, ,.,,,x“),s xi,'.,.,xn), h(x,,..x,,,) are primitive mn'siive then ¢§;5, ...x) is primitive recursive if it is defined
one of the sets of equations (a) - (¢). (a yeeesX)=R0X 8 (XX ) X XX, m<n); XX ) =f(X0000x, ) (C x)=a
by 3) ) m{mmrrh(r'fle' 81&5‘(9,\" (’r“l r'x'(“é)}((rsrs\!% Y ¢\E 't’i)l\=f$|}; ”I) A l)lMd

where n = 1 and a ic snma nartienlar natiral m Y iy 2

= > x). If on the



Universality and Computability

Fundamental questions:

Q. What is a general-purpose computer?

Q. Are there limits on the power of digital computers?

Q. Are there limits on the power of machines we can build?

Pioneering work in the 1930s.
* Princeton == center of universe.
» Automata, languages, computability, universality, complexity, logic

David Hilbert Kurt Géodel Alan Turing Alonzo Church John von Neumann



Context: Mathematics and Logic

Mathematics. Any formal system powerful enough to express arithmetic.

AN

Principia Mathematics
Peano arithmetic
Zermelo-Fraenkel set theory

Complete. Can prove truth or falsity of any arithmetic statement.
Consistent. Can't prove contradictions like 2 + 2 = 5.
Decidable. Algorithm exists to determine truth of every statement.

Q. [Hilbert, 1900] Is mathematics complete and consistent?
A. [Godel's Incompleteness Theorem, 1931] Nolll

Q. [Hilbert's Entscheidungsproblem] Is mathematics decidable?
A. [Church 1936, Turing 1936] No!



7.4 Turing Machines (revisited)

Alan Turing (1912-1954) Turing Machine by Tom Dunne
American Scientist, March-April 2002



Turing Machine

Desiderata. Simple model of computation that is "as powerful" as

conventional computers.
Intuition. Simulate how humans calculate.

Ex. Addition.




Last lecture: DFA

Tape.

e Stores input.

* One arbitrarily long strip, divided into cells.
* Finite alphabet of symbols.

Tape head. ®
* Points to one cell of tape. B START i
* Reads a symbol from active cell. — (o R
* Moves right one cell at a time. y°es o
tape head
|

tape o 0 1 1 o0 1 1 0



This lecture: Turing machine

Tape.

e Stores input, output, and intermediate results.
* One arbitrarily long strip, divided into cells.

* Finite alphabet of symbols.

tape head
Tape head. |

tape
* Points to one cell of tape. |

* Reads a symbol from active cell.

S
o@ AN AN O OO
* Writes a symbol to active cell.
* Moves left or right one cell at a time.

tape head

tape ...#11no+1o11#



Last lecture: Deterministic Finite State Automaton (DFA)

Simple machine with N states.
* Begin in start state.
* Read first input symbol.
* Move to new state, depending on current state and input symbol.
* Repeat until last input symbol read.
 Accept input string if last state is labeled Y.

a a a
o~ b . b
DFA § N >
b
Input o



This lecture: Turing Machine

Simple machine with N states.
* Begin in start state.
* Read first input symbol.
* Move to new state and write new symbol on tape, depending on current state
and input symbol.
* Move tape head left if state is labeled L, right if state is labeled R.
* Repeat until entering a state labelled Y, N, or H.
» Accept input string if state is labeled Y, reject if N

[or leave result of computation on tape].

if in this state and tape head is 1:
0O : 1 - writea 0
- stay in this state
- move tape head left

™ 1:0

|

Input # # 1 0 1 1 1 0 1



TM Example

Simple machine with N states.

* Begin in start state.

* Read first input symbol.

* Move to new state and write new symbol on tape, depending on current state
and input symbol.

* Move tape head left if state is labeled L, right if state is labeled R.

» Repeat until entering a state labelled ¥, N, or H.

» Accept input string if state is labeled Y, reject if N

[or leave result of computation on tape].

if in this state and tape head is 0:
0O : 1 - writea 1
- go to other state
- halt

™ 1:0

|

Input # # 1 0 1 1 1 0 O

10



TM Example

Simple machine with N states.

* Begin in start state.

* Read first input symbol.

* Move to new state and write new symbol on tape, depending on current state
and input symbol.

* Move tape head left if state is labeled L, right if state is labeled R.

» Repeat until entering a state labelled ¥, N, or H.

» Accept input string if state is labeled Y, reject if N
[or leave result of computation on tape].

/

™ 1:0

Output # # 1 o 1 1 1 1 O

11



TM Example

Simple machine with N states.

* Begin in start state.

* Read first input symbol.

* Move to new state and write new symbol on tape, depending on current state
and input symbol.

* Move tape head left if state is labeled L, right if state is labeled R.

» Repeat until entering a state labelled ¥, N, or H.

» Accept input string if state is labeled Y, reject if N
[or leave result of computation on tape].

/

™ 1:0

Input # # 1 o0 1 1 1 0 1
Output # # 1 o 1 1 1 1 O

12



Turing Machine: Initialization and Termination

Initialization. Set input on some portion of tape; set tape head.

tape head

tape # 0 1 0 + 1 1 1 1 #

Termination. Stop if enter yes, no, or halt state.

Note: infinite loop possible

Output. Contents of tape.

13



TM Example 1: Binary Increment

0 1
# : 1
# 1 0 1 1 #

14



TM Example 1: Binary Increment
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TM Example 1: Binary Increment

|

16



TM Example 1: Binary Increment

17



TM Example 2: Continuous Binary Counter

# : #
0 :1
i
1 :
# :1
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TM Example 2: Continuous Binary Counter

# - #

0 : 1 /
K‘\

# 1
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TM Example 2: Continuous Binary Counter

# - #
/-0:1
# 1
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TM Example 2: Continuous Binary Counter

# : #
0 :1
i
1 :
# :1

21



TM Example 2: Continuous Binary Counter

# : #
Jjust move R 0 : 1
and stay in state /
if no arc \
1:0
# :1

22



TM Example 2: Continuous Binary Counter

# : #
0 :1
i
1 :
# :1

23



TM Example 2: Continuous Binary Counter

------!-

24



TM Example 2: Continuous Binary Counter

counts,

e e
L

25



TM Example 3: Binary Decrement

26



TM Example 3: Binary Decrement

----!---
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TM Example 3: Binary Decrement

HEEENENN
L
T

28



TM Example 3: Binary Decrement

$0C

HEEENENN
L
T

29



TM Example 3: Binary Decrement

Q. What happens if we try to decrement O ?

30



TM Example 3: Binary Decrement

Q. What happens if we try to decrement O ?
A. Doesn't halt! (TMs can have bugs, t00.)

31



TM Example 4: Binary Adder

subtract one from y find plus sign
0 : 1:0 ﬁ‘@
: #
clean up halt

LR # - # *@ + : +
1 : #
0 :1
R
find right end of y
# 1

add one to x

Ex. Use simulator to understand how this TM works.



7.5 Universality
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Dell PC

Xbox

b4 Microsoft Excel - Book2

\ File Edit View Insert Format Tools Data Windo
DzEa @Ry [ smr|o-|
Al ;] =|1

A | B | c:l D |
1 1 2 3
2 S
El i
% BZ:DSI%
MS Excel

Universal Machines and Technologies

iPod

Load Look Step Run
ADDR OUTPUT
® 000 n

Tivo T0Y

Blackberry Quantum computer DNA computer

Printer

JAVA

Java language

Jnss=vy

Python language

34



Program and Data

Data. Sequence of symbols (interpreted one way).
Program. Sequence of symbols (interpreted another way).

Ex 1. A compiler is a program that takes a program in one language
as input and outputs a program in another language. ™ Jae

\ machine language

Your program \

public class HelloWorld
{
public static void main(String[] args)

{ <«— is DATA to a compiler

System.out.println("Hello, World") ;
}

35



Program and Data

Data. Sequence of symbols (interpreted one way).

Program. Sequence of symbols (interpreted another way).

Ex 2. A simulator is a program that takes a program for one machine

as input and simulates the operation of that program.

Data for

simulator \

% more adder.tur
vertices

2

g w e O
fu=iow B B e B

BSBWwwWww N O o o0

o+
V)
o)
o

Q.

O WDNDDNOWDRE oW

R

—
=
—

(]

=R P OHH*+ + 2 ON

(@)

O P P4 O

10+1111

is a PROGRAMI
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Representations of a Turing Machine

1:0

Graphical: Continuous
Binary
Counter
Tabular: Current Symbol Symbol to | Next : :
. Direction

state read write State

A 0] 0 A R

A 1 1 A R

A # # B L

B 0] 1 A R

B 1 0 B L

B H# 1 A R

Linear: *AOOAR*AI11AR*A##BL*BO1AR*BI10OBL...

37



Universal Turing Machine

CBC's Tape state, symbol CBC's Description
e o1 0w |1 |# Il B[O || A|O|O|A|R|*
UTM Operation: UTM

* Find state, symbol in Description

* Copy new symbol to CBI's tape

* Move ¥ L or R
 Update state, symbol

* Repeat

38



Universal Turing Machine

Turing machine M. Given input tape x, Turing machine M outputs M(x).

TM intuition. Software program that solves one particular problem.

39



Universal Turing Machine

Turing machine M. Given input tape x, Turing machine M outputs M(x).

Universal Turing machine U. Given input tape with x and M,
universal Turing machine U outputs M(x).

M —>
x —> M |— M) u |— M)
X —>
# o0 1 1 4 # o 1 1 # 1 o0 1 #
N J N J N
Y Y '
data x data x program M

TM intuition. Software program that solves one particular problem.
UTM intuition. Hardware platform that can implement any algorithm.

40



Universal Turing Machine

Consequences. Your laptop (a UTM) can do any computational task.
« Java programming. \
. . . even tasks not yet contemplated
* Pictures, music, movies, games. when laptop was purchased
 Email, browsing, downloading files, telephony.
» Word-processing, finance, scientific computing.

—
,,} “ Again, it [the Analytical Engine] might act upon other things besides
Yi numbers... the engine might compose elaborate and scientific pieces of

R, music of any degree of complexity or extent. ” — Ada Lovelace
/'y

41



Church-Turing Thesis

Church Turing thesis (1936). Turing machines can do anything that can be
described by any physically harnessable process of this universe.

Remark. "Thesis" and not a mathematical theorem because it's a statement
about the physical world and not subject to proof.

but can be falsified
Use simulation to prove models equivalent.

e TOY simulator in Java
» Java compiler in TOY.

Implications.
* No need to seek more powerful machines or languages.

* Enables rigorous study of computation (in this universe).

Bottom line. Turing machine is a simple and universal model of computation.

42



Church-Turing Thesis: Evidence

Evidence.

"universal"

* 7 decades without a counterexample. /
* Many, many models of computation that turned out to be equivalent.

enhanced Turing machines
untyped lambda calculus
recursive functions
unrestricted grammars
extended L-systems
programming languages
random access machines
cellular automata
quantum computer

DNA computer

multiple heads, multiple tapes, 2D tape, nondeterminism
method to define and manipulate functions
functions dealing with computation on integers
iterative string replacement rules used by linguists
parallel string replacement rules that model plant growth
Java, C, C++, Perl, Python, PHP, Lisp, PostScript, Excel
registers plus main memory, e.g., TOY, Pentium
cells which change state based on local interactions
compute using superposition of quantum states

compute using biological operations on DNA

43



7.6 Computability

Take any definite unsolved problem, such as the question as to the
irrationality of the Euler-Mascheroni constant y, or the existence of an
infinite number of prime numbers of the form 2"-1. However
unapproachable these problems may seem to us and however helpless we
stand before them, we have, nevertheless, the firm conviction that their
solution must follow by a finite number of purely logical processes.

-David Hilbert, in his 1900 address to the International
Congress of Mathematics

Introduction to Computer Science + Sedgewick and Wayne - Copyright © 2007 + http://www.cs.Princeton.EDU/IntroCS
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A Puzzle: Post's Correspondence Problem

Given a set of cards:
* N card types (can use as many copies of each type as needed).
* Each card has a top string and bottom string.

Example 1: o n - —
H H H H N =4
0 1 2 3

Puzzle:
* Is it possible to arrange cards so that top and bottom strings match?

45



A Puzzle: Post's Correspondence Problem

Given a set of cards:
* N card types (can use as many copies of each type as needed).
* Each card has a top string and bottom string.

Example 1: o n - —
H H H H N =4
0 1 2 3

Puzzle:
* Is it possible to arrange cards so that top and bottom strings match?

Solution 1.
# Yes.

46



A Puzzle: Post's Correspondence Problem

Given a set of cards:
* N card types (can use as many copies of each type as needed).
* Each card has a top string and bottom string.

Example 2: . — = .
H H H H N =4
0 1 2 3

Puzzle:
* Is it possible to arrange cards so that top and bottom strings match?

47



A Puzzle: Post's Correspondence Problem

Given a set of cards:
* N card types (can use as many copies of each type as needed).
* Each card has a top string and bottom string.

Example 2: . — = .
H H H H N =4
0 1 2 3

Puzzle:
* Is it possible to arrange cards so that top and bottom strings match?

Solution 2.

# No. First card in solution must contain same letter in leftmost
position.

48



A Puzzle: Post's Correspondence Problem

Given a set of cards:
* N card types (can use as many copies of each type as needed).
* Each card has a top string and bottom string.

Ll L

* Is it possible to arrange cards so that top and bottom strings match?

Challenge:
e Write a program to take cards as input and solve the puzzle.

49



A Puzzle: Post's Correspondence Problem

Given a set of cards:
* N card types (can use as many copies of each type as needed).
* Each card has a top string and bottom string.

T

* Is it possible to arrange cards so that top and bottom strings match?

Challenge:
e Write a program to take cards as input and solve the puzzle.

Surprising fact:
* It is NOT POSSIBLE to write such a program!

50



Halting Problem

Halting problem. Write a Java function that reads in a Java function £
and its input x, and decides whether £ (x) results in an infinite loop.

Easy for some functions, not so easy for others.

Ex. Does £ (x) terminate?

public void f (int x) relates o famous
{ open math conjecture
while (x !'= 1)
{
if (x % 2==0) x=x/ 2;
else x = 3*x + 1;
}
}
£(6): 6 3105168 4 21
£(27): 27 82 41 124 62 31 94 47 142 71 214 107 322 . 4 2 1

£(-17): -17 -50 -25 -74 -37 -110 -55 -164 -82 -41 -122 .. -17 ..

51



Undecidable Problem

A yes-no problem is undecidable if no Turing machine exists to solve it.

N

and (by universality) no Java program either

Theorem. [Turing 1937] The halting problem is undecidable.

Proof intuition: lying paradox.
* Divide all statements into two categories: truths and lies.
* How do we classify the statement: "I am lying" ?

Key element of lying paradox and halting proof: self-reference.

52



Halting Problem: Preliminaries

Some programs take other programs as input
 Java compiler, e.g.

Can a program take itself as input ??
Why not ?
« TextGenerator could take TextGenerator.java as input, produce a Markov
model of itself, and generate Java-like text.

e GuitarHero could "play” the characters in GuitarHero.java.

* Almost always a peculiar thing to do, but we'll be interested only in
whether the program halts, or goes into an infinite loop.

53



Halting Problem Proof

Assume the existence of halt (f,x):
 Input: a function £ and its input x.
e Output: true if £(x) halts, and false otherwise.

Note. halt(f,x) does not go into infinite loop.

We prove by contradiction that halt (£,x) does not exist.
 Reductio ad absurdum : if any logical argument based on an assumption
leads to an absurd statement, then assumption is false.

encode f and x as strings

/ \

public boolean halt(String £, String x)
{

if ( something terribly clever ) return true;
else return false;

hypothetical halting function
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Halting Problem Proof

Assume the existence of halt (f,x):
 Input: a function £ and its input x.
e Output: true if £(x) halts, and false otherwise.

Construct function strange (£) as follows:
e If halt (£, £) returns true, then strange (£) goes into an infinite loop.
 If halt (£, f) returns false, then strange (£) halts.

\

f is a string so it is legal (if perverse) to use it for second argument

public void strange (String f)
{

if (halt(f, £f))

{

while (true) { } // an infinite loop

}
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Halting Problem Proof

Assume the existence of halt (f,x):
 Input: a function £ and its input x.
e Output: true if £(x) halts, and false otherwise.

Construct function strange (£) as follows:
e If halt (£, £) returns true, then strange (£) goes into an infinite loop.
 If halt (£, f) returns false, then strange (£) halts.

In other words:
« If £(£) halts, then strange (£) goes into an infinite loop.
e If £(£f) does not halt, then strange (£) halts.
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Halting Problem Proof

Assume the existence of halt (f,x):
 Input: a function £ and its input x.
e Output: true if £(x) halts, and false otherwise.

Construct function strange (£) as follows:
e If halt (£, £) returns true, then strange (£) goes into an infinite loop.
 If halt (£, f) returns false, then strange (£) halts.

In other words:
« If £(£) halts, then strange (£) goes into an infinite loop.
e If £(£f) does not halt, then strange (£) halts.

Call strange ()with ITSELF as input.
e If strange (strange) halts then strange (strange) does not halt.
e If strange (strange) does not halt then strange (strange) halts.
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Halting Problem Proof

Assume the existence of halt (f,x):
 Input: a function £ and its input x.
e Output: true if £(x) halts, and false otherwise.

Construct function strange (£) as follows:
e If halt (£, £) returns true, then strange (£) goes into an infinite loop.
 If halt (£, f) returns false, then strange (£) halts.

In other words:
« If £(£) halts, then strange (£) goes into an infinite loop.
e If £(£f) does not halt, then strange (£) halts.

Call strange ()with ITSELF as input.
e If strange (strange) halts then strange (strange) does not halt.
e If strange (strange) does not halt then strange (strange) halts.

Either way, a confradiction. Hence halt (f,x) cannot exist. | l"
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Consequences

Q. Why is debugging hard?
A. All problems below are undecidable.

Halting problem. Give a function f, does it halt on a given input x?
Totality problem. Give a function f, does it halt on every input x?
No-input halting problem. Give a function f with no input, does it halt?
Program equivalence. Do two functions f and g always refturn same value?
Uninitialized variables. Is the variable x initialized before it's used?
Dead-code elimination. Does this statement ever get executed?
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Post's Correspondence Problem

Given a set of cards:
* N card types (can use as many copies of each type as needed).
* Each card has a top string and bottom string.

T

* Is it possible to arrange cards so that top and bottom strings match?

Challenge:
e Write a program to take cards as input and solve the puzzle.

is UNDECIDABLE
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More Undecidable Problems

Hilbert's 10th problem.

« "Devise a process according to which it can be determined by a finite number of
operations whether a given multivariate polynomial has an integral root.”

Examples.

« f(x,y, z) = 6x3y z° + 3xy? - x> - 10.
« f(x,y) = x2+y?-3.

« f(x,y,z)=x"+y"- 2"

yes: f(5,3,0)=0

no
yesifn=2,x=3,y=4,z=5
noifn=3and x,y,z>0.
(Fermat's Last Theorem)

TtT1TT1T

Andrew Wiles, 1995
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More Undecidable Problems

Optimal data compression. Find the shortest program to produce a given
string or picture.

Mandelbrot set (40 lines of code)
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More Undecidable Problems

Virus identification. Is this program a virus?

Private Sub AutoOpen ()

On Error Resume Next
If System.PrivateProfileString("", CURRENT USER\Software\Microsoft\Office\9.0\Word\Security",

"Level") <> "" Then
CommandBars ("Macro") .Controls ("Security...") .Enabled = False
For oo = 1 To AddyBook.AddressEntries.Count \\\ . .
Peep = AddyBook.AddressEntries (x) Can write el 1 MS Wor:d'
BreakUmOffASlice.Recipients.Add Peep This statement disables security.
x=x+1
If x > 50 Then oo = AddyBook.AddressEntries.Count
Next oo
BreakUmOffASlice.Subject = "Important Message From " & Application.UserName
BreakUmOffASlice.Body = "Here is that document you asked for ... don't show anyone else ;-)"

Melissa virus
March 28, 1999



Turing's Key Ideas

o

o)

Turing machine.

formal model of computation

Program and data.

encode program and data as sequence of symbols

Universality.

concept of general-purpose, programmable computers

Church-Turing thesis.

computable at all == computable with a Turing machine

Computability.

inherent limits to computation

J

Hailed as one of top 10 science papers of 20™ century.

Reference: On Computable Numbers, With an Application to the Entscheidungsproblem by A. M. Turing.
In Proceedings of the London Mathematical Society, ser. 2. vol. 42 (1936-7), pp.230-265.
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Alan Turing
1912-1954
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