
6.1  Combinational Circuits 
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Signals and Wires 
Digital signals 

■  Binary (or “logical”) values: 1 or 0, on or off, high or low voltage 

Wires. 
■  Propagate logical values from place to place. 
■  Signals "flow" from left to right. 

–  A drawing convention, sometimes violated 
–  Actually: flow from producer to consumer(s) of signal 

0 0 

1 1 

1 

1 

Input Output 
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Logic Gates 

Logical gates. 
■  Fundamental building blocks. 
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Multiway AND Gates 

AND(x0, x1, x2, x3, x4, x5, x6, x7). 
■  1 if all inputs are 1.  
■  0 otherwise. 
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Multiway OR Gates 

OR(x0, x1, x2, x3, x4, x5, x6, x7). 
■  1 if at least one input is 1. 
■  0 otherwise. 
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Boolean Algebra 

History. 
■  Developed by Boole to solve mathematical logic problems (1847). 
■  Shannon master's thesis applied it to digital circuits (1937). 

Basics. 
■  Boolean variable:  value is 0 or 1. 
■  Boolean function:  function whose inputs and outputs are 0, 1. 

Relationship to circuits. 
■  Boolean variables:  signals. 
■  Boolean functions:  circuits. 

"possibly the most important, and also the most famous, 
 master's thesis of the [20th] century"  --Howard Gardner 
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Truth Table 

Truth table. 
■  Systematic method to describe Boolean function. 
■  One row for each possible input combination. 
■  N inputs  ⇒  2N rows. 

AND 

AND(x, y) 

AND Truth Table 
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Truth Table for Functions of 2 Variables 

Truth table. 
■  16 Boolean functions of 2 variables. 

–  every 4-bit value represents one 

ZERO 
Truth Table for All Boolean Functions of 2 Variables 
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Truth Table for Functions of 3 Variables 

Truth table. 
■  16 Boolean functions of 2 variables. 

–  every 4-bit value represents one 
■  256 Boolean functions of 3 variables. 

–  every 8-bit value represents one 
■  2^(2^N) Boolean functions of N variables! 
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Universality of AND, OR, NOT 

Any Boolean function can be expressed using AND, OR, NOT. 
■  "Universal." 
■  XOR(x,y) = xy' + x'y 

Exercise.  Show  {AND, NOT}, {OR, NOT}, {NAND}, {AND, XOR} are universal. 
Hint.  Use DeMorgan’s Law: (xy)’ = (x’ + y’) and (x + y)’ = (x’y’) 

1 0 0 0 0 0 0 
0 0 0 1 1 1 1 
1 1 1 1 0 0 1 
0 1 0 0 0 1 0 

x' 
Expressing XOR Using AND, OR, NOT 

y x'y x'y + xy' xy' y' XOR x 
0 
0 
1 
1 

Meaning 
NOT x 

x AND y 
x OR y 

Notation 
x' 
x y 

x + y 
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Sum-of-Products 

Any Boolean function can be expressed using AND, OR, NOT. 
■  Sum-of-products is systematic procedure. 

–  form AND term for each 1 in truth table of Boolean function 
–  OR terms together 

x'yz 
Expressing MAJ Using Sum-of-Products 
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Translate Boolean Formula to Boolean Circuit 

Use sum-of-products form. 
■  XOR(x, y) = xy' + x'y. 
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Translate Boolean Formula to Boolean Circuit 

Use sum-of-products form. 
■  MAJ(x, y, z) = x'yz + xy'z + xyz' + xyz. 
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Simplification Using Boolean Algebra 

Many possible circuits for each Boolean function. 
■  Sum-of-products not necessarily optimal in: 

–  number of gates (space) 
–  depth of circuit (time) 

■  MAJ(x, y, z)  =  x'yz + xy'z + xyz' + xyz  =  xy + yz + xz. 

size = 4, depth = 2 size = 8, depth = 3 
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Expressing a Boolean Function Using AND, OR, NOT 

Ingredients. 
■  AND gates. 
■  OR gates. 
■  NOT gates. 
■  Wire. 

Instructions. 
■  Step 1:  represent input and output signals with Boolean variables. 
■  Step 2:  construct truth table to carry out computation. 
■  Step 3:  derive (simplified) Boolean expression using sum-of products. 
■  Step 4:  transform Boolean expression into circuit. 
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ODD Parity Circuit 

ODD(x, y, z). 
■  1 if odd number of inputs are 1.  
■  0 otherwise. 

x'y'z 
Expressing ODD Using Sum-of-Products 
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ODD Parity Circuit 

ODD(x, y, z). 
■  1 if odd number of inputs are 1.  
■  0 otherwise. 
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Let's Make an Adder Circuit 

Goal:  x + y = z for 4-bit integers. 
■  We build 4-bit adder:  9 inputs, 4 outputs. 
■  Same idea scales to 128-bit adder. 
■  Key computer component. 

Step 1. 
■  Represent input and output in binary. 

x1 x2 x3 x0 

y1 y2 y3 y0 + 
z1 z2 z3 z0 

1 0 0 0 

1 1 0 1 + 
0 0 1 1 

0 1 1 

8 4 2 7 

7 5 3 9 + 
6 0 6 6 

1 1 1 
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x1 
x0 
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y2 
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z0 

+ 

0 
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Let's Make an Adder Circuit 

Goal:  x + y = z for 4-bit integers. 

Step 2.  (first attempt) 
■  Build truth table. 
■  Why is this a bad idea? 

–  128-bit adder:  2256+1 rows  >  # electrons in universe! 

4-Bit Adder Truth Table 
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Let's Make an Adder Circuit 

Goal:  x + y = z for 4-bit integers. 

Step 2.  (do one bit at a time) 
■  Build truth table for carry bit. 
■  Build truth table for summand bit. 

Carry Bit 
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z1 z2 z3 z0 

c1 c2 c3 c0 = 0 
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Let's Make an Adder Circuit 

Goal:  x + y = z for 4-bit integers. 

Step 3. 
■  Derive (simplified) Boolean expression. 

Carry Bit 
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Let's Make an Adder Circuit 

Goal:  x + y = z for 4-bit integers. 

Step 4. 
■  Transform Boolean expression into circuit. 
■  Chain together 1-bit adders. 
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Let's Make an Adder Circuit 

Goal:  x + y = z for 4-bit integers. 

Step 4. 
■  Transform Boolean expression into circuit. 
■  Chain together 1-bit adders. 
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Subtractor 

Subtractor circuit:  z = x - y. 
■  One approach:  new design, like adder circuit. 
■  Better idea:  reuse adder circuit. 

–  2's complement:  to negate an integer, flip bits, then add 1 

x2 

x1 

x0 

y3 

y2 

y1 

y0 

x3 

z3 

z2 

z1 

z0 

y 

x 

x - y 

4-Bit Subtractor Interface 4-Bit Subtractor Implementation 
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-
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TOY Arithmetic Logic Unit:  Interface 

ALU Interface. 
■  Add, subtract, bitwise and, bitwise xor, shift left, shift right, copy. 
■  Associate 3-bit integer with 5 primary ALU operations. 

–  ALU performs operations in parallel 
–  control wires select which result ALU outputs 

ALU 
select 

16 

16 

16 

Input 1 

Input 2 

op 1 
+, - 0 
& 0 
^ 1 

<<, >> 1 

0 
0 
1 
0 
1 

ALU 

input 2 0 0 

2 
0 
0 
0 
0 
1 

subtract shift 
direction 

3 
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2n-to-1 Multiplexer 

2n-to-1 multiplexer. 
■  n select inputs, 2n data 

inputs, 1 output. 
■  Copies "selected" 

data input bit to output. 

8-to-1 Mux Implementation 

s0 s1 s2 

x0 

x1 

x2 

x3 

x4 

x5 

x6 

x7 

y 

y 

8-to-1 Mux Interface 

x7 

x6 

x5 

x4 

x3 

x2 

x1 

x0 

111 

110 

101 

100 

011 

010 

001 

000 

8 to 1 
MUX 

n = 8 for main memory 

s0 s1 s2 
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TOY Arithmetic Logic Unit:  Implementation 

16 
Input 1 

16 
Input 2 

16 

subtract 

carry in 

ALU control 
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        MUX 
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COS 126: General Computer Science       •       http://www.Princeton.EDU/~cos126 

6.2:  Sequential Circuits 

QS 

R 
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Sequential vs. Combinational Circuits 

Combinational circuits. 
■  Output determined solely by inputs. 
■  Can draw solely with left-to-right 

signal paths. 

Sequential circuits. 
■  Output determined by inputs 
    AND previous outputs. 
■  Feedback loop. 

QS

R
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Flip-Flop 

Flip-flop. 
■  A small and useful sequential circuit. 
■  Abstraction that "remembers" one bit. 
■  Basis of important computer components: 

–  memory 
–  counter 

We will consider several flavors. 
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SR Flip-Flop 

What is the value of Q if: 
■  S = 1 and R = 0 ?  ⇒      

Q 
S 

R 

1 

0 

1 

Q is surely 1 
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SR Flip-Flop 

What is the value of Q if: 
■  S = 1 and R = 0 ?  ⇒   Q is surely 1. 
■  S = 0 and R = 1 ?  ⇒ 

Q 
S 

R 

0 

1 

Q is surely 0 

0 

0 0 



What is the value of Q if: 
■  S = 1 and R = 0 ?  ⇒   Q is surely 1. 
■  S = 0 and R = 1 ?  ⇒   Q is surely 0. 
■  S = 0 and R = 0 ?  ⇒ 

35 

Q 
S 

R 

0 

0 

Q is possibly 0 

0 

0 

0 

SR Flip-Flop 
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SR Flip-Flop 

What is the value of Q if: 
■  S = 1 and R = 0 ?  ⇒   Q is surely 1. 
■  S = 0 and R = 1 ?  ⇒   Q is surely 0. 
■  S = 0 and R = 0 ?  ⇒   Q is possibly 0 . . . 

Q 
S 

R 

0 

0 

 or possibly 1 ! 

1 

1 

1 

1 



What is the value of Q if: 
■  S = 1 and R = 0 ?  ⇒   Q is surely 1. 
■  S = 0 and R = 1 ?  ⇒   Q is surely 0. 
■  S = 0 and R = 0 ?  ⇒   Q is possibly 0 . . . or possibly 1. 

While S = R = 0 , Q remembers what it was the last time S or R was 1. 
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SR Flip-Flop 
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SR Flip-Flop 

SR Flip-Flop. 
■  S = 1, R = 0 (set)  ⇒   “Flips” bit on. 
■  S = 0, R = 1 (reset)  ⇒   “Flops” bit off. 
■  S = R = 0   ⇒   Status quo. 
■  S = R = 1   ⇒   Not allowed.  

Interface 

Implementation 

S 

R 

SR flip flop SR flip flop 

Q 

Q 
S 

R 
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Clock 

Clock. 
■  Fundamental abstraction. 

–  regular on-off pulse 
■  External analog device. 
■  Synchronizes operations of different circuit elements. 
■  1 GHz clock means 1 billion pulses per second. 

cycle time 

Clock 

1 

0 
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How much does it Hert? 

Frequency is inverse of cycle time. 
■  Expressed in hertz. 
■  Frequency of 1 Hz means that there is 1 cycle per second. 
■  Hence: 

–  1 kilohertz (kHz) means 1000 cycles/sec. 
–  1 megahertz (MHz) means 1 million cycles/sec. 
–  1 gigahertz (GHz) means 1 billion cycles/sec. 
–  1 terahertz (THz) means 1 trillion cycles/sec. 

By the way, no such thing as 1 “hert” ! 

Heinrich Rudolf Hertz 
(1857-1894) 
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Clocked SR Flip-Flop 

Clocked SR Flip-Flop. 
■  Same as SR flip-flop except S and R only active when clock is 1. 

Interface Implementation 

Cl 

R 

S 

Q 

S 

R 

SR flip flop 

Q Cl 

R 

S

Q Cl 
R 

S 

Clocked 
SR flip flop 
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Clocked D Flip-Flop 

Clocked D Flip-Flop. 
■  Output follows D input while clock is 1. 
■  Output is remembered while clock is 0. 

Interface Implementation 

Cl 

D 

Q 

D 

Cl 
Q Cl 

R 

S 

Clocked 
SR flip flop 

Q 

Cl 

D 

Clocked 
D flip flop 
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Summary 

Combinational circuits implement Boolean functions 
■  Gates and wires  Fundamental building blocks. 
■  Truth tables.  Describe Boolean functions. 
■  Sum-of-products.  Systematic method to implement functions. 

Sequential circuits add "state" to digital hardware. 
■  Flip-flop.   Represents 1 bit. 
■  TOY register.  16 D flip-flops. 
■  TOY main memory.  256 registers. 

Next time:  we build a complete TOY computer (oh yes). 
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George Boole (1815 – 1864) Claude Shannon (1916 – 2001) 


