
6.1 Combinational Circuits

George Boole (1815 – 1864) Claude Shannon (1916 – 2001)

2

Signals and Wires
Digital signals

■  Binary (or “logical”) values: 1 or 0, on or off, high or low voltage

Wires.
■  Propagate logical values from place to place.
■  Signals "flow" from left to right.

–  A drawing convention, sometimes violated
–  Actually: flow from producer to consumer(s) of signal

0 0

1 1

1

1

Input Output

3

Logic Gates

Logical gates.
■  Fundamental building blocks.

0 1

1 0

NOT

0
1

0

AND

1
0

0

1
1

1

0
0

0 0
0

0

0
1

1

1
0

1

1
1

1

OR

x x' x
y

xy
x
y

x + y

4

Multiway AND Gates

AND(x0, x1, x2, x3, x4, x5, x6, x7).
■  1 if all inputs are 1.
■  0 otherwise.

5

Multiway OR Gates

OR(x0, x1, x2, x3, x4, x5, x6, x7).
■  1 if at least one input is 1.
■  0 otherwise.

6

Boolean Algebra

History.
■  Developed by Boole to solve mathematical logic problems (1847).
■  Shannon master's thesis applied it to digital circuits (1937).

Basics.
■  Boolean variable: value is 0 or 1.
■  Boolean function: function whose inputs and outputs are 0, 1.

Relationship to circuits.
■  Boolean variables: signals.
■  Boolean functions: circuits.

"possibly the most important, and also the most famous,
 master's thesis of the [20th] century" --Howard Gardner

8

Truth Table

Truth table.
■  Systematic method to describe Boolean function.
■  One row for each possible input combination.
■  N inputs ⇒ 2N rows.

AND

AND(x, y)

AND Truth Table

y x

0 0 0

0 1 0

0 0 1

1 1 1

0
1

0

1
0

0

1
1

1

0
0

0

9

Truth Table for Functions of 2 Variables

Truth table.
■  16 Boolean functions of 2 variables.

–  every 4-bit value represents one

ZERO
Truth Table for All Boolean Functions of 2 Variables

y
0 0

0 1 0
1 0 0
1 1 0

0
0
1
0

0
1
0
0

x
0
0
1
1

AND
0
0
0
1

y
0
1
0
1

XOR
0
1
1
0

OR
0
1
1
1

x
0

NOR
Truth Table for All Boolean Functions of 2 Variables

y
0 1

0 1 0
1 0 0
1 1 0

y'
1
0
1
0

x'
1
1
0
0

1
0
1
1

EQ
1
0
0
1

1
1
0
1

NAND
1
1
1
0

ONE
1
1
1
1

x
0

10

Truth Table for Functions of 3 Variables

Truth table.
■  16 Boolean functions of 2 variables.

–  every 4-bit value represents one
■  256 Boolean functions of 3 variables.

–  every 8-bit value represents one
■  2^(2^N) Boolean functions of N variables!

AND
Some Functions of 3 Variables

z
0 0

0 1 0
1 0 0
1 1 0

y
0

x
0
0
0
0

0
0 1
1 0
1 1

0 1
1
1
1

0
0
0
1

OR
0
1
1
1
1
1
1
1

MAJ
0
0
0
1
0
1
1
1

ODD
0
1
1
0
1
0
0
1

11

Universality of AND, OR, NOT

Any Boolean function can be expressed using AND, OR, NOT.
■  "Universal."
■  XOR(x,y) = xy' + x'y

Exercise. Show {AND, NOT}, {OR, NOT}, {NAND}, {AND, XOR} are universal.
Hint. Use DeMorgan’s Law: (xy)’ = (x’ + y’) and (x + y)’ = (x’y’)

1 0 0 0 0 0 0
0 0 0 1 1 1 1
1 1 1 1 0 0 1
0 1 0 0 0 1 0

x'
Expressing XOR Using AND, OR, NOT

y x'y x'y + xy' xy' y' XOR x
0
0
1
1

Meaning
NOT x

x AND y
x OR y

Notation
x'
x y

x + y

12

Sum-of-Products

Any Boolean function can be expressed using AND, OR, NOT.
■  Sum-of-products is systematic procedure.

–  form AND term for each 1 in truth table of Boolean function
–  OR terms together

x'yz
Expressing MAJ Using Sum-of-Products

z xyz' xyz xy'z MAJ y x
0
0
0
1
0
1
1
1

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

0
0
0
1
0
0
0
0

0
0
0
0
0
1
0
0

0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
1

x'yz + xy'z + xyz' + xyz
0
0
0
1
0
1
1
1

13

Translate Boolean Formula to Boolean Circuit

Use sum-of-products form.
■  XOR(x, y) = xy' + x'y.

14

Translate Boolean Formula to Boolean Circuit

Use sum-of-products form.
■  MAJ(x, y, z) = x'yz + xy'z + xyz' + xyz.

15

Simplification Using Boolean Algebra

Many possible circuits for each Boolean function.
■  Sum-of-products not necessarily optimal in:

–  number of gates (space)
–  depth of circuit (time)

■  MAJ(x, y, z) = x'yz + xy'z + xyz' + xyz = xy + yz + xz.

size = 4, depth = 2 size = 8, depth = 3

16

Expressing a Boolean Function Using AND, OR, NOT

Ingredients.
■  AND gates.
■  OR gates.
■  NOT gates.
■  Wire.

Instructions.
■  Step 1: represent input and output signals with Boolean variables.
■  Step 2: construct truth table to carry out computation.
■  Step 3: derive (simplified) Boolean expression using sum-of products.
■  Step 4: transform Boolean expression into circuit.

18

ODD Parity Circuit

ODD(x, y, z).
■  1 if odd number of inputs are 1.
■  0 otherwise.

x'y'z
Expressing ODD Using Sum-of-Products

z xy'z' xyz x'yz' ODD y x
0
1
1
0
1
0
0
1

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

0
1
0
0
0
0
0
0

0
0
1
0
0
0
0
0

0
0
0
0
1
0
0
0

0
0
0
0
0
0
0
1

x'y'z + x'yz' + xy'z' + xyz
0
1
1
0
1
0
0
1

19

ODD Parity Circuit

ODD(x, y, z).
■  1 if odd number of inputs are 1.
■  0 otherwise.

20

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.
■  We build 4-bit adder: 9 inputs, 4 outputs.
■  Same idea scales to 128-bit adder.
■  Key computer component.

Step 1.
■  Represent input and output in binary.

x1 x2 x3 x0

y1 y2 y3 y0 +
z1 z2 z3 z0

1 0 0 0

1 1 0 1 +
0 0 1 1

0 1 1

8 4 2 7

7 5 3 9 +
6 0 6 6

1 1 1

x3
x2
x1
x0

y3
y2
y1
y0

z3
z2
z1
z0

+

0

0

21

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.

Step 2. (first attempt)
■  Build truth table.
■  Why is this a bad idea?

–  128-bit adder: 2256+1 rows > # electrons in universe!

4-Bit Adder Truth Table

y2 y3

0
0
0
0
1
1
.
1

0
0
0
0
0
0
.
1

x1 x2 x3 x0

y1 y2 y3 y0 +
z1 z2 z3 z0

x0 x1

0
0
0
0
0
0
.
1

0
0
0
0
0
0
.
1

x2 x3

0
0
0
0
0
0
.
1

0
0
0
0
0
0
.
1

y0 y1

0
1
0
1
0
1
.
1

0
0
1
1
0
0
.
1

z2 z3

0
0
0
0
1
1
.
1

0
0
0
0
0
0
.
1

z0 z1

0
1
0
1
0
1
.
1

0
0
1
1
0
0
.
1

28+1 = 512 rows!

c0

0
0
0
0
0
0
.
1

c0

22

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.

Step 2. (do one bit at a time)
■  Build truth table for carry bit.
■  Build truth table for summand bit.

Carry Bit

ci ci+1 yi xi

0
0
0
1
0
1
1
1

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

Summand Bit

ci zi yi xi

0
1
1
0
1
0
0
1

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

x1 x2 x3 x0

y1 y2 y3 y0 +
z1 z2 z3 z0

c1 c2 c3 c0 = 0

23

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.

Step 3.
■  Derive (simplified) Boolean expression.

Carry Bit

ci ci+1 yi xi

0
0
0
1
0
1
1
1

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

MAJ
0
0
0
1
0
1
1
1

Summand Bit

ci zi yi xi

0
1
1
0
1
0
0
1

0
1
0
1
0
1
0
1

0
0
1
1
0
0
1
1

0
0
0
0
1
1
1
1

ODD
0
1
1
0
1
0
0
1

x1 x2 x3 x0

y1 y2 y3 y0 +
z1 z2 z3 z0

c1 c2 c3 c0 = 0

24

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.

Step 4.
■  Transform Boolean expression into circuit.
■  Chain together 1-bit adders.

25

Let's Make an Adder Circuit

Goal: x + y = z for 4-bit integers.

Step 4.
■  Transform Boolean expression into circuit.
■  Chain together 1-bit adders.

26

Subtractor

Subtractor circuit: z = x - y.
■  One approach: new design, like adder circuit.
■  Better idea: reuse adder circuit.

–  2's complement: to negate an integer, flip bits, then add 1

x2

x1

x0

y3

y2

y1

y0

x3

z3

z2

z1

z0

y

x

x - y

4-Bit Subtractor Interface 4-Bit Subtractor Implementation

1

+
-

27

TOY Arithmetic Logic Unit: Interface

ALU Interface.
■  Add, subtract, bitwise and, bitwise xor, shift left, shift right, copy.
■  Associate 3-bit integer with 5 primary ALU operations.

–  ALU performs operations in parallel
–  control wires select which result ALU outputs

ALU
select

16

16

16

Input 1

Input 2

op 1
+, - 0
& 0
^ 1

<<, >> 1

0
0
1
0
1

ALU

input 2 0 0

2
0
0
0
0
1

subtract shift
direction

3

28

2n-to-1 Multiplexer

2n-to-1 multiplexer.
■  n select inputs, 2n data

inputs, 1 output.
■  Copies "selected"

data input bit to output.

8-to-1 Mux Implementation

s0 s1 s2

x0

x1

x2

x3

x4

x5

x6

x7

y

y

8-to-1 Mux Interface

x7

x6

x5

x4

x3

x2

x1

x0

111

110

101

100

011

010

001

000

8 to 1
MUX

n = 8 for main memory

s0 s1 s2

29

TOY Arithmetic Logic Unit: Implementation

16
Input 1

16
Input 2

16

subtract

carry in

ALU control

&

~

shift direction

3

<<
>>

 MUX

op 1
+, - 0
& 0
^ 1

<<, >> 1

0
0
1
0
1

input 2 0 0

2
0
0
0
0
1

000

001

010

011

100

+

^ ̂

COS 126: General Computer Science • http://www.Princeton.EDU/~cos126

6.2: Sequential Circuits

QS

R

31

Sequential vs. Combinational Circuits

Combinational circuits.
■  Output determined solely by inputs.
■  Can draw solely with left-to-right

signal paths.

Sequential circuits.
■  Output determined by inputs
 AND previous outputs.
■  Feedback loop.

QS

R

32

Flip-Flop

Flip-flop.
■  A small and useful sequential circuit.
■  Abstraction that "remembers" one bit.
■  Basis of important computer components:

–  memory
–  counter

We will consider several flavors.

33

SR Flip-Flop

What is the value of Q if:
■  S = 1 and R = 0 ? ⇒

Q
S

R

1

0

1

Q is surely 1

34

SR Flip-Flop

What is the value of Q if:
■  S = 1 and R = 0 ? ⇒ Q is surely 1.
■  S = 0 and R = 1 ? ⇒

Q
S

R

0

1

Q is surely 0

0

0 0

What is the value of Q if:
■  S = 1 and R = 0 ? ⇒ Q is surely 1.
■  S = 0 and R = 1 ? ⇒ Q is surely 0.
■  S = 0 and R = 0 ? ⇒

35

Q
S

R

0

0

Q is possibly 0

0

0

0

SR Flip-Flop

36

SR Flip-Flop

What is the value of Q if:
■  S = 1 and R = 0 ? ⇒ Q is surely 1.
■  S = 0 and R = 1 ? ⇒ Q is surely 0.
■  S = 0 and R = 0 ? ⇒ Q is possibly 0 . . .

Q
S

R

0

0

 or possibly 1 !

1

1

1

1

What is the value of Q if:
■  S = 1 and R = 0 ? ⇒ Q is surely 1.
■  S = 0 and R = 1 ? ⇒ Q is surely 0.
■  S = 0 and R = 0 ? ⇒ Q is possibly 0 . . . or possibly 1.

While S = R = 0 , Q remembers what it was the last time S or R was 1.

37

Q
S

R

0

0

SR Flip-Flop

old Q

38

SR Flip-Flop

SR Flip-Flop.
■  S = 1, R = 0 (set) ⇒ “Flips” bit on.
■  S = 0, R = 1 (reset) ⇒ “Flops” bit off.
■  S = R = 0 ⇒ Status quo.
■  S = R = 1 ⇒ Not allowed.

Interface

Implementation

S

R

SR flip flop SR flip flop

Q

Q
S

R

39

Clock

Clock.
■  Fundamental abstraction.

–  regular on-off pulse
■  External analog device.
■  Synchronizes operations of different circuit elements.
■  1 GHz clock means 1 billion pulses per second.

cycle time

Clock

1

0

40

How much does it Hert?

Frequency is inverse of cycle time.
■  Expressed in hertz.
■  Frequency of 1 Hz means that there is 1 cycle per second.
■  Hence:

–  1 kilohertz (kHz) means 1000 cycles/sec.
–  1 megahertz (MHz) means 1 million cycles/sec.
–  1 gigahertz (GHz) means 1 billion cycles/sec.
–  1 terahertz (THz) means 1 trillion cycles/sec.

By the way, no such thing as 1 “hert” !

Heinrich Rudolf Hertz
(1857-1894)

41

Clocked SR Flip-Flop

Clocked SR Flip-Flop.
■  Same as SR flip-flop except S and R only active when clock is 1.

Interface Implementation

Cl

R

S

Q

S

R

SR flip flop

Q Cl

R

S

Q Cl
R

S

Clocked
SR flip flop

42

Clocked D Flip-Flop

Clocked D Flip-Flop.
■  Output follows D input while clock is 1.
■  Output is remembered while clock is 0.

Interface Implementation

Cl

D

Q

D

Cl
Q Cl

R

S

Clocked
SR flip flop

Q

Cl

D

Clocked
D flip flop

43

Summary

Combinational circuits implement Boolean functions
■  Gates and wires Fundamental building blocks.
■  Truth tables. Describe Boolean functions.
■  Sum-of-products. Systematic method to implement functions.

Sequential circuits add "state" to digital hardware.
■  Flip-flop. Represents 1 bit.
■  TOY register. 16 D flip-flops.
■  TOY main memory. 256 registers.

Next time: we build a complete TOY computer (oh yes).

44

George Boole (1815 – 1864) Claude Shannon (1916 – 2001)

