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Gibbs states

Brook’s theorem states that a positive probability measure on a finite
product may be decomposed into factors indexed by the cliques of its
dependency graph. Closely related to this is the well known fact that
a positive measure is a spatial Markov field on a graph G if and only
if it is a Gibbs state. The Ising and Potts models are introduced, and
the n-vector model is mentioned.

7.1 Dependency graphs
Let X = (X1, X2, . . . , Xn) be a family of random variables on a given
probability space. For i, j ∈ V = {1, 2, . . . , n} with i "= j , we write i ⊥ j
if: Xi and Xj are independent conditional on (Xk : k "= i, j ). The relation
⊥ is thus symmetric, and it gives rise to a graph G with vertex set V and
edge-set E = {〈i, j 〉 : i "⊥ j }, called the dependency graph of X (or of its
law). We shall see that the law of X may be expressed as a product over
terms corresponding to complete subgraphs of G. A complete subgraph of
G is called a clique, and we write K for the set of all cliques of G. For
notational simplicity later,we designate the empty subset ofV to be a clique,
and thus ∅ ∈ K . A clique is maximal if no strict superset is a clique, and
we write M for the set of maximal cliques of G.
We assume for simplicity that the Xi take values in some countable subset

S of the reals R. The law of X gives rise to a probability mass function π

on Sn given by
π(x) = P(Xi = xi for i ∈ V ), x = (x1, x2, . . . , xn) ∈ Sn.

It is easily seen by the definition of independence that i ⊥ j if and only if
π may be factorized in the form

π(x) = g(xi ,U )h(xj,U ), x ∈ Sn,
for some functions g and h, where U = (xk : k "= i, j ). For K ∈ K and
x ∈ Sn, we write xK = (xi : i ∈ K ). We call π positive if π(x) > 0 for all
x ∈ Sn.
In the following, each function fK acts on the domain SK .

142
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7.1 Theorem [54]. Let π be a positive probability mass function on Sn.
There exist functions fK : SK → [0, ∞), K ∈ M, such that

(7.2) π(x) =
∏

K∈M

fK (xK ), x ∈ Sn.

In the simplest non-trivial example, let us assume that i ⊥ j whenever
|i − j | ≥ 2. The maximal cliques are the pairs {i, i + 1}, and the mass
function π may be expressed in the form

π(x) =
n−1∏

i=1
fi (xi , xi+1), x ∈ Sn,

so that X is a Markov chain, whatever the direction of time.

Proof. We shall show that π may be expressed in the form

(7.3) π(x) =
∏

K∈K

fK (xK ), x ∈ Sn,

for suitable fK . Representation (7.2) follows from (7.3) by associating each
fK with some maximal clique K ′ containing K as a subset.
A representation of π in the form

π(x) =
∏

r
fr (x)

is said to separate i and j if every fr is a constant function of either xi or
xj , that is, no fr depends non-trivially on both xi and xj . Let

(7.4) π(x) =
∏

A∈A

f A(xA)

be a factorization of π for some familyA of subsets of V , and suppose that
i , j satisfies: i ⊥ j , but i and j are not separated in (7.4). We shall construct
from (7.4) a factorization that separates every pair r , s that is separated in
(7.4), and in addition separates i , j . Continuing by iteration, we obtain a
factorization that separates every pair i , j satisfying i ⊥ j , and this has the
required form (7.3).
Since i ⊥ j , π may be expressed in the form

(7.5) π(x) = g(xi ,U )h(xj,U )

for some g, h, where U = (xk : j "= i, j ). Fix s, t ∈ S, and write h
∣∣
t

(respectively, h
∣∣
s,t ) for the function h(x) evaluatedwith xj = t (respectively,

xi = s, xj = t). By (7.4),

(7.6) π(x) = π(x)
∣∣
t

π(x)
π(x)

∣∣
t

=
( ∏

A∈A

f A(xA)
∣∣
t

)
π(x)
π(x)

∣∣
t
.
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By (7.5), the ratio
π(x)
π(x)

∣∣
t

=
h(xj ,U )

h(t,U )

is independent of xi , so that
π(x)
π(x)

∣∣
t

=
∏

A∈A

f A(xA)
∣∣
s

f A(xA)
∣∣
s,t

.

By (7.6),

π(x) =
( ∏

A∈A

f A(xA)
∣∣
t

)( ∏

A∈A

f A(xA)
∣∣
s

f A(xA)
∣∣
s,t

)

is the required representation, and the claim is proved. !

7.2 Markov and Gibbs random fields
Let G = (V , E) be a finite graph, taken for simplicity without loops or
multiple edges. Within statistics and statistical mechanics, there has been
a great deal of interest in probability measures having a type of ‘spatial
Markov property’ given in terms of the neighbour relation of G. We shall
restrict ourselves here to measures on the sample space " = {0, 1}V , while
noting that the following results may be extendedwithoutmaterial difficulty
to a larger product SV , where S is finite or countably infinite.
The vector σ ∈ " may be placed in one–one correspondence with the

subset η(σ ) = {v ∈ V : σv = 1} of V , andwe shall use this correspondence
freely. For any W ⊆ V , we define the external boundary

%W = {v ∈ V : v /∈ W, v ∼ w for some w ∈ W }.
For s = (sv : v ∈ V ) ∈ ", we write sW for the sub-vector (sw : w ∈ W ).
We refer to the configuration of vertices in W as the ‘state’ of W .

7.7 Definition. A probability measure π on " is said to be positive if
π(σ) > 0 for all σ ∈ ". It is called aMarkov (random) field if it is positive
and: for allW ⊆ V , conditional on the state of V \W , the law of the state of
W depends only on the state of%W . That is, π satisfies the global Markov
property
(7.8) π

(
σW = sW

∣∣ σV\W = sV\W
)

= π
(
σW = sW

∣∣σ%W = s%W
)
,

for all s ∈ ", and W ⊆ V .
The key result about such measures is their representation in terms of a

‘potential function’ φ, in a form known as a Gibbs random field (or some-
times ‘Gibbs state’). Recall the setK of cliques of the graph G, and write
2V for the set of all subsets (or ‘power set’) of V .



7.2 Markov and Gibbs random fields 145

7.9 Definition. A probability measure π on " is called a Gibbs (random)
field if there exists a ‘potential’ function φ : 2V → R, satisfying φC = 0 if
C /∈ K , such that

(7.10) π(B) = exp
( ∑

K⊆B
φK

)
, B ⊆ V .

We allow the empty set in the above summation, so that logπ(∅) = φ∅.
Condition (7.10) has been chosen for combinatorial simplicity. It is

not the physicists’ preferred definition of a Gibbs state. Let us define a
Gibbs state as a probability measure π on " such that there exist functions
fK : {0, 1}K → R, K ∈ K , with

(7.11) π(σ) = exp
( ∑

K∈K

fK (σK )

)
, σ ∈ ".

It is immediate thatπ satisfies (7.10) for some φ whenever it satisfies (7.11).
The converse holds also, and is left for Exercise 7.1.
Gibbs fields are thus named after Josiah Willard Gibbs, whose volume

[95] made available the foundations of statistical mechanics. A simplistic
motivation for the form of (7.10) is as follows. Suppose that each state σ

has an energy Eσ , and a probability π(σ). We constrain the average energy
E =

∑
σ Eσπ(σ ) to be fixed, and we maximize the entropy

η(π) = −
∑

σ∈"

π(σ) log2 π(σ).

With the aid of a Lagrange multiplier β, we find that
π(σ) ∝ e−βEσ , σ ∈ ".

The theory of thermodynamics leads to the expression β = 1/(kT ) where
k is Boltzmann’s constant and T is (absolute) temperature. Formula (7.10)
arises when the energy Eσ may be expressed as the sum of the energies of
the sub-systems indexed by cliques.

7.12 Theorem. Apositive probability measureπ on" is aMarkov random
field if and only if it is a Gibbs random field. The potential function φ

corresponding to the Markov field π is given by

φK =
∑

L⊆K
(−1)|K\L| logπ(L), K ∈ K.

Apositive probabilitymeasure π is said to have the localMarkov property
if it satisfies the global property (7.8) for all singleton setsW and all s ∈ ".
The global property evidently implies the local property, and it turns out that
the two properties are equivalent. For notational convenience, we denote a
singleton set {w} as w.
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7.13 Proposition. Let π be a positive probability measure on ". The
following three statements are equivalent:
(a) π satisfies the global Markov property,
(b) π satisfies the local Markov property,
(c) for all A ⊆ V and any pair u, v ∈ V with u /∈ A, v ∈ A and u " v,

(7.14)
π(A ∪ u)

π(A)
= π(A ∪ u \ v)

π(A \ v)
.

Proof. First, assume (a), so that (b) holds trivially. Let u /∈ A, v ∈ A, and
u " v. Applying (7.8) with W = {u} and, for w "= u, sw = 1 if and only if
w ∈ A, we find that

π(A ∪ u)
π(A) + π(A ∪ u)

= π(σu = 1 | σV\u = A)

(7.15)

= π(σu = 1 | σ%u = A ∩ %u)
= π(σu = 1 | σV\u = A \ v) since v /∈ %u

= π(A ∪ u \ v)

π(A \ v) + π(A ∪ u \ v)
.

Equation (7.15) is equivalent to (7.14), whence (b) and (c) are equivalent
under (a).
It remains to show that the local property implies the global property.

The proof requires a short calculation, and may be done either by Theorem
7.1 or within the proof of Theorem 7.12. We follow the first route here.
Assume that π is positive and satisfies the local Markov property. Then
u ⊥ v for all u, v ∈ V with u " v. By Theorem 7.1, there exist functions
fK , K ∈ M, such that

(7.16) π(A) =
∏

K∈M

fK (A ∩ K ), A ⊆ V .

Let W ⊆ V . By (7.16), for A ⊆ W and C ⊆ V \ W ,

π(σW = A | σV\W = C) =
∏

K∈M
fK ((A ∪ C) ∩ K )

∑
B⊆W

∏
K∈M

fK ((B ∪ C) ∩ K )
.

Any clique K with K ∩ W = ∅ makes the same contribution fK (C ∩ K )

to both numerator and denominator, and may be cancelled. The remaining
cliques are subsets of Ŵ = W ∪ %W , so that

π(σW = A | σV\W = C) =
∏

K∈M, K⊆Ŵ fK ((A ∪ C) ∩ K )
∑

B⊆W
∏

K∈M, K⊆Ŵ fK ((B ∪ C) ∩ K )
.
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The right side does not depend on σV\Ŵ , whence

π(σW = A | σV\W = C) = π(σW = A | σ%W = C ∩ %W )

as required for the global Markov property. !

Proof of Theorem 7.12. Assume first that π is a positive Markov field, and
let

(7.17) φC =
∑

L⊆C
(−1)|C\L| logπ(L), C ⊆ V .

By the inclusion–exclusion principle,

logπ(B) =
∑

C⊆B
φC , B ⊆ V ,

and we need only show that φC = 0 for C /∈ K . Suppose u, v ∈ C and
u " v. By (7.17),

φC =
∑

L⊆C\{u,v}
(−1)|C\L| log

(
π(L ∪ u ∪ v)

π(L ∪ u)

/
π(L ∪ v)

π(L)

)

,

which equals zero by the local Markov property and Proposition 7.13.
Therefore, π is a Gibbs field with potential function φ.
Conversely, suppose that π is a Gibbs field with potential function φ.

Evidently, π is positive. Let A ⊆ V , and u /∈ A, v ∈ A with u " v. By
(7.10),

log
(

π(A ∪ u)
π(A)

)
=

∑

K⊆A∪u, u∈K
K∈K

φK

=
∑

K⊆A∪u\v, u∈K
K∈K

φK since u " v and K ∈ K

= log
(

π(A ∪ u \ v)

π(A \ v)

)
.

The claim follows by Proposition 7.13. !

We close this section with some notes on the history of the equivalence
of Markov and Gibbs random fields. This may be derived from Brook’s
theorem, Theorem 7.1, but it is perhapsmore informative to prove it directly
as above via the inclusion–exclusion principle. It is normally attributed
to Hammersley and Clifford, and an account was circulated (with a more
complicated formulation and proof) in an unpublished note of 1971, [129]
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(see also [68]). Versions of Theorem 7.12 may be found in the later work
of several authors, and the above proof is taken essentially from [103].
The assumption of positivity is important, and complications arise for non-
positive measures, see [191] and Exercise 7.2.
For applications of the Gibbs/Markov equivalence in statistics, see, for

example, [159].

7.3 Ising and Potts models
In a famous experiment, a piece of iron is exposed to a magnetic field.
The field is increased from zero to a maximum, and then diminished to
zero. If the temperature is sufficiently low, the iron retains some residual
magnetization, otherwise it does not. There is a critical temperature for this
phenomenon, often named the Curie point after Pierre Curie, who reported
this discovery in his 1895 thesis. The famous (Lenz–)Ising model for such
ferromagnetism, [142], may be summarized as follows. Let particles be
positioned at the points of some lattice in Euclidean space. Each particle
may be in either of two states, representing the physical states of ‘spin-up’
and ‘spin-down’. Spin-values are chosen at random according to a Gibbs
state governed by interactions between neighbouring particles, and given in
the following way.
Let G = (V , E) be a finite graph representing part of the lattice. Each

vertex x ∈ V is considered as being occupied by a particle that has a
random spin. Spins are assumed to come in two basic types (‘up’ and
‘down’), and thus we take the set " = {−1, +1}V as the sample space.
The appropriate probability mass function λβ,J,h on" has three parameters
satisfying β, J ∈ [0, ∞) and h ∈ R, and is given by

(7.18) λβ,J,h(σ ) = 1
ZI
e−βH(σ ), σ ∈ ",

where the ‘Hamiltonian’ H : " → R and the ‘partition function’ ZI are
given by

(7.19) H(σ ) = −J
∑

e=〈x,y〉∈E
σxσy − h

∑

x∈V
σx , ZI =

∑

σ∈"

e−βH(σ ).

The physical interpretation of β is as the reciprocal 1/T of temperature, of
J as the strength of interaction between neighbours, and of h as the external
magnetic field. We shall consider here only the case of zero external-field,
and we assume henceforth that h = 0. Since J is assumed non-negative,
the measure λβ,J,0 is larger for smaller H(σ ). Thus, it places greater weight
on configurations having many neighbour-pairs with like spins, and for this
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reason it is called ‘ferromagnetic’. When J < 0, it is called ‘antiferromag-
netic’.
Each edge has equal interaction strength J in the above formulation.

Since β and J occur only as a productβ J , themeasure λβ,J,0 has effectively
only a single parameterβ J . In amore complicatedmeasure not studied here,
different edges e are permitted to have different interaction strengths Je. In
the meantime we shall set J = 1, and write λβ = λβ,1,0
Whereas the Ising model permits only two possible spin-values at each

vertex, the so-called (Domb–)Pottsmodel [202] has a general numberq ≥ 2,
and is governed by the following probability measure.
Let q be an integer satisfying q ≥ 2, and take as sample space the set

of vectors " = {1, 2, . . . , q}V . Thus each vertex of G may be in any of q
states. For an edge e = 〈x, y〉 and a configuration σ = (σx : x ∈ V ) ∈ ",
we write δe(σ ) = δσx ,σy , where δi, j is the Kronecker delta. The relevant
probability measure is given by

(7.20) πβ,q (σ ) =
1
ZP
e−βH ′(σ ), σ ∈ ",

where ZP = ZP(β, q) is the appropriate partition function (or normalizing
constant) and the Hamiltonian H ′ is given by

(7.21) H ′(σ ) = −
∑

e=〈x,y〉∈E
δe(σ ).

In the special case q = 2,

(7.22) δσ1,σ2 = 1
2 (1+ σ1σ2), σ1, σ2 ∈ {−1, +1},

It is easy to see in this case that the ensuing Potts model is simply the Ising
model with an adjusted value of β, in that πβ,2 is the measure obtained from
λβ/2 by re-labelling the local states.
We mention one further generalization of the Ising model, namely the so-

called n-vector or O(n)model. Let n ∈ {1, 2, . . . } and let Sn−1 be the set of
vectors of Rn with unit length, that is, the (n− 1)-sphere. A ‘model’ is said
to have O(n) symmetry if its Hamiltonian is invariant under the operation
on Sn−1 of n × n orthonormal matrices. One such model is the n-vector
model on G = (V , E), with Hamiltonian

Hn(s) = −
∑

e=〈x,y〉∈E
sx · sy, s = (sv : v ∈ V ) ∈ (Sn−1)V ,

where sx · sy denotes the scalar product. When n = 1, this is simply the
Ising model. It is called the X/Y model when n = 2, and the Heisenberg
model when n = 3.
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The Ising and Potts models have very rich theories, and are amongst the
most intensively studied of models of statistical mechanics. In ‘classical’
work, they are studied via cluster expansions and correlation inequalities.
The so-called ‘random-cluster model’, developed by Fortuin and Kasteleyn
around 1960, provides a single framework incorporating the percolation,
Ising, and Potts models, as well as electrical networks, uniform spanning
trees, and forests. It enables a representation of the two-point correlation
function of a Potts model as a connection probability of an appropriate
model of stochastic geometry, and this in turn allows the use of geometrical
techniques already refined in the case of percolation. The random-cluster
model is defined and described in Chapter 8, see also [109].
The q = 2 Potts model is essentially the Ising model, and special features

of the number 2 allow a special analysis for the Ising model not yet repli-
cated for general Potts models. This method is termed the ‘random-current
representation’, and it has been especially fruitful in the study of the phase
transition of the Ising model on Ld . See [3, 7, 10] and [109, Chap. 9].

7.4 Exercises
7.1 Let G = (V , E) be a finite graph, and let π be a probability measure on

the power set " = {0, 1}V . A configuration σ ∈ " is identified with the subset
of V on which it takes the value 1, that is, with the set η(σ) = {v ∈ V : σv = 1}.
Show that

π(B) = exp
( ∑

K⊆B
φK

)
, B ⊆ V ,

for some function φ acting on the setK of cliques of G, if and only if

π(σ) = exp
( ∑

K∈K

fK (σK )

)
, σ ∈ ",

for some functions fK : {0, 1}K → R, with K ranging over K . Recall the
notation σK = (σv : v ∈ K ).
7.2 [191] Investigate the Gibbs/Markov equivalence for probability measures

that have zeroes. It may be useful to consider the example illustrated in Figure
7.1. The graph G = (V , E) is a 4-cycle, and the local state space is {0, 1}. Each
of the eight configurations of the figure has probability 1

8 , and the other eight
configurations have probability 0. Show that this measure µ satisfies the local
Markov property, but cannot be written in the form

µ(B) =
∏

K⊆B
f (K ), B ⊆ V ,

for some f satisfying f (K ) = 1 if K /∈ K , the set of cliques.
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Figure 7.1. Each vertex of the 4-cycle may be in either of the two states
0 and 1. The marked vertices have state 1, and the unmarked vertices
have state 0. Each of the above eight configurations has probability 1

8 ,
and the other eight configurations have probability 0.

7.3 Ising model with external field. Let G = (V , E) be a finite graph, and let
λ be the probability measure on " = {−1,+1}V satisfying

λ(σ) ∝ exp
(
h

∑

v∈V
σv + β

∑

e=〈u,v〉
σuσv

)
, σ ∈ ",

where β > 0. Thinking of " as a partially ordered set (where σ ≤ σ ′ if and only
if σv ≤ σ ′

v for all v ∈ V ), show that:
(a) λ satisfies the FKG lattice condition, and hence is positively associated,
(b) for v ∈ V , λ(· | σv = −1) ≤st λ ≤st λ(· | σv = +1).


