Corrections:

6.5: The formula for η_t is incorrect, and should instead be:

$$\eta_t \doteq \max \left\{ 0, \ln \left(\frac{(1-u)\ell_t}{u(1-\ell_t)} \right) \right\}.$$

Hints:

5.9(c): Start by proving the stated inequality conditional on \mathbf{w} being chosen so that $\mathbf{w} \cdot \mathbf{w}^* \geq 0$. Then use this fact to obtain the same result without such conditioning (possibly with a different constant).

Also, you might find Markov's inequality useful, which states that, for any nonnegative real-valued random variable X, and for any constant c > 0, $\mathbf{Pr}[X \ge c] \le (\mathbf{E}[X])/c$.

6.6: Create an online learning algorithm that makes its predictions on each round using a (deterministic) weighted majority vote of the classifiers in \mathcal{H} .

6.9(d): Use the fact that $\mathbf{M} = -\mathbf{M}^{\top}$. Also, when computing the value of \mathbf{M} , consider $P^{\top}\mathbf{M}P$, for any distribution P.