
princeton university Spr’12 cos 521: Advanced Algorithms

Homework 4

Out: Apr 14 Due: May 1

You can collaborate with your classmates, but be sure to list your collaborators with your
answer. If you get help from a published source (book, paper etc.), cite that. Also, limit your
answers to one page or less —you just need to give enough detail to convince the grader. If
you suspect a problem is open, just say so and give reasons for your suspicion.

§1 Use semidefinite programming to give a better approximation to MAX-2SAT than
the 3/4-approximation we gave via linear programming. Ideally your approximation
ratio should exceed 0.8

§2 We are given an undirected graph G = (V,E) with capacities ce on edges, and m pairs
of (source, sink) pairs (s1, t1), . . . (sm, tm) with si, ti ∈ V . An integral flow between a
source sink pair (s, t) is a single path connecting s and t and a quantity q indicating the
amount of flow shipped on that path (the difference between this and the usual notion
of flow is that all the flow is on one path). Let M be the largest number for which
it is possible to M units of integral flow between all the (si, ti) pairs simultaneously
without violating the edge capacities. Give a O(log n) approximation for M using
linear programming. (hint: randomized rounding).

§3 Every positive semidefinite matrix can be written as a sum of outer products A =
XXT =

∑
i xix

T
i where xi are the columns of X. The Laplacian matrix of a d−regular

graph is defined to be L = dI −A where A is the adjacency matrix (recall that in the
Cheeger lecture, we dealt with the normalized Laplacian 1

dL = I − 1
dA). Write L as

a sum of outer products. What is the appropriate generalization to irregular graphs?
Weighted graphs? What is the nullspace of a Laplacian matrix?

§4 Use the Chebyshev iteration to show that the diameter of an undirected unweighted
graph is at most O(

√
κ(L) log n) where κ(L) = λmax(L)

λmin(L)
is the condition number of the

Laplacian (ignoring the zero eigenvalue). (hint: to bound the distance between vertices
i, j, consider the number of iterations that the method needs to solve Lx = ei − ej
where ei, ej are standard basis vectors).

§5 The spectral norm of a symmetric matrix may be defined equivalently as

‖A‖ = max
i
|λi(A)| = max

x 6=0

‖Ax‖
‖x‖

= max
x 6=q

xTAx

xTx
= max

x,y 6=0

xTAy

‖x‖‖y‖
.

Show that these definitions are equivalent.

§6 Suppose A is the adjacency matrix of a d−regular graph G = (V,E) with second
eigenvalue λ2. Prove that for any two subsets S, T ⊂ V of the vertices,∣∣∣∣E(S, T )− d

n
|S||T |

∣∣∣∣ ≤ λ2(A) ·
√
|S||T |,

1
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where E(S, T ) denotes the number of edges with one endpoint in S and one in T . (hint:
apply the last characterization of the spectral norm in the last lecture to indicator
vectors of S and T ).

This statement is known as the expander mixing lemma and tells us that in a graph
with small λ2 (i.e., large spectral gap d− λ2), the number of edges between any two
sets is close to what we would expect in a random graph with density d/n.

§7 The Chebyshev method takes O(
√
κ(A) log(1/ε) iterations to solve Ax = b, where

each iteration requires a multiplication by A. The preconditioned Chebyshev method
solves instead the system P−1Ax = P−1b for some invertible P called a precondi-
tioner, and takes O(

√
κ(P−1A) log(1/ε)) iterations with each iteration now requiring

multiplication by both P−1 and A.

Suppose we are interested in solving LGx = b for LG the Laplacian of an undi-
rected graph G = (V,E) with m edges. We will show that this can be done in time
O(m3/2 logc n) by taking the preconditioner P = LT to be the Laplacian of a suitably
chosen tree.

• The Moore-Penrose pseudoinverse of a matrix A =
∑

i λiuiu
T
i with eigenvalues

λi and eigenvectors ui is defined to be

A+ =
∑
i:λi 6=0

1

λi
uiu

T
i .

Show that for a square symmetric matrix A the pseudoinverse satisfies

AA+ = A+A =
∑
λi 6=0

uiu
T
i ,

the projection onto the range of A. In particular, A+ acts as an inverse if we
restrict attention to vectors in range(A), and as long as we are dealing with such
vectors we may take A to be invertible.

In particular for the special case of a Laplacian, L+ is the inverse on all vectors
orthogonal to the all 1’s vector.

• Let
A � B

denote
xTAx ≤ xTBx ∀x ∈ Rn.

Let e = (u, v) be an edge connecting two vertices u, v ∈ V , and let P be a path
connecting the same two vertices. Prove that

Le � length(P)LP ,

where Le and LP are the Laplacians of the edge and path respectively. (hint:
use induction and Cauchy-Schwarz.)
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• Suppose T ⊂ G is a spanning tree of G. Show that

LT � LG.

Now for any pair u, v define the stretch strT (u, v) to be the length of the unique
path between u and v in T . Use the previous inequality to show that

LG �

(∑
uv∈E

strT (u, v)

)
· LT .

(hint: use the outer product expansion to write LG as a sum of Laplacians of
edges.)

• Show that for any invertible A,B, the condition number satisfies:

κ(AB−1) = κ(BA−1) =

(
max
x 6=0

xTAx

xTBx

)
·
(

max
y 6=0

yTBy

yTAy

)
.

This quantity is sometimes called the relative condition number and measures
the maximum multiplicative distortion between the quadratic forms of A and B.

Conclude that A � B � κ · B implies that κ(AB−1) ≤ κ for any symmetric
invertible matrices A,B.

More generally, show that as long as A and B (not necessarily invertible) have the
same nullspace, the same conclusion holds for κ(AB+), where we only consider
vectors orthogonal to the nullspace.

• Conclude that for a spanning tree T ⊂ G,

κ(LGL
+
T ) ≤

(∑
uv∈E

strT (u, v)

)
,

where the condition number is the ratio of the largest to the smallest eigenvalue,
ignoring the 0 eigenvalue since all vectors are orthogonal to the 1’s vector.

• Show that for any tree T and any vector y orthogonal to the all 1s vector, the
inversion L+

T y can be computed in O(n) time.

• A result of Abraham, Bartal, and Neiman shows that every graph G contains a
tree T of total stretch at most O(m log n log logn), and moreover such a tree can
be found in O(m log2 n) time. Assuming this result, combine everything you have
shown so far to derive an O(m3/2 logc n) time algorithm for solving LGx = b.


