

Data Center Networks

Jennifer Rexford
COS 461: Computer Networks

Lectures: MW 10-10:50am in Architecture N101

http://www.cs.princeton.edu/courses/archive/spr12/cos461/

Cloud Computing

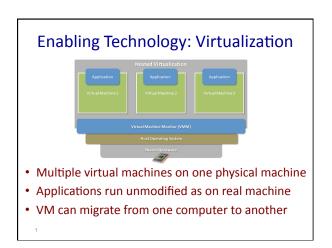
Cloud Computing

- · Elastic resources
 - Expand and contract resources
 - Pay-per-use
 - Infrastructure on demand

Multi-tenancy

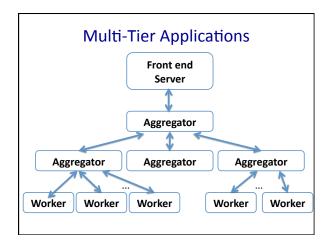
- Multiple independent users
- Security and resource isolation
- Amortize the cost of the (shared) infrastructure
- Flexible service management

Cloud Service Models

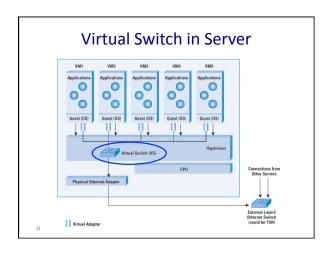

- Software as a Service
 - Provider licenses applications to users as a service
 - E.g., customer relationship management, e-mail, ..
 - Avoid costs of installation, maintenance, patches, ...
- Platform as a Service
 - Provider offers platform for building applications
 - E.g., Google's App-Engine
 - Avoid worrying about scalability of platform

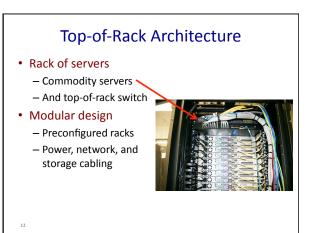
Cloud Service Models

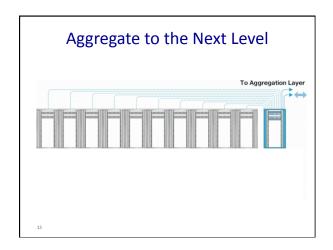
- Infrastructure as a Service
 - Provider offers raw computing, storage, and network
 - E.g., Amazon's Elastic Computing Cloud (EC2)
 - Avoid buying servers and estimating resource needs

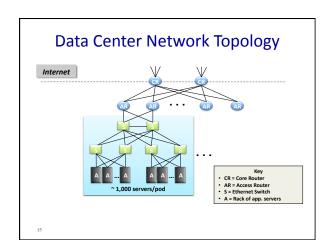

,

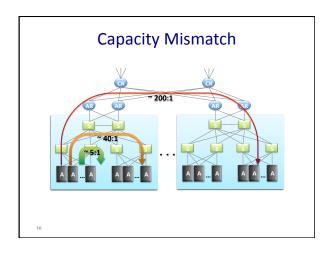
1

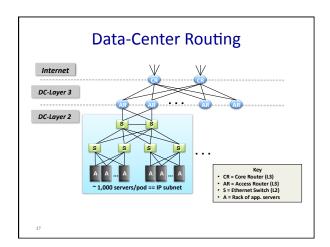


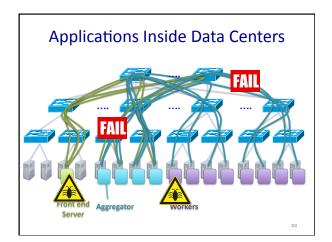

Multi-Tier Applications


- Applications consist of tasks
 - Many separate components
 - Running on different machines
- Commodity computers
 - Many general-purpose computers
 - Not one big mainframe
 - Easier scaling









Reminder: Layer 2 vs. Layer 3 • Ethernet switching (layer 2) - Cheaper switch equipment - Fixed addresses and auto-configuration - Seamless mobility, migration, and failover • IP routing (layer 3) - Scalability through hierarchical addressing - Efficiency through shortest-path routing - Multipath routing through equal-cost multipath • So, like in enterprises... - Connect layer-2 islands by IP routers

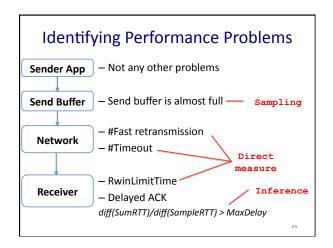
Case Study: Performance Diagnosis in Data Centers

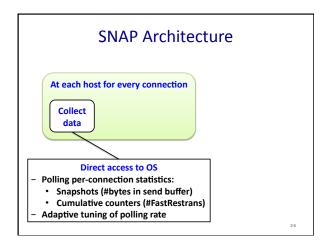
http://www.eecs.berkeley.edu/ ~minlanyu/writeup/nsdi11.pdf

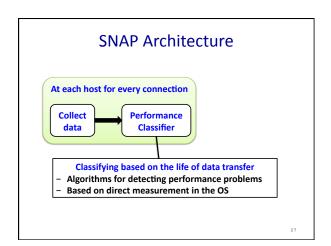
19

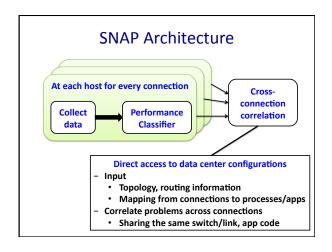
Challenges of Datacenter Diagnosis

- Multi-tier applications
 - Hundreds of application components
 - Tens of thousands of servers
- · Evolving applications
 - Add new features, fix bugs
 - Change components while app is still in operation
- Human factors
 - Developers may not understand network well
 - Nagle's algorithm, delayed ACK, etc.

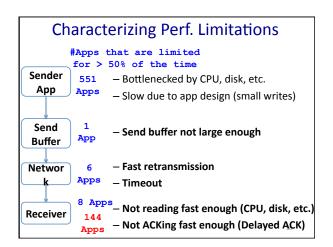

21

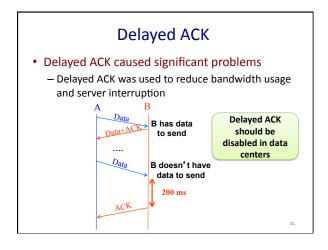

Diagnosing in Today's Data Center **App logs:** #Reqs/sec Packet trace: Host Filter out trace for Response time long delay req. 1% req. >200ms App delay Packet os sniffer **Switch logs: Diagnose net-app interactions** #bytes/pkts per minute


App logs: Application-specific App Os Packet trace: Too expensive App Packet sniffer SNAP: Switch logs: Too coarse-grained Runs everywhere, all the time


TCP Statistics Instantaneous snapshots - #Bytes in the send buffer - Congestion window size, receiver window size - Snapshots based on random sampling Cumulative counters - #FastRetrans, #Timeout - RTT estimation: #SampleRTT, #SumRTT - RwinLimitTime - Calculate difference between two polls

Δ



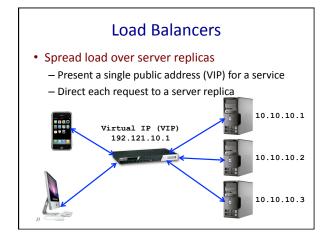


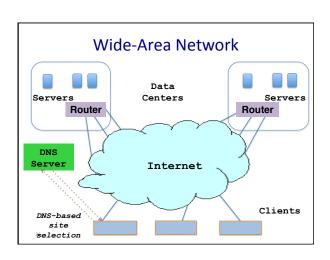
SNAP Deployment Production data center 8K machines, 700 applications Ran SNAP for a week, collected petabytes of data Identified 15 major performance problems Operators: Characterize key problems in data center Developers: Quickly pinpoint problems in app software, network stack, and their interactions

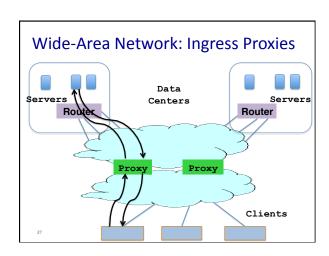
Diagnosing Delayed ACK with SNAP

- Monitor at the right place
 - Scalable, low overhead data collection at all hosts
- Algorithms to identify performance problems
 - Identify delayed ACK with OS information
- · Correlate problems across connections
 - Identify the apps with significant delayed ACK issues
- Fix the problem with operators and developers
 - Disable delayed ACK in data centers

32


Conclusion


- Cloud computing
 - Major trend in IT industry
 - Today's equivalent of factories
- · Data center networking
 - Regular topologies interconnecting VMs
 - Mix of Ethernet and IP networking
- Modular, multi-tier applications
 - New ways of building applications
 - New performance challenges


33

Load Balancing

34

