Crawling the Web

Web Crawling
+*Retrieve (for indexing, storage, ...) Web

pages by using the links found on a
page to locate more pages.

Must have some starting point

Type of crawl

* Web crawl versus
crawl of more limited network — web
— cs.princeton.edu
— internal co. network
» complete crawl versus
focused crawl by some criteria
— pages on one topic

» Type of crawl will affect necessity/usability of
various techniques

Main Issues |

« starting set of pages?
—a.k.a “seed” URLs
« can visit whole of Web (or web)?

* how determine order to visit links?
— graph model:
breadth first vs depth first
< what are pros and cons of each?
« “black holes”
— other aspects /considerations
» how deep want to go?
« associate priority with links

« Breadth-first:

» Depth-first:

“Black holes” and other “baddies”

» “Black hole”: Infinite chain of pages
— dynamically generated
— not always malicious

« link to “next month”, which uses perpetual calendar
generator

» Other bad pages
— other behavior damaging to crawler?
* servers
— spam content
« use URLs from?

Robust crawlers must deal with black holes
and other damaging behavior 6

Main Issues Il

Web is dynamic
— time to crawl “once”
—how mix crawl and re-crawl
« priority of pages
Social behavior
— crawl only pages allowed by owner
« robot exclusion protocol: robots.txt
—not flood servers
» expect many pages to visit on one server

from slides for Intro to IR, Sec. 20.2.1

Basic crawl architecture

— AN
— DNS K 2 MN——1

Doc obotg URL

I FP’s filters set

WWW[—]
1 —1{Parsef— 1 —

Fetch Conten URL Dup

seen?| | filter | | URE

elim

]—‘ URL Frontier }-J
8

Technical issues

maintain one or more queues of URLs
to be visited: URL frontier
—order of URLs in queues?

* FIFO = breadth first

* LIFO = depth first

* priority queues

resolve hostname in URLs to get actual
IP addresses — Domain Name Service
servers (DNS lookup)
— bottleneck:

« servers distributed

« can have high lookup latency

Technical issues continues

» To do large crawls must have multiple
crawlers with multiple network connections
(sockets) open and probably multiple queues

* large crawls generate large amount data
—need fast access => main memory

— cache: hold items most likely to use in main
memory instead of

« on disk
* request from server

DNS lookup

cache DNS map

— large, local, in memory

— hold most recently used mappings

don’t want temporal locality of reference

— be nice to servers (or else)

prefetch DNS resolution for URLs on page
when it parsed?

— batch requests

— put in cache

— use when URL gets to head of queue

— resolution stale?

How “large” cache?

— Problems? "

(Near?) Duplicate pages

Has page been indexed already?
+ mirror sites — different URLs, same page
— bad: duplicate page in search results
— worse?: add links from duplicate pages to queues
* also mirrors?
— mirrored pages may have slight differences
« e.g. indicate which mirror they on

» other sources duplicates & near duplicates
— eg .../spr12/cos435/ps1.html
...Ispr11/cos435/ps1.html

(Near?) Duplicate page removal

« table of fingerprints or sketches of pages
— fit in main memory?

— if not, costs disk access per page crawler retrieves

» cache?
— less likely to hit sketch in cache than, say, URL?

Duplicate URL removal

IS URL in URL frontier?
Has URL already been visited? if not recrawling
= Has URL ever been in URL frontier?

* Use:
— canonical, fully specified URLs
— canonical hostname provided by DNS
* Visited? hash table
— hash canonical URL to entry
* Visited? table may be too large for MM

When apply duplicate removal?

+ while crawling versus for search results
— crawling larger problem

— search results demand faster results
duplicates versus near duplicates

— same policy?

Caching Visited? table
* not temporal but “popularity” locality:
— most popular URLs
— most popular sites
some temporal locality within
to exploit site-level locality need hash that

brings pages on same site together:
— two-level hash:

hash hostname and port
hash path
* can use B+ tree, sorted on i then ii
— if no entry for URL in tree, not visited

Re-crawling

* When re-crawl what pages?
— finish crawl and start over
« finish = have enough?

— re-crawl high priority pages in middle of
crawl

— how determine priority?
* How integrate re-crawl of high priority
pages?

— One choice — separate cycle for crawl of
high priority pages

from slides for Intro to IR, Sec. 20.2.3

Another choice: Mercator scheme
UTLS

Prioritizer ‘
P
l K front queues
W
Biased front queue selector

Back queue router
I T

B back queues
Single host on each

)
XXX XR XX RR2

‘ Back queue selector‘

Crawl thread #equesting URL 1

Mercator prioritizing

» Assigning priority
— properties of page from previous visits

* e.g. how often page change
— class of pages

* news, blogs, ... high priority for recrawl
— focused crawling
Front queue for each priority: FIFO
“Biased front queue selector”
implements policy by choosing which
queue next

Mercator politeness enforcement:
Back queues

« at any point each queue contains only URLs
from one host

 additional information
— table mapping host to queue

— heap containing entry for each queue/host: earliest
time can next request from host

+ heap min gives next queue to use for URL to
fetch
— wait until earliest allowed time to fetch

20

Maintaining back queues

* When a back queue emptied, remove
URLs from front queues - putting in
appropriate back queues until remove
URL from new host

* put URL from new host in empty back
queue
— update host- back queue table
— determine “earliest request time”
—insert in heap

21

Crawling large number pages

« indexing is not” dynamic and continuous

* Google in fall 2010 announced now has dynamic
index

— Index all pages collected at certain time (end
of crawl?)
— Provide search half of engine with new index
» crawling is continuous
— some choices:
« reinsert seed URLs in queue when fetch
« also reinsert high-priority URLs when fetch
« reinsert all URLs with varying priority when fetch
22

Focused Web Crawling

23

Question

How change crawling strategy if only want
pages that
—on a particular topic
— match particular query
— satisfy a particular predicate

—example: crawling for 3D models

24

Issues

* Are issues:

— Depth v.s. Breadth
* desired pages may be “deep” in Web
—100% coverage of relevant pages

* Are not issues:
—recrawl (?)
—100% coverage of web

25

How Prune Search?

One method (Chakrabarti et. al.):
* have desired topic + classifier

+ each time acquire page, use classifier to
ask if it on topic

* harvest links of page only if on topic

26

Alternative:
Intelligent Crawling on the World Wide Web
with Arbitrary Predicates

Do not assume, build statistical evidence:

— parent interesting => page interesting

— siblings interesting => page interesting

crawler learns importance of different features
of pages as indicators of relevance of other
pages yet to visit

learns how prioritize pages for visiting

Start as random crawler and adjust as learn

27

Calculating priority of pages
in queue for visiting

» Features considered
— content of parent web pages
— % of parents satisfying predicate
— % of siblings satisfying predicate
— “tokens” in URL of page
* e.g. “edu”, “princeton”
» Use a numerical interest ratio to
prioritize

28

Missing features?

» Keep in mind analysis before page is
visited, i.e. read and processed

Anchor text
* Others?

29

Summary

« focused crawling for specialized
applications

» have been many proposed methods
* need

— more analysis per page

— less throughput

30

