Searching non-text information objects

Non-text digital objects
- Music
- Speech
- Images
- 3D models
- Video
- ?

Ways to query for something
1. Query by category/theme
 - easiest - work done ahead of time
2. Query by describing content
 - text-based query
 - text-based retrieval?
3. Query by example
 - “similar to”
 - imprecise example - sketch
 - query text docs and non-text objects with 2
 - don’t often do doc search by 3
 - big move to do music, images by 3

Query by describing content
- text-based queries
- where get text-based content?
 - author labels
 - metadata
 - URLs
 - text near imbedded objects
 - html pages
 - group tagging
 - folksonomy
 - Flickr

Query by example
- How represent objects?
 - features of a class of objects (e.g. image)
 - how compare features?
 - what data structures?
 - what computational methods?
- Issues
 - large number of objects
 - accuracy of representation
 - large size of representation
 - complexity of computations

Features
- typically vector of numbers characterizing object representation
- “similar to” = close in vector space
 - threshold
 - Euclidean distance?
 - other choices for distance metric
Example: content-based image search

First example method: color histogram

- k colors
- histogram: % pixels each color
- k×k matrix A of color similarity weights
- histogram defines feature vectors
- \(\text{dist}_{\text{histo}}(x, y) = (x-y)^tA(x-y)\)
 \[= \sum_{i=1}^{k} \sum_{j=1}^{k} a_{ij}(x_i - y_i)(x_j - y_j)\]
- cross-talk: quadratic terms needed
 - not Euclidean distance

Second example method: a region-based representation

- region-based features of images
- query processed in same way as collection
- space-conscious: use bit vectors
- levels of representation:
 - store bit vector for each region
 - store bit vector for each image
- get close candidates: compare image bit vectors
- compare top k candidates using region bit vectors

Processing images of collection & query

- segment into homogeneous regions
 - 14 dimensional feature vectors
- threshold and transform
 - high-dimensional bit vectors - store
 - XOR for distance between regions
- build image feature vector
 - n region bit-vectors + weights \(\rightarrow\) 1 m-dimensional real-valued image feature vector
 - \(L_1\) distance between feature vectors
- transform image vector
 - one high-dimensional bit vector for image - store

color histograms: reducing complexity

- compute RED\(_{\text{avg}}\), GREEN\(_{\text{avg}}\), BLUE\(_{\text{avg}}\):
 - over all pixels
- use to construct 3D-vector
- use Euclidean distance
- get close candidates
- examine close candidates with full histogram metric

color histograms: observations

- works for certain types of images
 - sunset canonical example
- color histogram global property

- this only small part of work:
 QBIC system, IBM, 1995
Components region feature vector

- color moments - 9 dim
 - role similar to histogram
- bounding box region - 5 dim
 - ln(aspect ratio)
 - ln (bounding box size)
 - density = # pixels / bounding box size
 - centroid x
 - centroid y

weight regions proportional to sq. root of area

Observations: region based

- Example of one regional method
 - lots of research, lots of places!
- This method uses sampling heavily
 - produce bit vectors
- Part of larger project - multiple media
 - CASS, Princeton, 2004

Third example method: Combining simple ideas

- Goals
 - reduce search space
 - reduce disk I/O cost
- Simple ideas
 - K-means clustering of image database
 - B+ trees
 - heuristic search limits
- New ideas
 - search beyond cluster containing query image
 - limit search within each cluster

Image representation

- Input: non-texture RGB images
- Process
 - resize to uniform 128x128 pixels
 - transform to different color space
 - relate to human perception
 - Apply Daubechies wavelet tranformation
 - use several applications
 - obtain 964 dimensional feature vector

Data space representation

- Cluster data space using K-means
 - search for "most cost effective" K
 - cluster validity indexes
 - majority vote
- Find cluster centroids
- For each cluster build a B+ tree
 - B+ tree represent each image in cluster
 - search key for ith image in cluster is distance of feature vector of ith image to cluster center
Search space for query

- don’t search things know probably too far
- don’t limit search to just cluster containing query

- Chose similarity threshold c for data set
- search images in outer shell of cluster
 - range $d-c$ to $d+c$ for d=distance query to its centroid

- Same principle whether q in boundry of a cluster or not
 - but use different c : c_{same}, c_{diff}

Choosing c_{same}, c_{diff}

- Initially
 $c_{same} = \text{avg. of distances all images to their centers}$
 $c_{diff} = 0$
- iteratively search for values give best gain
 - factors in gain
 - improved average distance found
 - reduced size of search space
 - compared to K-means
 - with linear search bounding
 - shortest distance
 - largest search space

Results

- find best 5 matches to a query image
- most interesting result: resources used versus value find
- sample numbers (1000 images):
 - average distance
 - K-means & B+ tree 51.887
 - K-means 52.212
 - linear search 50.881
 - size search space
 - K-means & B+ tree 147
 - K-means 92.39
 - linear search 900

Other Results

- visually:
 - not beating other methods for image quality
- calculate precision of top 5 returns
 - 10 pre-existing image categories
 - crude
 - sample numbers:
 - them 0.568, linear search 0.576

Observations

- dynamic capability of B+ trees
- color based
- no region analysis of images
- image representation and data space representation independent

“Integrating wavelets with clustering and indexing for effective content-based image retrieval” 2012

Fourth example method: Image ranking

- given similarity measures
- use PageRank style
- define
 \[\mathbf{v} = \alpha(1/n) + (1-\alpha)\mathbf{Sv} \]
- where
 - n is the number of images to be ranked
 - \mathbf{S} is a matrix of image-image similarities
 - column normalized, symmetric
 - \mathbf{v} is the vector of VisualRanks
 - α is the usual parameter
Observations: Image rank

- intention to use on images returned by other means
 - e.g. text based
- graph undirected
- tested on Google image search
 - VisualRank, Google, 2008
- Deployed?

Table 1: Relevancy Study

<table>
<thead>
<tr>
<th>“Irrelevant” images per product query</th>
<th>VisualRank</th>
<th>Google</th>
</tr>
</thead>
<tbody>
<tr>
<td>Among top 10 results</td>
<td>0.47</td>
<td>2.82</td>
</tr>
<tr>
<td>Among top 5 results</td>
<td>0.30</td>
<td>1.31</td>
</tr>
<tr>
<td>Among top 3 results</td>
<td>0.20</td>
<td>0.81</td>
</tr>
</tbody>
</table>

Image search: Summary of techniques

- Techniques seen
 - aggregate/average features
 - sample
 - course screening followed by more accurate
- **Goals**
 - reduce dimension
 - reduce complexity of distance metric
 - reduce space
Image search:
Commercial search engines

• Use everything you can afford to use
• Text still king!?