Distributed computing:
index building and use

Goals

* Do one computation faster

* Do more computations in given
time

* Tolerate failure of 1+ machines

Distributing computations

Ideas?
=> Finding results for a query?
* Building index?

* Goals
— Keep all machines busy

— Be able to replace badly-behaved machines
seamlessly!

Distributed Query Evaluation

 Assign different queries to different machines
» Break up lexicon: assign different index terms
to different machines?
— good/bad consequences?
» Break up postings lists: Assign different
documents to different machines?
— good/bad consequences?
* Goals
— Keep all machines busy

— Be able to replace badly-behaved machines
seamlessly!

Google query evaluation
circa 2002

+ Parallelize computation
— distribute documents randomly to pieces of
index
* Pool of machines for each - choose one
* Why random?

* Load balancing and reliability
— Scheduler machines

+ assign tasks to pools of machines
» monitor performance

Google Query Evaluation: Details
circa 2002

» Enter query -> DNS-based directed to one of
geographically distributed clusters
— Load balance & fault tolerance
— Round-trip time

» w/in cluster, query directed to 1 Google Web
Server (GWS)
— Load balance & fault tolerance

» GWS distributes query to pools of machines
— Load sharing

* Query directed to 1 machine w/in each pool
— Load balance & fault tolerance

Issues for distributed documents

How many take from each pool to get m results?

Throughput limits?

— each machine does full query evaluation

— disk access limiting constraint?

— distributing index by term instead may help

Distributing computations

Ideas?

v Finding results for a query?
= Building index?

Distributed Index Building

* Can easily assign different documents
to different machines

« Efficient?

* Goals
— Keep all machines busy

— Be able to replace badly-behaved
machines seamlessly!

Google Index Building
circa 2003

* MapReduce
— programming model
— implementation for large clusters
“for processing and generating large data sets”

« Example applications
*inverted index
¢ graph structure of Web docs.
« statistics on queries in given time period

MapReduce Programming Model

input set: {(input key, value;)| 0 =i = input size}
output set: {(output key,, value;)| 0 = i = output size}
Map: (input key, value) —

{(intermediate key;, value))| 0 = j < Map result size}
— written by user
system groups all Map output pairs for input set
by intermediate key (shuffle phase)

« gathers by intermediate key value
— supply to Reduce by iterator
Reduce: (intermediate key, list of values) —

(output key’, {result values})

— written by user to process intermediate values
* output key often constrained to be intermediate key '

MapReduce for
building inverted index

Input pair: (doclD, contents of doc)
Map: produce {(term, doclD)} for each
term appearing in docID

Input to Reduce: list of all (term, docID)
pairs for one term

Output of Reduce: (term, sorted list of
doclDs containing that term)

— postings list!

[Keys]

Diagram of
computation distribution

See Figure 1in

MapReduce:

Simplified Data Processing on Large Clusters
J. Dean and S. Ghemawat,

Comm. of the ACM,vol. 51, no. 1 (2008), pp. 107-113.

MapReduce parallelism

* Map phase and shuffle phase may overlap
» Shuffle phase and reduce phase may overlap

* Map phase must finish before reduce phase
starts

— reduce depends on all values associated with a
given key

Hadoop

“The Apache Hadoop project
develops open-source software for
reliable, scalable, distributed
computing. «

Includes MapReduce

http://hadoop.apache.org/index.html

Remarks

Google built on large collections of inexpensive
“‘commodity PCs”

— always some not functioning

Solve fault-tolerance problem in software

— redundancy & flexibility NOT special-purpose hardware
» Keep machines relative generalists

— machine becomes free =

assign to any one of set of tasks

June 2010 New Google index building:
Caffeine

daily crawl “several billion” documents
+ Before:
— Rebuild index: new + existing
— series of 100 MapReduces to build index
— “each doc. spent 2-3 days being indexed”
* After:
— Each document fed through Percolator:
incremental update of index
— Document indexed 100 times faster (median)

— Avg. age doc. in search result decr. “nearly 50%” ,

Percolator

Built on top of Bigtable distributed storage

— “tens of petabytes” in indexing system

» Provides random access

— Requires extra resources over MapReduce
Provides transaction semantics

— Repository transformation highly concurrent

— Requires consistency guarantees for data

* “Observers” do tasks; write to table

Writing to table creates work for other observers
» “around 50” Bigtable op.s to process 1 doc.

Bigtable Overview

* Multidimensional sorted map
— Sparse
— Distributed
+ Table partitioned into tablets
— contiguous key space
— tablet servers
cells indexed by row key, column key, timestamp
— Sorted by row key
» Data in cell “uninterpreted strings”
— User provide interpretation
— Supports semi-structured data
Atomic read-modify-write by row b

Percolator builds on Bigtable

» Percolator metadata stored alongside data in

special columns of Bigtable

» Percolator adds fuctionality:

— Multi-row transactions
— “observer” framework

20

Percolator transactions

maintains locks
multiple versions each data item
—timestamps

—stable “snapshots” for reads
* compare database system

— Percolator not require “extremely low
latency”

« affects approach

21

Percolator observers

users write observer code
run distributed across collection of machines
observer “registers” function and set of
columns with Percolator
Percolator invokes function after data written
in one of columns (any row)
— Percolator must find “dirty” cells

« search distributed across machines
— avoid >1 observer for a single column
compare database “triggers”

22

Caffeine versus MapReduce

« Caffeine uses “roughly twice as many
resources” to process same crawl rate

* New document collection “currently 3x
larger than previous systems”
— Only limit available disk space

* Document indexed 100 times faster
(median)

23

