Finding near-duplicate documents

Duplicate versus near duplicate documents

• Duplicate = identical?
• Near duplicate:
 small structural differences
 • not just content similarity
• define “small”
 – date change?
 – small edits?
 – metadata change?
 – other?

Applications

• creating collection
 – indexing
• Crawling network
• Returning query results
 – cluster near duplicates; return 1
• Plagiarism

Framework

• Algorithm to assign quantitative degree of similarity between documents

• Issues
 – What is basic token for documents?
 • character
 • word/term
 – What is threshold for “near duplicate”?
 – What are computational costs?

Classic document comparison

• Edit distance
 – count deletions, additions, substitutions to convert Doc₁ into Doc₂
 – can each action can have different cost
 – applications
 • UNIX “diff”
 • similarity of genetic sequences
• Edit distance algorithm
 – dynamic programming
 – time O(m*n) for strings length m and n

Edit distance for collections

• token = word
 – compare other applications
• Cost is $O(\sum_{i,j} |Doc_i||Doc_j|)$
• Right sense of similarity?
Addressing computation cost

A general paradigm to find duplicates in N docs:
1. Define function \(f \) capturing contents of each document in one number
 - “Hash function”, “signature”, “fingerprint”
2. Create \(\langle f(doc_i), ID of doc_i \rangle \) pairs
3. Sort the pairs
4. Recognize duplicate or near-duplicate documents as having the same \(f \) value or \(f \) values within a small threshold

Compare: computing a similarity score on pairs of documents

Optimistic cost

A general paradigm to find duplicates in N docs:
1. Define function \(f \) capturing contents of each document in one number
 - “Hash function”, “signature”, “fingerprint”
2. Create \(\langle f(doc_i), ID of doc_i \rangle \) pairs \(O(|doc|) \)
3. Sort the pairs \(O(N \log N) \)
4. Recognize duplicate or near-duplicate documents as having the same \(f \) value or \(f \) values within a small threshold \(O(N) \)

Compare: computing a similarity score on pairs of documents

General paradigm: details

1. Define function \(f \) capturing contents of each document in one number
 - “Hash function”, “signature”, “sketch”, “fingerprint”
2. Create \(\langle f(doc_i), ID of doc_i \rangle \) pairs
3. Sort the pairs
4. Recognize duplicate or near-duplicate documents as having the same \(f \) value or \(f \) values within a small threshold
 - recognize exact duplicates:
 - threshold = 0
 - examine documents to verify duplicates
 - recognize near-duplicates
 Problem with “small threshold”?

General paradigm: details

4. Recognize duplicate or near-duplicate documents as having the same \(f \) value or \(f \) values within a small threshold
 - recognize exact duplicates:
 - threshold = 0
 - examine documents to verify duplicates
 - recognize near-duplicates
 Problem with “small threshold”?

How deal with \(<1, D_1>, <1.01, D_2>, <1.02, D_3>, \ldots, <1.99, D_{100}>\) and threshold .01 (using \(\leq \) threshold)?

“Syntactic clustering”

We will look at this one example:

- “syntactic similarity” versus semantic
- Finding near duplicates
- Doc = sequence of words
- Word = Token
- Uses sampling
- Similarity based on shingles
- Does compare documents

Shingles

- A \(w \)-shingle is a contiguous subsequence of \(w \) words
- The \(w \)-shingling of doc \(D \), \(S(D, w) \) is the set of unique \(w \)-shingles of \(D \)
Similarity of docs with shingles

- For fixed w, resemblance of docs A and B:
 \[r(A, B) = \frac{|S(A) \cap S(B)|}{|S(A) \cup S(B)|} \]
 Jaccard coefficient

- For fixed w, containment of doc A in doc B:
 \[C(A, B) = \frac{|S(A) \cap S(B)|}{|S(A)|} \]

- For fixed w, resemblance distance between docs A and B:
 \[D(A, B) = 1 - r(A, B) \]
 Is a metric (triangle inequality)

Note we are now comparing documents!

Example

A: “a rose is red a rose is white”
4-shingles:
“a rose is red”
“rose is red a”
“is red a rose”
“red a rose is”
“A rose is white”

B: “a rose is white a rose is red”
4-shingles:
“a rose is white”
“rose is white a”
“is white a rose”
“white a rose is”
“A rose is red”

\[r(A, B) = 0.25 \]

Sample of shingles

Want to estimate r and/or c
Do this by calculating approximation on a sample of shingles for fixed w

- 1-to-1 map each shingle to integer in fixed, large range R
 - 64-bit hash, $R=\{0, 2^{64}-1\}$
- Let Π be a random permutation from R to R
- For any $S(D)$ define:
 - $H(D) =$ Set of integer hash values corresponding to shingles in $S(D)$
 - $\Pi(D) =$ Set of permuted values in $H(D)$
 - $x(\Pi, D) =$ smallest integer in $\Pi(D)$

Sketch of shingles

- Let Π_1, \ldots, Π_m be m random permutations $R \to R$
 - text: $m=20$
- The sketch of doc D for Π_1, \ldots, Π_m is
 \[\psi(D) = \{x(\Pi_i, D) \mid 1 \leq i \leq m\} \]
 doc \to set shingles \to set integers
 \to m sets permuted integers
 \to m smallest integers: one per permutation
Sketch is a sampling

Approximation of resemblance

Theorem:
For random permutation Π:
\[r(A, B) = P (x(\Pi, A) = x(\Pi, B)) \]

Estimate $P (x(\Pi, A) = x(\Pi, B))$ as
\[\frac{|\psi(A) \cap \psi(B)|}{m} \]
recall m is # permutations

Algorithm used (text’s version)

1. Calculate sketch $\psi(D_i)$ for every doc D_i
2. Calculate $|\psi(D_i) \cap \psi(D_j)| = c_{ij}$ for each non-empty intersection:
 i. Produce list of $<\text{shingle value}, \text{docID}>$ pairs for all shingle values $x(\Pi_i, D_i)$ in the sketch for each doc.
 ii. Sort the list by shingle value
 iii. Produce all triples $<D(D_i), ID(D_i), c_{ij}>$ for which $c_{ij} > 0$
 This not linear-time for the list of docs for one shingle value
3. Build clusters of similar/almost identical docs
Degree of similarity depends on threshold …
Clustering

1. Define docs to be similar if approximate resemblance greater than a predetermined threshold \(t \):
 \[
 c_t / m > t
 \]
2. Build graph of docs:
 - edge between each pair of similar docs
3. The clusters of similar docs are the connected components in the graph
 - single link cluster similarity

Equivalently:
- UNION-FIND (text book)
- minimum spanning tree with edge removal
 - more info, more work?

Revisit the original paradigm

A general paradigm to find duplicates in N docs:

1. Define function \(f \) capturing contents of each document in one number \(O(|doc|) \)
 - “Hash function”, “signature”, “fingerprint”
2. Create \(f(doc) \), ID of doc pairs \(O(\sum_{i=1}^{N}(|doc|)) \)
3. Sort the pairs \(O(N \log N) \)
4. Recognize duplicate or near-duplicate documents as having the same \(f \) value or \(f \) values within a small threshold \(O(N) \)

Compare: computing a similarity score on pairs of documents

Paradigm?

- Does compare docs, so not same as paradigm we started with, but uses ideas
- Contents of doc captured by sketch – a set of shingle values
- Similarity of docs scored by count of common shingle values for docs
- Don’t look at all doc pairs, look at all doc pairs that share a shingle value
- Uses clustering by similarity threshold

Algorithm cost

1. Calculate sketch \(\psi(D) \) for every \(D \) \(O(\sum m|D|) \)
2. Calculate \(|\psi(D_i) \cap \psi(D_j)| = c_{ij} \) for each non-empty intersection:
 i. Produce list of \(<\text{shingle value}, \text{docID}> \) pairs for all shingle values \(x(\psi(D_i)) \) in the sketch for each doc.
 ii. Sort the list by shingle value \(O(mN \log (mN)) \)
 iii. Produce all triples \(<\text{ID(D_i)}, \text{ID(D_j)}, c_{ij}> \) for which \(c_{ij} > 0 \)
 This not linear-time for the list of docs for one shingle value \(O(mN^2) \)
3. Build clusters of similar/almost identical docs
 Degree of similarity depends on threshold …

More efficient: supershingles

“meta-sketch”

1. Sort shingle values of a sketch
2. Compute the shingling of the sequence of shingle values
 - Each original shingle value now a token
 - Gives “supershingles”
3. “meta-sketch” = set of supershingles
 One supershingle in common \(\Rightarrow \)
 sequences of shingles in common
 Documents with \(\geq 1 \) supershingle in common \(\Rightarrow \) similar

 - Each supershingle for a doc. characterizes the doc
 - Sort \(<\text{supershingle}, \text{docID}> \) pairs: docs sharing a supershingle are similar \(\Rightarrow \) our first paradigm

Pros and Cons of Supershingles

+ Faster
 - Problems with small documents – not enough shingles
 - Can’t do containment
 Shingles of superset that are not in subset break up sequence of shingle values
Variations of shingling

- Can define different ways to do sampling
- Studies in original paper used modular arithmetic
 - sketch formed by taking shingle hash values mod some selected m

Original experiments (1996) by Broder et. al.

- 30 million HTML and text docs (150GB) from Web crawl
- 10-word shingles
- 600 million shingles (3GB)
- 40-bit shingle “fingerprints”
- Sketch using 4% shingles (variation of alg. we’ve seen)
- Used count of shingles for similarity
- Using threshold $t = 50\%$, found
 - 3.6 million clusters of 12.3 million docs
 - 2.1 million clusters of identical docs – 5.3 million docs
 - remaining 1.5 million clusters mixture:
 exact duplicates and similar