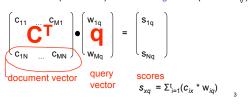
Latent Semantic Indexing

Introduction • Vector model => use of theory of linear algebra • Look at matrix formulation M - number of terms in lexicon N - number of documents in collection C the M×N (term×doc.) matrix of weights ≥ 0 (our old w_{ij}) $\begin{bmatrix} c_{11} & ... & c_{M1} \\ c_{1N} & ... & c_{MN} \end{bmatrix}$ $\begin{bmatrix} w_{1q} \\ w_{Mq} \end{bmatrix} = \begin{bmatrix} s_{1q} \\ s_{Nq} \end{bmatrix}$ document vector query scores

 $s_{xq} = \sum_{i=1}^{t} (c_{ix} * w_{iq})$

Introduction

- Vector model => use of theory of linear algebra
- · Look at matrix formulation
 - M number of terms in lexicon
 - N number of documents in collection
 - C the M×N (term×doc.) matrix of weights \geq 0 (our old w_{ij})



Goals

- # terms M large large dimension
 ⇒reduce dimension
- find some semantic relationship
 - correlate terms to find structure
 - synonomy
 - polysomy

"people choose same main terms <20% time"

.

Set-up

- C the M×N (term×doc.) matrix of non-negative weights
 - of rank r ($r \le min(M,N)$)
 - documents are columns of C

consider CCT and CTC:

- symmetric,
- share the same eigenvalues $\lambda_1, \lambda_2, \dots$
 - $-\lambda_1$, λ_2 , ... are indexed in decreasing order
- C^TC(i,j) measures similarity documents i and j
- CCT(i,j) measures strength co-occurrence terms i and j

Use Singular Value Decomposition (SVD)

Theorem:

M×N matrix C of rank r has a

singular value decomposition $C = U\Sigma V^T$

Where:

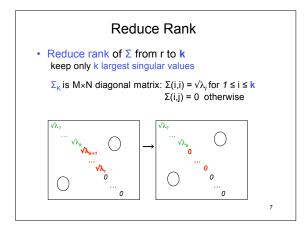
- U M×M matrix
 - with columns = orthogonal eigenvectors of CCT
- V N×N matrix

with columns = orthogonal eigenvectors of C^TC

- Σ M×N diagonal matrix:
 - $\Sigma(i,i) = \sqrt{\lambda_i}$ for $1 \le i \le r$
 - $\Sigma(i,j) = 0$ otherwise

√λ, called singular values

_



Reduced Rank Approximation of C

· Approximation:

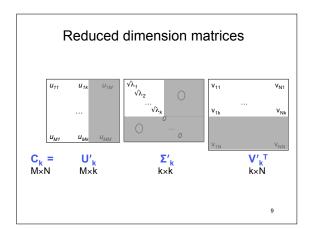
$$C_k = U\Sigma_k V^T$$
[M×N] [M×M] [M×N] [N×N]

Theorem:

 \boldsymbol{C}_{k} is the best rank-k approximation to \boldsymbol{C} under the least square fit (Frobenius) norm

$$=\sqrt{\sum_{i=1}^{M} \sum_{j=1}^{N} (C(i,j) - C_k(i,j))^2}$$

8



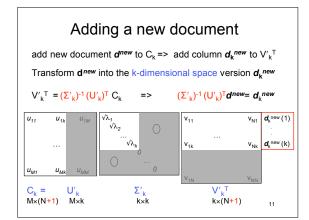
Using the Approximation

- View ${V'}_k{}^{\mathsf{T}}$ as a representation of documents in a k-dimensional space
 - a "concept space"?
- Transform query vector **q** into that space:

$$\begin{array}{c} \mathbf{C_k}^\mathsf{T} \ \mathbf{C_k} = (\mathbf{U'_k} \ \mathbf{\Sigma'_k} \mathbf{V'_k}^\mathsf{T})^\mathsf{T} (\mathbf{U'_k} \ \mathbf{\Sigma'_k} \mathbf{V'_k}^\mathsf{T}) = (\mathbf{V'_k} \ \mathbf{\Sigma'_k}^\mathsf{T} \ \mathbf{U'_k}^\mathsf{T}) \ (\mathbf{U'_k} \ \mathbf{\Sigma'_k} \mathbf{V'_k}^\mathsf{T}) \\ = \mathbf{V'_k} \ (\mathbf{\Sigma'_k})^2 \ (\mathbf{V'_k})^\mathsf{T} & \text{compares documents} \end{array}$$

- \Rightarrow $C_k^T q$ should $= V'_k (\Sigma'_k)^2 q_k$ compare doc. to query
- $=> \boldsymbol{q}_{k} = (\boldsymbol{\Sigma}_{k}^{'} 1)^{2} \boldsymbol{V}_{k}^{\mathsf{T}} \boldsymbol{C}_{k}^{\mathsf{T}} \boldsymbol{q} = (\boldsymbol{\Sigma}_{k}^{'} 1)^{2} \boldsymbol{V}_{k}^{\mathsf{T}} \boldsymbol{V}_{k}^{'} \boldsymbol{\Sigma}_{k}^{\mathsf{T}} \boldsymbol{U}_{k}^{\mathsf{T}} \boldsymbol{q}$ $= (\boldsymbol{\Sigma}_{k}^{'})^{-1} (\boldsymbol{U}_{k}^{'})^{\mathsf{T}} \boldsymbol{q}$

recalling $(V'_k^T)(V'_k) = (U'_k^T)(U'_k) = I$

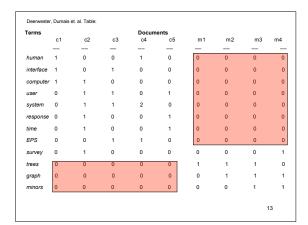


Original LSI paper:

Deerwester, Dumais, et. al. *Indexing by Latent Semantic Analysis*Journal of the Society for Information Science, 41(6), 1990, 391-407.

Example from that paper follows

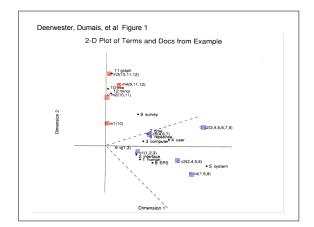
12



Deerwester, Dumais et. al. example, cont.:

Matrix V'_k^T for k=2

0.20 0.61 0.46 0.54 0.28 0.00 0.02 0.02 0.08
-0.06 0.17 -0.13 -0.23 0.11 0.19 0.44 0.62 0.53



Summary

- LSI uses SVD to get a reduced-rank and reduced-size approximation to C
- LSI can be viewed as a preprocessor for
 - query evaluation
 - clustering
- SVD computation can be costly
 - do once (or rarely)

16

Another application of SVD: collaborative filtering

Modeling Relationships at Multiple Scales to Improve Accuracy of Large Recommender Systems, Robert M. Bell, Yehuda Koren and Chris Volinsky, *KDD 07*

- •one of methods used for Netflix challenge
- •find factors to describe user and items
- •use to fill in vaues of unknown ratings of items by users

17