COS 426 Computer Graphics Princeton University

Tianqiang Liu (Tim) Feb 29, 2012

Thanks to Vladimir Kim for providing the slides!

Mesh Processing

Half Edge representation

- Data structure
- How to load a shape?
- How to find faces adjacent to a vertex?
- How to collapse an edge?
- How to flip an edge?

Half Edge

http://groups.csail.mit.edu/graphics/classes/
 6.838/S98/meetings/m4/IV.HalfEdge.html

- Mesh Represented by:
 - list of half edges (|HE|)
 - list of vertices (|V|)
 - list of faces (|F|)

• A half edge contains 4 pointers:

• A half edge contains 4 pointers:

adjacent face f (to the left)

A half edge contains 4 pointers:

- adjacent face f (to the left)
- source vertex v

- A half edge contains 4 pointers:
 - adjacent face f (to the left)
 - source vertex v
 - next half edge he_{next}

A half edge contains 4 pointers:

- adjacent face f (to the left)
- source vertex v
- next half edge he_{next}
- 'twin' half edge he_{twin}

- A half edge contains 4 pointers:
 - adjacent face f (to the left)
 - source vertex v
 - next half edge he_{next}
 - 'twin' half edge he_{twin}
- A vertex v has pointer to
 - an outgoing half edge

- A half edge contains 4 pointers:
 - adjacent face f (to the left)
 - source vertex v
 - next half edge he_{next}
 - 'twin' half edge he_{twin}
- A vertex has pointer to
 - an outgoing half edge
- A face has pointer to
 - a boundary half edge

Mesh Processing

- Half Edge representation
 - Data structure
 - How to load a shape?
 - How to find faces adjacent to a vertex?
 - How to collapse an edge?
 - How to flip an edge?

*.off: vertices + triangles

- *.off: vertices + triangles
- Add vertices to the list
 - only coordinates

- *.off: vertices + triangles
- Add vertices to the list
 - only coordinates
- Add half-edges with faces

- *.off: vertices + triangles
- Add vertices to the list
 - only coordinates
- Add half-edges with faces
 - sufficient to add inner half-edges

- *.off: vertices + triangles
- Add vertices to the list
 - only coordinates
- Add half-edges with faces
 - sufficient to add inner half-edges
 - if necessary: update vertex pointers to half edges

- *.off: vertices + triangles
- Add vertices to the list
 - only coordinates
- Add half-edges with faces
 - sufficient to add inner half-edges
 - if necessary: update vertex pointers to half edges
 - each half-edge: pointer to 'next', pointer to 'face'
 - face: pointer to one of the inner half-edges

- *.off: vertices + triangles
- Add vertices to the list
 - only coordinates
- Add half-edges with faces
 - sufficient to add inner half-edges
 - if necessary: update vertex pointers to half edges
 - each half-edge: pointer to 'next', pointer to 'face'
 - face: pointer to one of the inner half-edges

- *.off: vertices + triangles
- Add vertices to the list
 - only coordinates
- Add half-edges with faces
 - sufficient to add inner half-edges
 - if necessary: update vertex pointers to half edges
 - each half-edge: pointer to 'next', pointer to 'face'
 - face: pointer to one of the inner half-edges

- *.off: vertices + triangles
- Add vertices to the list
 - only coordinates
- Add half-edges with faces
 - sufficient to add inner half-edges
 - if necessary: update vertex pointers to half edges
 - each half-edge: pointer to 'next', pointer to 'face'
 - face: pointer to one of the inner half-edges

- *.off: vertices + triangles
- Add vertices to the list
 - only coordinates
- Add half-edges with faces
 - sufficient to add inner half-edges
 - if necessary: update vertex pointers to half edges
 - each half-edge: pointer to 'next', pointer to 'face'
 - face: pointer to one of the inner half-edges

- *.off: vertices + triangles
- Add vertices to the list
 - only coordinates
- Add half-edges with faces
 - sufficient to add inner half-edges
 - if necessary: update vertex pointers to half edges
 - each half-edge: pointer to 'next', pointer to 'face'
 - face: pointer to one of the inner half-edges
 - pointer to the 'twin' half edge

Mesh Processing

- Half Edge representation
 - Data structure
 - How to load a shape?
 - How to find faces adjacent to a vertex?
 - How to collapse an edge?
 - How to flip an edge?

Check all outgoing half edges

- Check all outgoing half edges
 - points to a half edge HE

- Check all outgoing half edges
 - points to a half edge HE
 - ADD_FACE(HE)

- Check all outgoing half edges
 - points to a half edge HE
 - ADD_FACE(HE)
 - Iterate:
 - X=HE_{twin}

- Check all outgoing half edges
 - points to a half edge HE
 - ADD_FACE(HE)
 - Iterate:
 - X=HE_{twin}
 - Y=X_{next}

- Check all outgoing half edges
 - points to a half edge HE
 - ADD_FACE(HE)
 - Iterate:
 - X=HE_{twin}
 - Y=X_{next}
 - ADD_FACE(Y)
 - HE:=Y

- Check all outgoing half edges
 - points to a half edge HE
 - ADD_FACE(HE)
 - Iterate:
 - X=HE_{twin}
 - Y=X_{next}
 - ADD_FACE(Y)
 - HE:=Y

- Check all outgoing half edges
 - points to a half edge HE
 - ADD_FACE(HE)
 - Iterate:
 - X=HE_{twin}
 - Y=X_{next}
 - ADD_FACE(Y)
 - HE:=Y

- Check all outgoing half edges
 - points to a half edge HE
 - ADD_FACE(HE)
 - Iterate:
 - X=HE_{twin}
 - Y=X_{next}
 - ADD_FACE(Y)
 - HE:=Y

Mesh Processing

Half Edge representation

- Data structure
- How to load a shape?
- How to find faces adjacent to a vertex?
- How to collapse an edge?
- How to flip an edge?

Collapse an Edge

Create new vertex v

- Create new vertex v
- Remove faces

- Create new vertex v
- Remove faces
- Change 'twin' pointers

- Create new vertex v
- Remove faces
- Change 'twin' pointers

- Create new vertex v
- Remove faces
- Change 'twin' pointers

- Create new vertex v
- Remove faces
- Change 'twin' pointers
- Remove edges

- Create new vertex v
- Remove faces
- Change 'twin' pointers
- Remove edges
- Change pointers to v₁, v₂
 - check outgoing edges

- Create new vertex v
- Remove faces
- Change 'twin' pointers
- Remove edges
- Change pointers to v₁, v₂
- Remove v_1 , v_2

- Create new vertex v
- Remove faces
- Change 'twin' pointers
- Remove edges
- Change pointers to v₁, v₂
- Remove v₁, v₂
- Pick an outgoing edge for v

Mesh Processing

Half Edge representation

- Data structure
- How to load a shape?
- How to find faces adjacent to a vertex?
- How to collapse an edge?
- How to flip an edge?

What do we need to update?

Half-edges on the edge

What do we need to update?

Half-edges on the edge

• vertex, next

- Half-edges on the edge
 - vertex, next
- Adjacent half-edges

- Half-edges on the edge
 - vertex, next
- Adjacent half-edges
 - next

- Half-edges on the edge
 - vertex, next
- Adjacent half-edges
 - next
- Faces

- Half-edges on the edge
 - vertex, next
- Adjacent half-edges
 - next
- Faces
- Vertices

- Half-edges on the edge
 - vertex, next
- Adjacent half-edges
 - next
- Faces
- Vertices
 - possibly 'outgoing edge'

- What do we need to update?
 - Half-edges on the edge
 - vertex, next
 - Adjacent half-edges
 - next
 - Faces
 - Vertices
 - possibly 'outgoing edge'
 - Problems? Can we always flip edges?

