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Rasterization 
• Scan conversion 

 Determine which pixels to fill 

• Shading 
 Determine a color for each filled pixel 

• Texture mapping 
 Describe shading variation within polygon interiors 

• Visible surface determination 
 Figure out which surface is front-most at every pixel 

 



Rasterization 
• Scan conversion (last time) 

 Determine which pixels to fill 

Shading 
 Determine a color for each filled pixel 

• Texture mapping 
 Describe shading variation within polygon interiors 

• Visible surface determination 
 Figure out which surface is front-most at every pixel 

 



Shading 
• How do we choose a color for each filled pixel?  

Emphasis on methods that can  
be implemented in hardware  
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Ray Casting 
• Simplest shading approach is to perform 

independent lighting calculation for every pixel 

( )∑ ⋅+⋅++=
i i

n
iSiiDALAE IRVKILNKIKII )()(



Polygon Shading 
• Can take advantage of spatial coherence 

 Illumination calculations for pixels covered by same 
primitive are related to each other 
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Polygon Shading Algorithms 
• Flat Shading 

• Gouraud Shading 

• Phong Shading 



Flat Shading 
• What if a faceted object is illuminated only by 

directional light sources and is either diffuse or 
viewed from infinitely far away 
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Flat Shading 
• One illumination calculation per polygon  

 Assign all pixels inside each polygon the same color 

N 



Flat Shading 
• Objects look like they are composed of polygons 

 OK for polyhedral objects 
 Not so good for smooth surfaces 



Polygon Shading Algorithms 
• Flat Shading 

• Gouraud Shading 

• Phong Shading 

 



Gouraud Shading 
• What if smooth surface is represented by   

polygonal mesh with a normal at each vertex? 

Watt Plate 7 
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Gouraud Shading 
• Method 1: One lighting calculation per vertex 

 Assign pixels inside polygon by interpolating 
colors computed at vertices 



Gouraud Shading 
• Bilinearly interpolate colors at vertices 

down and across scan lines 



Gouraud Shading 
• Smooth shading over adjacent polygons 

 Curved surfaces 
 Illumination highlights 
 Soft shadows 

Mesh with shared normals at vertices 
Watt Plate 7 



Gouraud Shading 
• Produces smoothly shaded polygonal mesh 

 Piecewise linear approximation  
 Need fine mesh to capture subtle lighting effects 

Gouraud Shading Flat Shading 



Polygon Shading Algorithms 
• Flat Shading 

• Gouraud Shading 

• Phong Shading  (≠ Phong reflectance model) 



Phong Shading 
• What if polygonal mesh is too coarse to capture 

illumination effects in polygon interiors? 
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Phong Shading 
• One lighting calculation per pixel 

 Approximate surface normals for points inside polygons 
by bilinear interpolation of normals from vertices 



Phong Shading 
• Bilinearly interpolate surface normals at vertices 

down and across scan lines 



Polygon Shading Algorithms 

Gouraud Phong 

Wireframe Flat 

Watt Plate 7 



Shading Issues 
• Problems with interpolated shading: 

 Polygonal silhouettes 
 Perspective distortion (due to screen-space interpolation) 
 Problems computing shared vertex normals 
 Problems at T-junctions 



Rasterization 
• Scan conversion 

 Determine which pixels to fill 

• Shading 
 Determine a color for each filled pixel 

Texture mapping 
 Describe shading variation within polygon interiors 

• Visible surface determination 
 Figure out which surface is front-most at every pixel 

 



Surface 
Image Texture 

Textures 
• Describe color variation in interior of 3D polygon 

 When scan converting a polygon, vary pixel colors 
according to values fetched from a texture image 

Angel Figure 9.3 



Surface Textures 
• Add visual detail to surfaces of 3D objects 

Polygonal model 

With surface texture 



Surface Textures 
• Add visual detail to surfaces of 3D objects 

[Daren Horley] 



Texture Mapping Overview 
• Texture mapping stages 

 Parameterization 
 Mapping 
 Filtering 

• Texture mapping applications 
 Modulation textures 
 Illumination mapping 
 Bump mapping 
 Environment mapping 
 Image-based rendering 
 Non-photorealistic rendering 

 



Texture Mapping 
• Steps: 

 Define texture 
 Specify mapping from texture to surface 
 Look up texture values during scan conversion 
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Texture Mapping 
• When scan converting, map from … 

 image coordinate system (x,y) to 
 modeling coordinate system (u,v) to 
 texture image (s,t) 
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Texture Mapping 

[Allison Klein] 

• Texture mapping is a 2D projective transformation 
 texture coordinate system: (s,t) to 
 image coordinate system (x,y) 

 



Texture Mapping 
• Scan conversion 

 Interpolate texture coordinates down/across scan lines 
 Distortion due to bilinear interpolation approximation 

» Cut polygons into smaller ones, or 
» Perspective divide at each pixel 



Texture Mapping 

Linear interpolation 
of texture coordinates 

Correct interpolation 
with perspective divide 

Hill Figure 8.42 



Texture Filtering 

Angel Figure 9.4 

• Must sample texture to determine color  
at each pixel in image 



Texture Filtering 
• Aliasing is a problem 

Point sampling Area filtering 



Texture Filtering 
• Ideally, use elliptically shaped convolution filters 

In practice, use rectangles or squares 



Texture Filtering 

Angel Figure 9.14 

• Size of filter depends on projective warp 
 Compute prefiltered images to avoid run-time cost 

» Mipmaps 
» Summed area tables 

Magnification Minification 



Mipmaps 
• Keep textures prefiltered at multiple resolutions 

 Usually powers of 2 
 For each pixel, linearly interpolate between  

two closest levels (i.e., trilinear filtering)  
 Fast, easy for hardware 



Summed-area tables 
• At each texel keep sum of all values down & right 

 To compute sum of all values within a rectangle, 
simply combine four entries: S1 – S2 – S3 + S4 

 Better ability to capture oblique projections, 
but still not perfect 

S1 

S3 S4 

S2 



Texture Mapping Overview 
• Texture mapping stages 

 Parameterization 
 Mapping 
 Filtering 

• Texture mapping applications 
 Modulation textures 
 Illumination mapping 
 Bump mapping 
 Environment mapping 
 Image-based rendering 
 Non-photorealistic rendering 

 



Parameterization 

geometry 

+ = 

image texture map 

• Q: How do we decide where on the geometry 
 each color from the image should go? 



Option: function gives projection 

[Paul Bourke] 



Option: unfold the surface 

[Piponi2000] 



Option: make an atlas 

[Sander2001] 

charts atlas surface 



Texture Mapping Overview 
• Texture mapping stages 

 Parameterization 
 Mapping 
 Filtering 

• Texture mapping applications 
 Modulation textures 
 Illumination mapping 
 Bump mapping 
 Environment mapping 
 Image-based rendering 

 
 



Modulation textures 
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Illumination Mapping 
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Map texture values to surface material parameter 
 KA 
 KD 
 KS 
 KT 
 n 
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Bump Mapping 
Texture values perturb surface normals  



Bump Mapping 

H&B Figure 14.100 



Environment Mapping 
Texture values are reflected off surface patch  

H&B Figure 14.93 



Image-Based Rendering 
Map photographic textures to provide details for  

coarsely detailed polygonal model 



Solid textures 
Texture values indexed 

by 3D location (x,y,z) 
• Expensive storage, or 

• Compute on the fly, 
e.g. Perlin noise  



Texture Mapping Summary 
• Texture mapping stages 

 Parameterization 
 Mapping 
 Filtering 

• Texture mapping applications 
 Modulation textures 
 Illumination mapping 
 Bump mapping 
 Environment mapping 
 Image-based rendering 
 Volume textures 

 



Rasterization 
• Scan conversion 

 Determine which pixels to fill 

• Shading 
 Determine a color for each filled pixel 

• Texture mapping 
 Describe shading variation within polygon interiors 

Visible surface determination 
 Figure out which surface is front-most at every pixel 

 



Make sure only front-most surface 
contributes to color at every pixel 

Visible Surface Determination 



Depth sort 
“Painter’s algorithm” 

 Sort surfaces in order of decreasing maximum depth 
 Scan convert surfaces in back-to-front order, 

overwriting pixels 
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3D Rendering Pipeline 
3D Primitives 
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Transformation 
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 Depth sort comments 
 O(n log n) 
 Better with frame coherence? 
 Implemented in software 
 Render every polygon 
 Often use BSP-tree or 

static list ordering 



Z-Buffer 
Maintain color & depth of closest object per pixel 

 Framebuffer now RGBAz – initialize z to far plane 
 Update only pixels with depth closer than in z-buffer 
 Depths are interpolated from vertices, just like colors 



Z-Buffer 
3D Primitives 

Modeling 
Transformation 

Projection 
Transformation 

Clipping 
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 Z-buffer comments 
+ Polygons rasterized in any order 
+ Process one polygon at a time 
+ Suitable for hardware pipeline 
- Requires extra memory for z-buffer 
- Subject to aliasing (A-buffer) 
 Commonly in hardware 



Hidden Surface Removal Algorithms 

[Sutherland ‘74] 



Rasterization Summary 
• Scan conversion 

 Sweep-line algorithm 

• Shading algorithms 
 Flat, Gouraud 

• Texture mapping 
 Mipmaps 

• Visibiliity determination 
 Z-buffer 

This is all in hardware 



GPU Architecture 

GeForce 6 Series Architecture GPU Gems 2, NVIDIA 



Actually … 
• Graphics hardware is programmable 

 

www.nvidia.com/cuda 



Trend … 
• GPU is general-purpose parallel computer 

 

www.nvidia.com/cuda 
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