
3D Rasterization II

COS 426

3D Rendering Pipeline (for direct illumination)

3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

Viewing
Transformation

Rasterization
• Scan conversion

 Determine which pixels to fill

• Shading
 Determine a color for each filled pixel

• Texture mapping
 Describe shading variation within polygon interiors

• Visible surface determination
 Figure out which surface is front-most at every pixel

Rasterization
• Scan conversion (last time)

 Determine which pixels to fill

Shading
 Determine a color for each filled pixel

• Texture mapping
 Describe shading variation within polygon interiors

• Visible surface determination
 Figure out which surface is front-most at every pixel

Shading
• How do we choose a color for each filled pixel?

Emphasis on methods that can
be implemented in hardware

P1

P2

P3

Ray Casting
• Simplest shading approach is to perform

independent lighting calculation for every pixel

()∑ ⋅+⋅++=
i i

n
iSiiDALAE IRVKILNKIKII)()(

Polygon Shading
• Can take advantage of spatial coherence

 Illumination calculations for pixels covered by same
primitive are related to each other

()∑ ⋅+⋅++=
i i

n
iSiiDALAE IRVKILNKIKII)()(

Polygon Shading Algorithms
• Flat Shading

• Gouraud Shading

• Phong Shading

Flat Shading
• What if a faceted object is illuminated only by

directional light sources and is either diffuse or
viewed from infinitely far away

()∑ ⋅+⋅++=
i i

n
iSiiDALAE IRVKILNKIKII)()(

Flat Shading
• One illumination calculation per polygon

 Assign all pixels inside each polygon the same color

N

Flat Shading
• Objects look like they are composed of polygons

 OK for polyhedral objects
 Not so good for smooth surfaces

Polygon Shading Algorithms
• Flat Shading

• Gouraud Shading

• Phong Shading

Gouraud Shading
• What if smooth surface is represented by

polygonal mesh with a normal at each vertex?

Watt Plate 7

()∑ ⋅+⋅++=
i i

n
iSiiDALAE IRVKILNKIKII)()(

Gouraud Shading
• Method 1: One lighting calculation per vertex

 Assign pixels inside polygon by interpolating
colors computed at vertices

Gouraud Shading
• Bilinearly interpolate colors at vertices

down and across scan lines

Gouraud Shading
• Smooth shading over adjacent polygons

 Curved surfaces
 Illumination highlights
 Soft shadows

Mesh with shared normals at vertices
Watt Plate 7

Gouraud Shading
• Produces smoothly shaded polygonal mesh

 Piecewise linear approximation
 Need fine mesh to capture subtle lighting effects

Gouraud Shading Flat Shading

Polygon Shading Algorithms
• Flat Shading

• Gouraud Shading

• Phong Shading (≠ Phong reflectance model)

Phong Shading
• What if polygonal mesh is too coarse to capture

illumination effects in polygon interiors?

()∑ ⋅+⋅++=
i i

n
iSiiDALAE IRVKILNKIKII)()(

Phong Shading
• One lighting calculation per pixel

 Approximate surface normals for points inside polygons
by bilinear interpolation of normals from vertices

Phong Shading
• Bilinearly interpolate surface normals at vertices

down and across scan lines

Polygon Shading Algorithms

Gouraud Phong

Wireframe Flat

Watt Plate 7

Shading Issues
• Problems with interpolated shading:

 Polygonal silhouettes
 Perspective distortion (due to screen-space interpolation)
 Problems computing shared vertex normals
 Problems at T-junctions

Rasterization
• Scan conversion

 Determine which pixels to fill

• Shading
 Determine a color for each filled pixel

Texture mapping
 Describe shading variation within polygon interiors

• Visible surface determination
 Figure out which surface is front-most at every pixel

Surface
Image Texture

Textures
• Describe color variation in interior of 3D polygon

 When scan converting a polygon, vary pixel colors
according to values fetched from a texture image

Angel Figure 9.3

Surface Textures
• Add visual detail to surfaces of 3D objects

Polygonal model

With surface texture

Surface Textures
• Add visual detail to surfaces of 3D objects

[Daren Horley]

Texture Mapping Overview
• Texture mapping stages

 Parameterization
 Mapping
 Filtering

• Texture mapping applications
 Modulation textures
 Illumination mapping
 Bump mapping
 Environment mapping
 Image-based rendering
 Non-photorealistic rendering

Texture Mapping
• Steps:

 Define texture
 Specify mapping from texture to surface
 Look up texture values during scan conversion

(0,0)

(1,0)

(0,1)

u
v

x

y

Modeling
Coordinate

System

Image
Coordinate

System

s

t

Texture
Coordinate

System

Texture Mapping
• When scan converting, map from …

 image coordinate system (x,y) to
 modeling coordinate system (u,v) to
 texture image (s,t)

(0,0)

(1,0)

(1,1)
(0,1)

u
v

x

y

Modeling
Coordinate

System

Image
Coordinate

System

s

t

Texture
Coordinate

System

Texture Mapping

[Allison Klein]

• Texture mapping is a 2D projective transformation
 texture coordinate system: (s,t) to
 image coordinate system (x,y)

Texture Mapping
• Scan conversion

 Interpolate texture coordinates down/across scan lines
 Distortion due to bilinear interpolation approximation

» Cut polygons into smaller ones, or
» Perspective divide at each pixel

Texture Mapping

Linear interpolation
of texture coordinates

Correct interpolation
with perspective divide

Hill Figure 8.42

Texture Filtering

Angel Figure 9.4

• Must sample texture to determine color
at each pixel in image

Texture Filtering
• Aliasing is a problem

Point sampling Area filtering

Texture Filtering
• Ideally, use elliptically shaped convolution filters

In practice, use rectangles or squares

Texture Filtering

Angel Figure 9.14

• Size of filter depends on projective warp
 Compute prefiltered images to avoid run-time cost

» Mipmaps
» Summed area tables

Magnification Minification

Mipmaps
• Keep textures prefiltered at multiple resolutions

 Usually powers of 2
 For each pixel, linearly interpolate between

two closest levels (i.e., trilinear filtering)
 Fast, easy for hardware

Summed-area tables
• At each texel keep sum of all values down & right

 To compute sum of all values within a rectangle,
simply combine four entries: S1 – S2 – S3 + S4

 Better ability to capture oblique projections,
but still not perfect

S1

S3 S4

S2

Texture Mapping Overview
• Texture mapping stages

 Parameterization
 Mapping
 Filtering

• Texture mapping applications
 Modulation textures
 Illumination mapping
 Bump mapping
 Environment mapping
 Image-based rendering
 Non-photorealistic rendering

Parameterization

geometry

+ =

image texture map

• Q: How do we decide where on the geometry
 each color from the image should go?

Option: function gives projection

[Paul Bourke]

Option: unfold the surface

[Piponi2000]

Option: make an atlas

[Sander2001]

charts atlas surface

Texture Mapping Overview
• Texture mapping stages

 Parameterization
 Mapping
 Filtering

• Texture mapping applications
 Modulation textures
 Illumination mapping
 Bump mapping
 Environment mapping
 Image-based rendering

Modulation textures

()()SSTTL LL
n

SDAAE IKIKISRVKLNKIKItsTI ++⋅+⋅++= ∑)()(),(

Texture values scale result of lighting calculation

W
oo

d
te

xt
ur

e

Texture
value

Illumination Mapping

() SSTTL LL
n

SDAAE IKIKISRVKLNtsKIKII ++⋅+⋅++= ∑)())(,(

Map texture values to surface material parameter
 KA
 KD
 KS
 KT
 n

Texture
value

Bump Mapping
Texture values perturb surface normals

Bump Mapping

H&B Figure 14.100

Environment Mapping
Texture values are reflected off surface patch

H&B Figure 14.93

Image-Based Rendering
Map photographic textures to provide details for

coarsely detailed polygonal model

Solid textures
Texture values indexed

by 3D location (x,y,z)
• Expensive storage, or

• Compute on the fly,
e.g. Perlin noise 

Texture Mapping Summary
• Texture mapping stages

 Parameterization
 Mapping
 Filtering

• Texture mapping applications
 Modulation textures
 Illumination mapping
 Bump mapping
 Environment mapping
 Image-based rendering
 Volume textures

Rasterization
• Scan conversion

 Determine which pixels to fill

• Shading
 Determine a color for each filled pixel

• Texture mapping
 Describe shading variation within polygon interiors

Visible surface determination
 Figure out which surface is front-most at every pixel

Make sure only front-most surface
contributes to color at every pixel

Visible Surface Determination

Depth sort
“Painter’s algorithm”

 Sort surfaces in order of decreasing maximum depth
 Scan convert surfaces in back-to-front order,

overwriting pixels

A
B E D

C

depth sort

eye

3D Rendering Pipeline
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates

Depth sort

 Depth sort comments
 O(n log n)
 Better with frame coherence?
 Implemented in software
 Render every polygon
 Often use BSP-tree or

static list ordering

Z-Buffer
Maintain color & depth of closest object per pixel

 Framebuffer now RGBAz – initialize z to far plane
 Update only pixels with depth closer than in z-buffer
 Depths are interpolated from vertices, just like colors

Z-Buffer
3D Primitives

Modeling
Transformation

Projection
Transformation

Clipping

Lighting

Image

Viewport
Transformation

Scan
Conversion

2D Image Coordinates

3D Modeling Coordinates

3D World Coordinates

3D Camera Coordinates

2D Screen Coordinates

2D Screen Coordinates

Viewing
Transformation

3D World Coordinates

2D Image Coordinates
Z-Buffer

 Z-buffer comments
+ Polygons rasterized in any order
+ Process one polygon at a time
+ Suitable for hardware pipeline
- Requires extra memory for z-buffer
- Subject to aliasing (A-buffer)
 Commonly in hardware

Hidden Surface Removal Algorithms

[Sutherland ‘74]

Rasterization Summary
• Scan conversion

 Sweep-line algorithm

• Shading algorithms
 Flat, Gouraud

• Texture mapping
 Mipmaps

• Visibiliity determination
 Z-buffer

This is all in hardware

GPU Architecture

GeForce 6 Series Architecture GPU Gems 2, NVIDIA

Actually …
• Graphics hardware is programmable

www.nvidia.com/cuda

Trend …
• GPU is general-purpose parallel computer

www.nvidia.com/cuda

	3D Rasterization II
	3D Rendering Pipeline (for direct illumination)
	Rasterization
	Rasterization
	Shading
	Ray Casting
	Polygon Shading
	Polygon Shading Algorithms
	Flat Shading
	Flat Shading
	Flat Shading
	Polygon Shading Algorithms
	Gouraud Shading
	Gouraud Shading
	Gouraud Shading
	Gouraud Shading
	Gouraud Shading
	Polygon Shading Algorithms
	Phong Shading
	Phong Shading
	Phong Shading
	Polygon Shading Algorithms
	Shading Issues
	Rasterization
	Textures
	Surface Textures
	Surface Textures
	Texture Mapping Overview
	Texture Mapping
	Texture Mapping
	Texture Mapping
	Texture Mapping
	Texture Mapping
	Texture Filtering
	Texture Filtering
	Texture Filtering
	Texture Filtering
	Mipmaps
	Summed-area tables
	Texture Mapping Overview
	Parameterization
	Option: function gives projection
	Option: unfold the surface
	Option: make an atlas
	Texture Mapping Overview
	Modulation textures
	Illumination Mapping
	Bump Mapping
	Bump Mapping
	Environment Mapping
	Image-Based Rendering
	Solid textures
	Texture Mapping Summary
	Rasterization
	Visible Surface Determination
	Depth sort
	3D Rendering Pipeline
	Z-Buffer
	Z-Buffer
	Hidden Surface Removal Algorithms
	Rasterization Summary
	GPU Architecture
	Actually …
	Trend …

