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Unsupervised learning

• Unsupervised learning is about taking data and finding structure in it.

• It is about finding patterns without knowing what we are looking for.

• In the old days, classification and prediction were the most important
problems in statistics and machine learning.

• They still are important, but unsupervised learning now plays an equal role.
Why?

• Because of the “information explosion”, “data innondation problem,”
whatever you want to call it.



Examples

• Attorneys used to get fileboxes of documents to read; Now they get
gigabytes of emails. The trial is tomorrow. What is in these emails?

• We regularly search an indexed collection of documents. Queries might
mean multiple things. Consider “Jaguar” as (a) an amimal (b) a car and (c)
an operating system. Given search results, can we identify these groups?

• Biologists run microarray experiments, simultaneously testing many genes
with many conditions. The idea is to uncover genes that behave similarly.
How can they do it?

• Neuroscientists run fMRI studies resulting in thousands of high-resolution
images of brain data, in a time series, while subjects are performing
cognitive tasks. One goal is to find patterns in the brain.



More examples

• Historians collect reams of historical documents, scan them, and run them
through OCR software. How can unsupervised learning help them with
close reading and forming hypotheses?

• A reporter receives 5M emails from WikiLeaks. Where is the scoop?

• A physicist collects terrabytes of measurements from the universe. What
happened that we didn’t expect? What should we examine?

• Others?



Seeing observations in a different way

• One way we use unsupervised learning is to help us see observations in a
different way. When observations happen at large scale, we need methods
for summarizing them and visualizing them. In this sense, it’s like a
microscope or, more accurately, a camera filter/lense.

• Main idea: Posit the kind of structure that you think exists in your data set,
and then to let the algorithm find the particular instantiation of that structure.

• For example:

• Latent patterns of brain activity that correspond to cognitive variables
• Groups of documents that are about a single subject
• Collections of genes that have the same function

• We think such patterns exit, but don’t know what they are.

• A lot of machine learning research is about taking a new type of data set,
positing reasonable structures, and showing that the resulting
unsupervised learning algorithm does something that “makes sense.”



Dimension reduction

• Mathematically, we can think of unsupervised learning as “dimension
reduction,” taking high dimensional data (consider, fMRI) and turning it into
low dimensional data (the weight of one of 50 types of brain patterns
coupled with what those pattens are).

• This has several effects.

• It smooths idiosyncracies in individual data points, e.g., “cat” and “feline”
might mean the same thing in a reduced representation.
(This also helps in prediction.)

• It summarizes the data in terms of patterns and how each data point
expresses them.

• It compresses the data.



Difficulty with unsupervised learning

• Problem with unsupervised learning: It’s hard to measure success.

• Its vague and fuzzy, but that doesn’t mean it’s not important.

• (Cf visualization, HCI)



Next few lectures

• K-means

• Mixture models

• Expectation-Maximization



(See other slides for K-means)



Hidden variable models

• Hidden random variables are imaginary variables that give structure to
the distribution of the data.

• For example, in a probability model for clustering—which is called a
mixture model—the hidden random variables code the cluster
assignments of the data.

• When we fit a model with hidden variables, the parameters reveal how the
hidden structure that we imagined is manifest in the data we observed.



Hidden variables are powerful

• Hidden variable models give us a lot of power and room for creativity in
modeling data.

• We can imagine the structure that we think exists—e.g., groups of
documents, a hierarchy of concepts, a binary vector of active “features”,
communities of people that know each other in the same way.

• We can then derive an algorithm (next slide) to discover that structure from
observed data.

• (In practice, there are many computational and conceptual problems.)



Expectation-Maximization

• Repeat: When we fit a model with hidden variables, the parameters reveal
how the hidden structure is manifest in the obsverations.

• But, as we’ll see, computing the MLE is hard. That’s why we need the
expectation-maximization algorithm

• The EM algorithm is a general algorithm for finding the MLE in a model with
hidden random variables.

• It was “invented” in 1977 by Dempster et al. I have heard rumors that it was
known before then, in the forties as secret WWII defense research.



Mixture models

• The first hidden variable model we will consider is the mixture of
multinomials.

• Recall how model-based classification let us plug in simpler IID models into
a classification algorithm.

• Mixture models mirror this idea, but for clustering problem.

• The difference is that the labels (now called cluster assignments) are never
observed. There is no training data.



Clustering documents

• Problem: You have 10M emails. You want to group them into 25 groups so
you can better see what they contain.

• You want to describe each group
• You want to identify each document with a group

• The model will assume that the words of each document were drawn
independently from one of 25 multinomial distributions.

• How is this similar to and different from k -means?

• Some reasons—

• The clustering problem is similar.
• k -means is defined for continuous data. Here, data are discrete and

there is no explicit distance function.
• k -means does not reference a probability model

• How does this compare to the text classification model?



Mixture of multinomials
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• The data are D documents

D = {x1, . . . ,xD}, (1)

where each document is a sequence of N words

xd = {xd ,1, . . . ,xd ,N}. (2)

• Recall we represent discrete data with an indicator vector.

• Note: This is the only variable observed in the model.



Joint distribution
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• The joint distribution of a single document and cluster assignment is

p(c,x)= p(c |π)
N
∏

n=1

p(xn |θ1:K ,c). (3)

• Recall the “selection mechanism” for getting the right cluster.

• Recall that words drawn independently from the same distribution amount
to a product over the vocabulary terms exponentiated by the counts

N
∏

n=1

p(xn |θc)=
V
∏

v=1

θ
nv (x)
c,v (4)



Generative process
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• It is convenient to think of models (all models) by their generative process,
the imaginary process by which the data are assumed to have been drawn.

• For the d th document:

• Draw zd ∼π
• For the nth word in the d th document:

• Draw wd ,n ∼ θzd



Generative process
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• This is a third way—in addition to the joint and the graphical model—to
articulate some of the dependencies that we are assuming.

• Parameter estimation and inference can be thought of as “reversing” the
generative process. What is the hidden structure, distributions and
assignments, that best explain the observed documents?

• The generative process also provides a program for generating data from
the model—this is useful for many reasons.



Mixtures of *

• Before discussing how to fit, I want to show examples of other mixtures.

• By replacing the simple independent words model with another model (of
other data), we obtain different kinds of mixture models.

• For example, a mixture of Gaussians replaces the multinomial observation
with continuous observation.

• We can even define mixtures of complicated hidden variable models—but
we won’t do that yet.

• Mixture models are a natural way to build a clustering model out of an
existing probabilistic model.



Mixtures of educational data (Schnipke and Scrams 1997)
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• Data are {xn}, the time to respond to a GRE question

• Model this data with a mixture of two log-normal distributions

• There are different kinds of behaviors; speedy behavior and careful
behavior. They fit a mixture model and find this to be true.

• High level point: Interesting behavior can be drawn from exploratory
analysis of the shape of distributions, rather than summary statistics.



Mixtures of survival data (Farewell, 1982)
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• Fit a mixture model to the survival times of animals. Data are D = {xn},
where xn is the number of weeks for which a mouse survived.

• Assumes different populations in the data, independent of the experimental
condition. For example, some animals are “long term survivors”; others are
affected by “experimental stresses”

• Idea: the previously developed simple parametric model is not appropriate,
and can skew the inferences. Populations are more heterogenous.



Mixtures of survival data (Farewell, 1982)

“For the toxicological experiment discussed by Pierce et al. (1979), mixture
models postulating a subpopulation of long-term survivors are appealing from
both the biological and statistical viewpoints. The use of such models should be
restricted, however, to problems in which there is strong scientific evidence for
the possibility that the individuals come from two or more separate populations.
Otherwise, the modelling assumptions are too strong for widespread use. If two
populations are assumed, then inferences will be made about the two
populations whether they exist or not.”



Mixtures of financial data (Liesenfeld, 1998)
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• Two-component mixture model of stock price closing

• Use a complicated known model that’s good for modeling stocks, and turn it
into a mixture.

• Tests indicate that the mixture model is better in some respects, but not
better in others.

• Good example of taking well-worn parametric models and using them in a
mixture.



Mixtures of genetic data (Pagel and Meader, 2004)
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• Considered a mixture model over the rate of mutation of different places on
the genome.

• Data are {xi ,n}, where xi ,n is the DNA value at site n in the position i on the
evolutionary tree.



Mixtures of genetic data (Pagel and Meader, 2004)

• The authors observe that the mixture model fits the data better. They use a
number of statistics to determine this, as well as empirical evaluations.

• Conclusion: “The results we have reported for the pattern-heterogeneity
mixture model send the encouraging message that phylogenetically
structured data harbor complex signals of the history of evolution, and that
it is possible to design general models to detect those signals.”



Mixtures of social networks (Newman, 2007)
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• Data are D = {xnm}, where xnm = 1 if there is a connection between actor
n and actor m.

• Parameters are θ , a K ×K matrix of probabilities. The element θij is the
probability that a pair in group i and j are connected.



Example inference
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F I G . 1: A pplica t ion of t he me t hod describ ed here to t he
“ kara t e club ” ne twor k of R ef. [27]. T he two shaded regions in-
dica t e t he div ision of t he ne twor k in t he real world , while t he
shades of t he indiv idual ver t ices indica t e t he decomposi t ion
chosen by t he algori t hm . T he sizes of t he ver t ices indica t e
t he probabili t ies  1 i for edges from ver t ices in group 1 ( t he
left-hand group) to b e connec t ed to each ot her ver t ex , wi t h
t he probabili t ies ranging from 0 for t he smallest ver t ices to
0.19 for t he largest .

of the clear defini t ion of the overlap: the values of the q i r
give the precise probabili ty tha t a ver tex belongs to a
specified group, given the observed network structure.

T he algori thm also returns the distribu tions or pref-
erences  r i for connect ions from ver t ices in group r to
each other ver tex i . In F ig. 1 we indica te by the sizes
of ver t ices the probabili t ies  1 i of edges from ver t ices in
group 1, which is the left-hand group in the figure, to
connect to each other ver tex . A s we can see, two ver t ices
central to the group have high connect ion probabili t ies,
while some of the more peripheral ver t ices have smaller
probabili t ies. T hus the values of  r i behave as a kind of
centrali ty measure, indica ting how impor tant a par ticu-
lar ver tex is to a par ticular group. T his could form the
basis for a pract ical measure of wi thin-group influence or
a t tract ion in social or other networks. Note tha t in this
case this measure is not high for ver t ices tha t are central
to the other group, group 2; the measure is sensi t ive to
the par ticular preferences of the ver t ices in just a single
group.

We can take the method fur ther. In F ig. 2 we show
the resul ts of i ts applica tion to an adjacency network
of E nglish words taken from R ef. [17]. In this network
the ver t ices represent 112 commonly occurring adject ives
and nouns in a par ticular body of tex t (the novel D avid
Copperfield by C harles D ickens), wi th edges connect ing
any pair of words tha t appear adjacent to each other a t
any point in the tex t . Since adject ives typically occur
nex t to nouns in E nglish, most edges connect an adjec-
t ive to a noun and the network is thus approxima tely
bipar ti te or disassor ta tive. T his can be seen clearly in
the figure, where the two shaded groups represent the
adject ives and nouns and most edges are observed to run

F I G . 2: T he ad jacency ne twor k of E nglish words describ ed
in t he t ex t . T he two shaded groups cont ain ad jec t ives and
nouns resp ec t ively and t he shades of t he indiv idual ver t ices
represent t he classifica t ion found by t he algori t hm .

between groups.
A nalyzing this network using our algori thm we find

the classifica tion shown by the shades of the ver t ices.
O nce again most ver t ices are assigned 100% to one class
or the other, al though there are a few ambiguous cases,
visible as the intermedia te shades. A s the figure makes
clear, the algori thm’s classifica tion corresponds closely to
the adject ive / noun division of the words—almost all the
black ver t ices are in one group and the whi te ones in the
other. In fact , 89% of the ver t ices are correct ly classified
by our algori thm in this case.

T he crucial point to notice, however, is tha t the algo-
ri thm is not merely able to detect the bipar ti te structure
in this network , bu t i t is able to do so wi thou t being told
tha t i t is to look for bipar ti te structure. T he exact same
algori thm, unmodified, finds both the assor ta tive struc-
ture of F ig. 1 and the disassor ta tive structure of F ig. 2.
T his is an impor tant strength of the present method:
i t is able to detect a range of di  erent st ructural types
wi thou t knowing in advance wha t type to expect . O ther
methods are able to detect par ticular kinds of structure,
and in many cases do a good job, bu t they tend to be
narrowly tailored to tha t job—typically a new method or
algori thm has to be devised for each new structural type.

T he networks in F igs. 1 and 2 are both undirected, bu t
our method is applicable to directed networks as well. In
F ig. 3 we show an example of a directed network , a so-
cial network of high school students taken from the US
N a tional Longi tudinal Study of A dolescent H eal th (the
“ A dd H eal th ” study) [31]. Students were asked to identify
their friends wi thin the school and a response in which
student A identifies B as a friend is represented as a di-
rected edge from A to B . In contrast to the common view,
discussed earlier, of friendship as a symmetric rela t ion-
ship running in both direct ions between the individuals
i t connects, a remarkable number of the friendships iden-
tified in this study—more than half—are found to run in
only one direct ion, so tha t a directed representa tion of
the network is indispensable for cap turing the structure
of the da ta.

A pplying the directed version of our method to this
network wi th c = 2 produces the division shown in F ig. 3.

• Friendships in a Karate school

• Two groups split. This is “ground truth” (shaded regions)

• Mixture of two components; these are node colorings



Fitting a mixture model

(Now let’s go to the blackboard.)


