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Card problem

e There are three cards
¢ Red/Red
e Red/Black
o Black/Black

e | go through the following process.
e Close my eyes and pick a card
o Pick a side at random
e Show you that side

e Suppose | show you red. What's the probability the other side is red too?



Random variable

Probability is about random variables.

e A random variable is any “probabilistic” outcome.

For example,

e The flip of a coin
e The height of someone chosen randomly from a population

We'll see that it's sometimes useful to think of quantities that are not strictly
probabilistic as random variables.

e The temperature on 11/12/2013

e The temperature on 03/04/1905

e The number of times “streetlight” appears in a document



Random variable

e Random variables take on values in a sample space.
e They can be discrete or continuous:
o Coin flip: {H, T}
« Height: positive real values (0, c0)
 Temperature: real values (—00,00)
e Number of words in a document: Positive integers {1,2,...}

o We call the values atoms.

e Denote the random variable with a capital letter; denote a realization of the
random variable with a lower case letter.

e E.g., Xis a coin flip, x is the value (H or T) of that coin flip.



Discrete distribution

e A discrete distribution assigns a probability
to every atom in the sample space

e For example, if X is an (unfair) coin, then

P(X=H) = 07
P(X=T) = 03

e The probabilities over the entire space must sum to one
D P(x=x)=1
X

e Probabilities of disjunctions are sums over part of the space. E.g., the
probability that a die is bigger than 3:

P(D>3)=P(D=4)+P(D=5)+P(D=6)



A useful picture

~X

e An atomis a point in the box
e An event is a subset of atoms (e.g., d > 3)

e The probability of an event is sum of probabilities of its atoms.



Joint distribution

e Typically, we consider collections of random variables.

e The joint distribution is a distribution over the configuration of all the
random variables in the ensemble.

e For example, imagine flipping 4 coins. The joint distribution is over the
space of all possible outcomes of the four coins.

P(HHHH) = 0.0625
P(HHHT) = 0.0625
P(HHTH) = 0.0625

e You can think of it as a single random variable with 16 values.



Visualizing a joint distribution




Conditional distribution

e A conditional distribution is the distribution of a random variable given some
evidence.

e P(X=x|Y =y)is the probability that X = x when Y = y.

e For example,

P(I listen to Steely Dan) = 0.5
P(I listen to Steely Dan|Toni is home) = 0.1
P(I listen to Steely Dan| Toni is not home) = 0.7

e P(X=x|Y =y) is a different distribution for each value of y
Y P(x=xly=y) = f
X

Z P(X=x|Y=y) # 1 (necessarily)
y



Definition of conditional probability

~X, ~Yy

e Conditional probability is defined as:

P(X=x,Y=y)

which holds when P(Y) > 0.
e In the Venn diagram, this is the relative probability of X = x in the space
where Y =y.



Returning to the card problem

e Now we can solve the card problem.

e Let Xi be the random side of the random card | chose
e Let X> be the other side of that card

e Compute P(X; =red|X; =red)

P(X; = R, X, =R)
P(X; = R)

P(Xo =red| Xy =red) =

e Numerator is 1/3: Only one card has two red sides.

e Denominator is 1/2: There are three possible sides of the six that are red.



The chain rule

e The definition of conditional probability lets us derive the chain rule, which
let’s us define the joint distribution as a product of conditionals:

P(X,Y) = P(X,Y)——
e For example, let Y be a disease and X be a symptom. We may know

P(X|Y) and P(Y) from data. Use the chain rule to obtain the probability of
having the disease and the symptom.

e In general, for any set of N variables

P(X1,.... Xn) = [ [P(Xal Xt ... Xns)



Marginalization

e Given a collection of random variables, we are often only interested in a
subset of them.

* For example, compute P(X) from a joint distribution P(X, Y, Z)
e Can do this with marginalization

P(X)= ZZ P(X.y,2)
e Derived from the chain rule:
Z;P(X,w) = ZZP(X)P(y,le)
y O

— P(X)

e Note: now we can compute the probability that Toni is home.



Bayes rule

e From the chain rule and marginalization, we obtain Bayes rule.

IR
Y0 = S X Y =y)P(v =)

e Again, let Y be a disease and X be a symptom. From P(X|Y) and P(Y),
we can compute the (useful) quantity P( Y| X).

e Bayes rule is important in Bayesian statistics, where Y is a parameter that
controls the distribution of X.



Independence

e Random variables are independent if knowing about X tells us nothing

about Y.
P(Y|X)=P(Y)

e This means that their joint distribution factorizes,
X1y < P(X,Y)=P(X)P(Y).
e Why? The chain rule

P(X,Y) = P(X)P(Y|X)



Independence examples

e Examples of independent random variables:
e Flipping a coin once / flipping the same coin a second time
¢ You use an electric toothbrush / blue is your favorite color
e Examples of not independent random variables:

e Registered as a Republican / voted for Bush in the last election
e The color of the sky / The time of day



Are these independent?

Two twenty-sided dice
Rolling three dice and computing (D; + Dz, Do + Ds)

# enrolled students and the temperature outside today

# attending students and the temperature outside today



Two coins

e Suppose we have two coins, one biased and one fair,

P(Ci=H)=05 P(C,=H)=0.7.

We choose one of the coins at random Z € {1, 2}, flip C~ twice, and record
the outcome (X, Y).

Question: Are X and Y independent?

What if we knew which coin was flipped Z?



Conditional independence

e X and Y are conditionally independent given Z.
P(Y|X,Z=z)=P(Y|Z=2)

for all possible values of z.
e Again, this implies a factorization

X1Y|Z = P(X,Y|Z=2)=P(X|Z=2)P(Y|Z=2z),

for all possible values of z.



Continuous random variables

e We’'ve only used discrete random variables so far (e.g., dice)
e Random variables can be continuous.

* We need a density p(x), which integrates to one.

E.g., if x€R then
o0
J p(x)dx =1

—00

e Probabilities are integrals over smaller intervals. E.g.,

6.5

P(X e(—2.4,6.5)) :f p(x)dx

—24

e Notice when we use P, p, X, and x.



The Gaussian distribution

e The Gaussian (or Normal) is a continuous distribution.

_ 2
p(xlw,o)= ﬁexp{—%}

e The density of a point x is proportional to the negative exponentiated half
distance to u scaled by o2.

e uis called the mean; o2 is called the variance.



N(L.2, 1)

0.2 0.3 0.4

p(x)

0.1

0.0

e The mean u controls the location of the bump.
e The variance 02 controls the spread of the bump.



Notation

For discrete RV’s, p denotes the probability mass function, which is the
same as the distribution on atoms.

(l.e., we can use P and p interchangeably for atoms.)

For continuous RV’s, p is the density and they are not interchangeable.

This is an unpleasant detail. Ask when you are confused.



Expectation

« Consider a function of a random variable, f(X).
(Notice: f(X) is also a random variable.)

e The expectation is a weighted average of f,
where the weighting is determined by p(x),

E[f(X)] = D_p(x)f(x)

* In the continuous case, the expectation is an integral

E[1()] = f P01 (x)dx



Conditional expectation

The conditional expectation is defined similarly

E[f(X)|Y =y] = _p(x]y)f(x)

Question: What is E[f(X)|Y = y]? What is E[f(X)]| Y]?
E[f(X)|Y =y] is a scalar.

E[f(X)| Y] is a (function of a) random variable.



lterated expectation

Let's take the expectation of E[f(X)] Y].

Z (VE[F(X)| Y =]
= Z Zp (xIy)f(
e

= ZZP )p(y1x)f(x)
= Zp Zp (v1x)

E[E[f(X)]1 Y]



Flips to the first heads

e We flip a coin with probability 7t of heads until we see a heads.
e What is the expected waiting time for a heads?

E[N] = 1n+2(1—m)n+3(1—7)°m+...

00

= Zn(1 —n)" g

n=1



Let’s use iterated expectation

E[N]

E[E[N]|X4]]

-E[N|Xi = H]+ (1 = 7)E[N| X; = T]
w14+ (1 =m)(E[N]+1)]
n+1—n+(1—m)E[N]

1/m



Probability models

Probability distributions are used as models of data that we observe.

Pretend that data is drawn from an unknown distribution.

Infer the properties of that distribution from the data

For example
e the bias of a coin
e the average height of a student
¢ the chance that someone will vote for H. Clinton
¢ the chance that someone from Vermont will vote for H. Clinton
e the proportion of gold in a mountain
e the number of bacteria in our body
o the evolutionary rate at which genes mutate

e We will see many models in this class.



Independent and identically distributed random variables

e Independent and identically distributed (lID) variables are:

© Independent
@ Identically distributed

e If we repeatedly flip the same coin N times and record the outcome, then
X1,..., Xy are lID.
e The IID assumption can be useful in data analysis.



What is a parameter?

Parameters are values that index a distribution.

A coin flip is a Bernoulli. Its parameter is the probability of heads.
plx|m) = 7' b=H(1 — ) 0T,

where 1[] is called an indicator function. It is 1 when its argument is true
and 0 otherwise.

Changing 7t leads to different Bernoulli distributions.

A Gaussian has two parameters, the mean and variance.

1 _ 2
p(x|p,0) = oo exp{—(XzT!:)}

A multinomial distribution has a vector parameter, on the simplex.



The likelihood function

e Again, suppose we flip a coin N times and record the outcomes.

e Further suppose that we think that the probability of heads is 7. (This is
distinct from whatever the probability of heads “really” is.)

e Given 7, the probability of an observed sequence is

N
p(X1,...,XN|7T) = l_[ﬂ1[Xn:H](1 — 7'[)1[)(17:7']
n=1



The log likelihood

e As a function of 7, the probability of a set of observations is called the
likelihood function.

N
p(X1,...,XN|7'E) = l_[ﬂ1[Xn:H](1 — 7-[)1[Xn:7-]
n=1

e Taking logs, this is the log likelihood function.

£(m) =Y _1[xa= Hllog + 1[x, = T]log(1 — )

n=1



Bernoulli log likelihood
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e We observe HHTHTHHTHHTHHTH.
e The value of 7t that maximizes the log likelihood is 2/3.



The maximum likelihood estimate

e The maximum likelihood estimate is the value of the parameter that
maximizes the log likelihood (equivalently, the likelihood).

e In the Bernoulli example, it is the proportion of heads.

1 N
A== A[x,=H]
Nn:1

* In a sense, this is the value that best explains our observations.



Why is the MLE good?

The MLE is consistent.

Flip a coin N times with true bias 7*.

Estimate the parameter from xi,...xy with the MLE 7.
Then,

lim & =7n*

This is a good thing. It lets us sleep at night.



5000 coin flips

1101111001001110000010010011101010000101011
1100011011111101101011100011111011111101101
1110011100101000010011101110111011000111111
0111001111100001011111110011100011101000110
1011101100111111010010010011001000111011000
1101110110010101111100001100101000110110011
0110111011011011001101111111011111111000100
11100110000000010111001101110111101100001 11
0101010110100111001110101011011111000111111
0111000101001111101010011011110000111101001
0010010111111001101110010010111100111110110
0101101111000010011110000100111110110111110
1101011100101111111101011001011100011101110
00111...



Consistency of the MLE example
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Gaussian log likelihood

e Suppose we observe xq,..., Xy continuous.
o We choose to model them with a Gaussian

N

p(X1,...,xN|u,02)=l_[

n=1

g ~Lmt?)

e The log likelihood is

N
1 Xn— )3
£(wo)= —ENIog(27'c02) —Z%

n=1



Gaussian MLE

e The MLE of the mean is the sample mean

e E.g., approval ratings of the presidents from 1945 to 1975.



Gaussian analysis of approval ratings

p(x)
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0.000 0.005 0.010 0.015 0.020 0.025

T T T T T T T
0 20 40 60 80 100 120

X

Q: What's wrong with this analysis?



Model pitfalls

e What’s wrong with this analysis?

¢ Assigns positive probability to numbers <0 and > 100
o Ignores the sequential nature of the data
e Assumes that approval ratings are 11D!

e “All models are wrong. Some models are useful.” (Box)



Graphical models

e Represents a joint distribution of random variables

e (Also called “Bayesian network”)

e Nodes are RVs; Edges denote possible dependence

e Shaded nodes are observed; unshaded nodes are hidden

e GMs with shaded nodes represent posterior distributions.

e Connects computing about models to graph structure (COS513)

e Connects independence assumptions to graph structure (COS513)

e Here we’'ll use it as a schematic for factored joint distributions.



Some of the models we’ll learn about

e Naive Bayes classification

e Linear regression and logistic regression

e Generalized linear models

e Hidden variables, mixture models, and the EM algorithm
e Factor analysis / Principal component analysis

e Sequential models

e Bayesian models



