Generalized Linear Models and Exponential Families

David M. Blei

COS424 Princeton University

April 12, 2012

Generalized Linear Models

- Linear regression and logistic regression are both linear models. The coefficient β enters the distribution of y_n through a linear combination of x_n.
- Both are amenable to regularization via a Bayesian prior.
- Call *x_n* the **input** and *y_n* the **response**.
 - Linear regression: Real-valued response
 - Logistic regression: Binary response
- These ideas can be generalized to many kinds of response variables with generalized linear models.
 - E.g., categorical, positive real, positive integer, ordinal

The exponential family

A probability density in the exponential family has this form

$$p(x|\eta) = h(x) \exp\{\eta^{\top} t(x) - a(\eta)\},\$$

where

- η is the natural parameter
- t(x) are sufficient statistics
- h(x) is the "underlying measure", ensures x is in the right space
- $a(\eta)$ is the log normalizer
- Examples: Gaussian, Gamma, Poisson, Bernoulli, Multinomial
- Distributions not in this family: Chi-Squared, Student-t

$$p(x|\eta) = h(x) \exp\{\eta^{\top} t(x) - a(\eta)\}$$

• The log normalizer ensures that the density integrates to 1,

$$a(\eta) = \log \int h(x) \exp\{\eta^{\top} t(x)\} dx$$

• This is the negative logarithm of the normalizing constant.

Example: Bernoulli

The Bernoulli you are used to seeing is

$$p(x|\pi) = \pi^{x}(1-\pi)^{1-x} \quad x \in \{0,1\}$$

In exponential family form

$$p(x|\pi) = \exp\{\log \pi^{x} (1-\pi)^{1-x}\}\$$

= $\exp\{x \log \pi + (1-x) \log(1-\pi)\}\$
= $\exp\{x \log \pi - x \log(1-\pi) + \log(1-\pi)\}\$
= $\exp\{x \log(\pi/(1-\pi)) + \log(1-\pi)\}\$

Example: Bernoulli (cont)

$$p(x|\eta) = h(x) \exp\{\eta^{\top} t(x) - a(\eta)\}$$

This form reveals the exponential family

$$p(x | \pi) = \exp\{x \log(\pi/(1 - \pi)) + \log(1 - \pi)\},\$$

where

- $\eta = \log(\pi/(1-\pi))$
- t(x) = x
- $a(\eta) = -\log(1-\pi) = \log(1+e^{\eta})$
- h(x) = 1

Log normalizer of the Bernoulli

- We express the log normalizer as a function of η.
- Recall that $\eta = \log(\pi/1 \pi)$ and $a(\eta) = -\log(1 \pi)$.

$$log(1 + e^{\eta}) = log(1 + \pi/(1 - \pi))$$

= log((1 - \pi + \pi)/(1 - \pi))
= log(1/(1 - \pi))
= -log(1 - \pi)

• The relationship between π and η is invertible

 $\pi = 1/(1 + e^{-\eta})$

This is the logistic function.

Derivatives of $a(\eta)$ give moments of the sufficient statistics.

$$\nabla_{\eta} a = \nabla_{\eta} \{ \log \int \exp\{\eta^{\top} t(x)\} h(x) dx \}$$

= $\frac{\nabla_{\eta} \int \exp\{\eta^{\top} t(x)\} h(x) dx}{\int \exp\{\eta^{\top} t(x)\} h(x) dx}$
= $\int t(x) \frac{\exp\{\eta^{\top} t(x)\} h(x)}{\int \exp\{\eta^{\top} t(x)\} h(x) dx} dx$
= $E_{\eta}[t(X)]$

Higher order derivatives give higher order moments.

Mean parameters and natural paramaters

- This expectation tells us that the mean parameter E[t(X)] and natural parameter η have a 1-1 relationship.
- We saw this with the logistic function, where note that $\pi = E[X]$ (because *X* is an indicator).
- There is a 1-1 relationship between E[t(X)] and η .
 - $\operatorname{Var}(t(X)) = \nabla^2 a_{\eta}$ is positive.
 - $\rightarrow a(\eta)$ is convex.
 - $\bullet \rightarrow$ 1-1 relationship between its argument and first derivative
- Notation for later
 - The mean parameter is $\mu = E[t(X)]$.
 - The inverse map is $\psi(\mu)$, gives the η such that $E[t(X)] = \mu$.

Maximum likelihood estimation of an exponential family

The data are $\mathcal{D} = \{x_n\}_{n=1}^N$. We want to find the value of η that maximizes the likelihood. The log likelihood is

$$\mathcal{L} = \sum_{n=1}^{N} \log p(x_n | \eta)$$

=
$$\sum_{n=1}^{N} (\log h(x_n) + \eta^{\top} t(x_n) - a(\eta))$$

=
$$\sum_{n=1}^{N} \log h(x_n) + \eta^{\top} \sum_{n=1}^{N} t(x_n) - N \cdot a(\eta)$$

As a function of η , the log likelihood only depends on $\sum_{n=1}^{N} t(x_n)$.

- Has fixed dimension; no need to store the data.
- Is sufficient for η.

Maximum likelihood estimation of an exponential family

$$\mathscr{L} = \sum_{n=1}^{N} \log h(x_n) + \eta^{\top} \sum_{n=1}^{N} t(x_n) - a(\eta)$$

Take the gradient and set to zero:

$$\nabla_{\eta} \mathscr{L} = \sum_{n=1}^{N} t(x_n) - N \nabla_{\eta} a(\eta)$$

It's easy to solve for the mean parameter:

$$u_{\rm ML} = \frac{\sum_{n=1}^{N} t(x_n)}{N}$$

The inverse map gives us the natural parameter:

 $\eta_{\rm ML} = \psi(\mu_{\rm ML})$

Bernoulli MLE

• It's easy to solve for the mean parameter:

$$\mu_{\rm ML} = \frac{\sum_{n=1}^{N} t(x_n)}{N}$$

• The inverse map gives us the natural parameter:

$$\eta_{\rm ML} = \psi(\mu_{\rm ML})$$

• Consider the Bernoulli. μ_{ML} is just the sample mean. The natural parameter is the corresponding log odds.

Idea behind logistic and linear regression: The conditional expectation of y_n depends on x_n through a function of a linear relationship,

$$\mathrm{E}[y_n | x_n, \beta] = f(\beta^\top x_n) = \mu_n$$

- linear regression: f is the identity.
- logistic regression: *f* is the logistic.
- Endow y_n with a distribution that depends on μ_n .
 - linear regression: Gaussian
 - logistic regression: Binary

Generalized linear models

$$p(y_n|x_n) = h(y_n) \exp\{\eta_n^\top y_n - a(\eta_n)$$

$$\eta_n = \psi(\mu_n)$$

$$\mu_n = f(\beta^\top x_n)$$

- Input x_n enters the model through $\beta^{\top} x_n$
- The conditional mean μ_n is a function $f(\beta^\top x_n)$ called the **response function** or **link function**.
- Response y_n has conditional mean μ_n.
- Its natural parameter is denoted $\eta_n = \psi(\mu_n)$
- Lets us build probabilistic predictors of many kinds of responses

Generalized linear models

$$p(y_n|x_n) = h(y_n) \exp\{\eta_n^{\top} t(y_n) - a(\eta_n)$$

$$\eta_n = \psi(\mu_n)$$

$$\mu_n = f(\beta^{\top} x_n)$$

- Two choices:
 - Exponential family for response y_n
 - **2** Response function $f(\beta^{\top}x_n)$
- The family is usually determined by the form of y_n.
- The response function:
 - Somewhat constrained—must give a mean in the right space
 - But also offers freedom, e.g., probit or logistic

The canonical response function

$$p(y_n|x_n) = h(y_n) \exp\{\eta_n^{\top} t(y_n) - a(\eta_n)$$

$$\eta_n = \psi(\mu_n)$$

$$\mu_n = f(\beta^{\top} x_n)$$

- The canonical response function is $f = \psi^{-1}$, which maps a natural parameter to the conditional mean that gives that natural parameter.
- Means that the natural parameter is $\beta^{\top} x_n$,

 $p(y_n|x_n) = h(y_n) \exp\{(\beta^\top x_n)^\top t(y_n) - a(\eta_n)\}$

• Examples: logistic (binary) and identity (real)

Another important perspective

$$p(y_n|x_n) = h(y_n) \exp\{\eta_n^\top t(y_n) - a(\eta_n)$$

$$\eta_n = \psi(\mu_n)$$

$$\mu_n = f(\beta^\top x_n)$$

We can also think about this as

$$y_n = f(\beta^\top x_n) + \epsilon_n,$$

where ϵ_n is a zero-mean error term.

- β is the systematic component; ϵ_n is the random component.
- Different response types lead to different error distributions.

Fitting a GLM

- The data are input/response pairs $\{x_n, y_n\}_{n=1}^N$
- The conditional likelihood is

$$\mathscr{L}(\beta) = \sum_{n=1}^{N} h(y_n) + \eta_n^{\top} t(y_n) - a(\eta_n),$$

and recall that η_n is a function of β and x_n (via *f* and ψ).

• Define each term to be \mathcal{L}_n . The gradient is

$$\nabla_{\beta} \mathscr{L} = \sum_{n=1}^{N} \nabla_{\eta_n} \mathscr{L}_n \nabla_{\beta} \eta_n$$

=
$$\sum_{n=1}^{N} (t(y_n) - \nabla_{\eta_n} a(\eta_n)) \nabla_{\beta} \eta_n$$

=
$$\sum_{n=1}^{N} (t(y_n) - \mathbf{E}[Y|x_n, \beta]) (\nabla_{\mu_n} \eta_n) (\nabla_{\theta_n} \mu_n) x_n$$

Fitting a GLM with canonical response

• In a canonical GLM, $\eta_n = \beta^\top x_n$ and

$$\nabla_{\beta} \mathscr{L} = \sum_{n=1}^{N} (t(y_n) - \mathrm{E}[Y|x_n,\beta]) x_n$$

Recall logistic and linear regression derivatives.