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Generalized Linear Models

xn βyn

• Linear regression and logistic regression are both linear models. The
coefficient β enters the distribution of yn through a linear combination of xn.

• Both are amenable to regularization via a Bayesian prior.

• Call xn the input and yn the response.

• Linear regression: Real-valued response
• Logistic regression: Binary response

• These ideas can be generalized to many kinds of response variables with
generalized linear models.

• E.g., categorical, positive real, positive integer, ordinal



The exponential family

• A probability density in the exponential family has this form

p(x |η)= h(x)exp{η>t(x)−a(η)},

where

• η is the natural parameter
• t(x) are sufficient statistics
• h(x) is the “underlying measure”, ensures x is in the right space
• a(η) is the log normalizer

• Examples: Gaussian, Gamma, Poisson, Bernoulli, Multinomial

• Distributions not in this family: Chi-Squared, Student-t



The log normalizer

p(x |η)= h(x)exp{η>t(x)−a(η)}

• The log normalizer ensures that the density integrates to 1,

a(η)= log

∫

h(x)exp{η>t(x)}dx

• This is the negative logarithm of the normalizing constant.



Example: Bernoulli

The Bernoulli you are used to seeing is

p(x |π)=πx(1−π)1−x x ∈ {0,1}

In exponential family form

p(x |π) = exp{logπx(1−π)1−x}
= exp{x logπ+(1− x) log(1−π)}
= exp{x logπ− x log(1−π)+ log(1−π)}
= exp{x log(π/(1−π))+ log(1−π)}



Example: Bernoulli (cont)

p(x |η)= h(x)exp{η>t(x)−a(η)}

This form reveals the exponential family

p(x |π)= exp{x log(π/(1−π))+ log(1−π)},

where

• η= log(π/(1−π))
• t(x)= x

• a(η)=− log(1−π)= log(1+eη)

• h(x)= 1



Log normalizer of the Bernoulli

• We express the log normalizer as a function of η.

• Recall that η= log(π/1−π)) and a(η)=− log(1−π).

log(1+eη) = log(1+π/(1−π))
= log((1−π+π)/(1−π))
= log(1/(1−π))
= − log(1−π)

• The relationship between π and η is invertible

π= 1/(1+e−η)

This is the logistic function.



Moments of the exponential family

Derivatives of a(η) give moments of the sufficient statistics.

∇ηa = ∇η{log
∫

exp{η>t(x)}h(x)dx}

=
∇η
∫

exp{η>t(x)}h(x)dx
∫

exp{η>t(x)}h(x)dx

=

∫

t(x)
exp{η>t(x)}h(x)
∫

exp{η>t(x)}h(x)dx
dx

= Eη[t(X)]

Higher order derivatives give higher order moments.



Mean parameters and natural paramaters

• This expectation tells us that the mean parameter E[t(X)] and natural
parameter η have a 1-1 relationship.

• We saw this with the logistic function, where note that π=E[X ] (because
X is an indicator).

• There is a 1−1 relationship between E[t(X)] and η.

• Var(t(X))=∇2aη is positive.
• → a(η) is convex.
• → 1-1 relationship between its argument and first derivative

• Notation for later

• The mean parameter is µ=E[t(X)].
• The inverse map is ψ(µ), gives the η such that E[t(X)] =µ.



Maximum likelihood estimation of an exponential family

The data are D = {xn}Nn=1. We want to find the value of η that maximizes the
likeihood. The log likelihood is

L =
N
∑

n=1

logp(xn |η)

=
N
∑

n=1

(logh(xn)+η
>t(xn)−a(η))

=
N
∑

n=1

logh(xn)+η
>∑N

n=1 t(xn)−N ·a(η)

As a function of η, the log likelihood only depends on
∑N

n=1 t(xn).

• Has fixed dimension; no need to store the data.

• Is sufficient for η.



Maximum likelihood estimation of an exponential family

L =
N
∑

n=1

logh(xn)+η
>∑N

n=1 t(xn)−a(η)

• Take the gradient and set to zero:

∇ηL =
N
∑

n=1

t(xn)−N∇ηa(η)

• It’s easy to solve for the mean parameter:

µML =

∑N
n=1 t(xn)

N

• The inverse map gives us the natural parameter:

ηML =ψ(µML)

• Consider the Bernoulli. µML is just the sample mean. The natural
parameter is the corresponding log odds.



Bernoulli MLE

• It’s easy to solve for the mean parameter:

µML =

∑N
n=1 t(xn)

N

• The inverse map gives us the natural parameter:

ηML =ψ(µML)

• Consider the Bernoulli. µML is just the sample mean. The natural
parameter is the corresponding log odds.



Back to GLMs

xn βyn

• Idea behind logistic and linear regression: The conditional expectation of yn

depends on xn through a function of a linear relationship,

E[yn |xn,β ] = f (β>xn)=µn

• linear regression: f is the identity.
• logistic regression: f is the logistic.

• Endow yn with a distribution that depends on µn.

• linear regression: Gaussian
• logistic regression: Binary



Generalized linear models

p(yn |xn) = h(yn)exp{η>n yn−a(ηn)

ηn = ψ(µn)

µn = f (β>xn)

• Input xn enters the model through β>xn

• The conditional mean µn is a function f (β>xn)
called the response function or link function.

• Response yn has conditional mean µn.

• Its natural parameter is denoted ηn =ψ(µn)

• Lets us build probabilistic predictors of many kinds of responses



Generalized linear models

p(yn |xn) = h(yn)exp{η>n t(yn)−a(ηn)

ηn = ψ(µn)

µn = f (β>xn)

• Two choices:

1 Exponential family for response yn

2 Response function f (β>xn)

• The family is usually determined by the form of yn.

• The response function:

• Somewhat constrained—must give a mean in the right space
• But also offers freedom, e.g., probit or logistic



The canonical response function

p(yn |xn) = h(yn)exp{η>n t(yn)−a(ηn)

ηn = ψ(µn)

µn = f (β>xn)

• The canonical response function is f =ψ−1, which maps a natural
parameter to the conditional mean that gives that natural parameter.

• Means that the natural parameter is β>xn,

p(yn |xn)= h(yn)exp{(β>xn)
>t(yn)−a(ηn)}

• Examples: logistic (binary) and identity (real)



Another important perspective

p(yn |xn) = h(yn)exp{η>n t(yn)−a(ηn)

ηn = ψ(µn)

µn = f (β>xn)

• We can also think about this as

yn = f (β>xn)+εn,

where εn is a zero-mean error term.

• β is the systematic component; εn is the random component.

• Different response types lead to different error distributions.



Fitting a GLM

• The data are input/response pairs {xn,yn}Nn=1

• The conditional likelihood is

L (β)=
N
∑

n=1

h(yn)+η
>
n t(yn)−a(ηn),

and recall that ηn is a function of β and xn (via f and ψ).

• Define each term to beLn. The gradient is

∇βL =
N
∑

n=1

∇ηnLn∇βηn

=
N
∑

n=1

(t(yn)−∇ηn a(ηn))∇βηn

=
N
∑

n=1

(t(yn)−E[Y |xn,β ])(∇µnηn)(∇θnµn)xn



Fitting a GLM with canonical response

• In a canonical GLM, ηn =β>xn and

∇βL =
N
∑

n=1

(t(yn)−E[Y |xn,β ])xn

• Recall logistic and linear regression derivatives.


