
contains q changes as a result of the ith insertion. Let Pi denote this probability (where the probability is taken
over random insertion orders, irrespective of the choice of q). Since q could fall through up to three levels in the
search tree as a result of each the insertion, the expected length of q’s search path in the final structure is at most

n∑
i=1

3Pi.

We will show that Pi ≤ 4/i. From this it will follow that the expected path length is at most

n∑
i=1

3
4
i

= 12
n∑

i=1

1
i
,

which is roughly 12 lnn = O(log n) by the Harmonic series.

To show that Pi ≤ 4/i, we apply a backwards analysis. In particular, consider the trapezoid that contains q after
the ith insertion. Recall from last time that this trapezoid is dependent on at most four segments, which define
the top and bottom edges, and the left and right sides of the trapezoid. Since each segment is equally likely to be
the last segment to have been added, the probability that the last insertion caused q to belong to a new trapezoid
is at most 4/i. This completes the proof.

Guarantees on Search Time: One shortcoming with this analysis is that even though the search time is provably
small in the expected case for a given query point, it might still be the case that once the data structure has been
constructed there is a single very long path in the search structure, and the user repeatedly performs queries
along this path. Hence, the analysis provides no guarantees on the running time of all queries.

Although we will not prove it, the book presents a stronger result, namely that the length of the maximum search
path is also O(log n) with high probability. In particular, they prove the following.

Lemma: Given a set of n non-crossing line segments in the plane, and a parameter λ > 0, the probability that
the total depth of the randomized search structure exceeds 3λ ln(n + 1), is at most 2/(n + 1)λ ln 1.25−3.

For example, for λ = 20, the probability that the search path exceeds 60 ln(n + 1) is at most 2/(n + 1)1.5. (The
constant factors here are rather weak, but a more careful analysis leads to a better bound.)

Nonetheless, this itself is enough to lead to variant of the algorithm for which O(log n) time is guaranteed.
Rather than just running the algorithm once and taking what it gives, instead keep running it and checking the
structure’s depth. As soon as the depth is at most c log n for some suitably chosen c, then stop here. Depending
on c and n, the above lemma indicates how long you may need to expect to repeat this process until the final
structure has the desired depth. For sufficiently large c, the probability of finding a tree of the desired depth will
be bounded away from 0 by some constant factor, and therefore after a constant number of trials (depending on
this probability) you will eventually succeed in finding a point location structure of the desired depth. A similar
argument can be applied to the space bounds.

Theorem: Given a set of n non-crossing line segments in the plane, in expected O(n log n) time, it is possible
to construct a point location data structure of (worst case) size O(n) that can answer point location queries
in (worst case) time O(log n).

Lecture 16: Voronoi Diagrams and Fortune’s Algorithm

Reading: Chapter 7 in the 4M’s.

Euclidean Geometry: We now will make a subtle but important shift. Up to now, virtually everything that we have
done has not needed the notion of angles, lengths, or distances (except for our work on circles). All geometric

Lecture Notes 67 CMSC 754

tests were made on the basis of orientation tests, a purely affine construct. But there are important geometric
algorithms that depend on nonaffine quantities such as distances and angles. Let us begin by defining the

Euclidean length of a vector v = (vx, vy) in the plane to be |v| =
√

v2
x + v2

y . In general, in dimension d it is

|v| =
√

v2
1 + . . . + v2

d.

The distance between two points p and q, denoted dist(p, q) or |pq|, is defined to be |p − q|.
Voronoi Diagrams: Voronoi diagrams (like convex hulls) are among the most important structures in computational

geometry. A Voronoi diagram records information about what is close to what. Let P = {p1, p2, . . . , pn} be a
set of points in the plane (or in any dimensional space), which we call sites. Define V(pi), the Voronoi cell for
pi, to be the set of points q in the plane that are closer to pi than to any other site. That is, the Voronoi cell for
pi is defined to be:

V(pi) = {q | |piq| < |pjq|,∀j �= i}.

Another way to define V(pi) is in terms of the intersection of halfplanes. Given two sites pi and pj , the set of
points that are strictly closer to pi than to pj is just the open halfplane whose bounding line is the perpendicular
bisector between pi and pj . Denote this halfplane h(pi, pj). It is easy to see that a point q lies in V(pi) if and
only if q lies within the intersection of h(pi, pj) for all j �= i. In other words,

V(pi) = ∩j �=ih(pi, pj).

Since the intersection of halfplanes is a (possibly unbounded) convex polygon, it is easy to see that V(pi) is a
(possibly unbounded) convex polygon. Finally, define the Voronoi diagram of P , denoted Vor(P) to be what
is left of the plane after we remove all the (open) Voronoi cells. It is not hard to prove (see the text) that the
Voronoi diagram consists of a collection of line segments, which may be unbounded, either at one end or both.
An example is shown in the figure below.

Figure 58: Voronoi diagram

Voronoi diagrams have a number of important applications. These include:

Nearest neighbor queries: One of the most important data structures problems in computational geometry is
solving nearest neighbor queries. Given a point set P , and given a query point q, determine the closest
point in P to q. This can be answered by first computing a Voronoi diagram and then locating the cell of
the diagram that contains q. (We have already discussed point location algorithms.)

Computational morphology: Some of the most important operations in morphology (used very much in com-
puter vision) is that of “growing” and “shrinking” (or “thinning”) objects. If we grow a collection of
points, by imagining a grass fire starting simultaneously from each point, then the places where the grass
fires meet will be along the Voronoi diagram. The medial axis of a shape (used in computer vision) is just
a Voronoi diagram of its boundary.

Lecture Notes 68 CMSC 754

Facility location: We want to open a new Blockbuster video. It should be placed as far as possible from any
existing video stores. Where should it be placed? It turns out that the vertices of the Voronoi diagram are
the points that are locally at maximum distances from any other point in the set.

Neighbors and Interpolation: Given a set of measured height values over some geometric terrain. Each point
has (x, y) coordinates and a height value. We would like to interpolate the height value of some query point
that is not one of our measured points. To do so, we would like to interpolate its value from neighboring
measured points. One way to do this, called natural neighbor interpolation, is based on computing the
Voronoi neighbors of the query point, assuming that it has one of the original set of measured points.

Properties of the Voronoi diagram: Here are some observations about the structure of Voronoi diagrams in the
plane.

Voronoi edges: Each point on an edge of the Voronoi diagram is equidistant from its two nearest neighbors pi

and pj . Thus, there is a circle centered at such a point such that pi and pj lie on this circle, and no other
site is interior to the circle.

pi

pj

pi

pj

pk

Figure 59: Properties of the Voronoi diagram.

Voronoi vertices: It follows that the vertex at which three Voronoi cells V(pi), V(pj), and V(pk) intersect,
called a Voronoi vertex is equidistant from all sites. Thus it is the center of the circle passing through these
sites, and this circle contains no other sites in its interior.

Degree: If we make the general position assumption that no four sites are cocircular, then the vertices of the
Voronoi diagram all have degree three.

Convex hull: A cell of the Voronoi diagram is unbounded if and only if the corresponding site lies on the
convex hull. (Observe that a site is on the convex hull if and only if it is the closest point from some point
at infinity.) Thus, given a Voronoi diagram, it is easy to extract the convex hull in linear time.

Size: If n denotes the number of sites, then the Voronoi diagram is a planar graph (if we imagine all the
unbounded edges as going to a common vertex infinity) with exactly n faces. It follows from Euler’s
formula that the number of Voronoi vertices is at most 2n − 5 and the number of edges is at most 3n − 6.
(See the text for details.)

Computing Voronoi Diagrams: There are a number of algorithms for computing Voronoi diagrams. Of course,
there is a naive O(n2 log n) time algorithm, which operates by computing V(pi) by intersecting the n − 1
bisector halfplanes h(pi, pj), for j �= i. However, there are much more efficient ways, which run in O(n log n)
time. Since the convex hull can be extracted from the Voronoi diagram in O(n) time, it follows that this is
asymptotically optimal in the worst-case.

Historically, O(n2) algorithms for computing Voronoi diagrams were known for many years (based on incre-
mental constructions). When computational geometry came along, a more complex, but asymptotically superior
O(n log n) algorithm was discovered. This algorithm was based on divide-and-conquer. But it was rather com-
plex, and somewhat difficult to understand. Later, Steven Fortune invented a plane sweep algorithm for the
problem, which provided a simpler O(n log n) solution to the problem. It is his algorithm that we will discuss.
Somewhat later still, it was discovered that the incremental algorithm is actually quite efficient, if it is run as a
randomized incremental algorithm. We will discuss this algorithm later when we talk about the dual structure,
called a Delaunay triangulation.

Lecture Notes 69 CMSC 754

Fortune’s Algorithm: Before discussing Fortune’s algorithm, it is interesting to consider why this algorithm was not
invented much earlier. In fact, it is quite a bit trickier than any plane sweep algorithm we have seen so far. The
key to any plane sweep algorithm is the ability to discover all “upcoming” events in an efficient manner. For
example, in the line segment intersection algorithm we considered all pairs of line segments that were adjacent
in the sweep-line status, and inserted their intersection point in the queue of upcoming events. The problem
with the Voronoi diagram is that of predicting when and where the upcoming events will occur. Imagine that
you are designing a plane sweep algorithm. Behind the sweep line you have constructed the Voronoi diagram
based on the points that have been encountered so far in the sweep. The difficulty is that a site that lies ahead of
the sweep line may generate a Voronoi vertex that lies behind the sweep line. How could the sweep algorithm
know of the existence of this vertex until it sees the site. But by the time it sees the site, it is too late. It is these
unanticipated events that make the design of a plane sweep algorithm challenging. (See the figure below.)

unanticipated
events

sweep line

Figure 60: Plane sweep for Voronoi diagrams. Note that the position of the indicated vertices depends on sites that
have not yet been encountered by the sweep line, and hence are unknown to the algorithm. (Note that the sweep line
moves from top to bottom.)

Fortune made the clever observation of rather than computing the Voronoi diagram through plane sweep in its
final form, instead to compute a “distorted” but topologically equivalent version of the diagram. This distorted
version of the diagram was based on a transformation that alters the way that distances are measured in the
plane. The resulting diagram had the same topological structure as the Voronoi diagram, but its edges were
parabolic arcs, rather than straight line segments. Once this distorted diagram was generated, it was an easy
matter to “undistort” it to produce the correct Voronoi diagram.

Our presentation will be different from Fortune’s. Rather than distort the diagram, we can think of this algorithm
as distorting the sweep line. Actually, we will think of two objects that control the sweeping process. First, there
will be a horizontal sweep line, moving from top to bottom. We will also maintain an x-monotonic curve called a
beach line. (It is so named because it looks like waves rolling up on a beach.) The beach line is a monotone curve
formed from pieces of parabolic arcs. As the sweep line moves downward, the beach line follows just behind.
The job of the beach line is to prevent us from seeing unanticipated events until the sweep line encounters the
corresponding site.

The Beach Line: In order to make these ideas more concrete, recall that the problem with ordinary plane sweep is
that sites that lie below the sweep line may affect the diagram that lies above the sweep line. To avoid this
problem, we will maintain only the portion of the diagram that cannot be affected by anything that lies below
the sweep line. To do this, we will subdivide the halfplane lying above the sweep line into two regions: those
points that are closer to some site p above the sweep line than they are to the sweep line itself, and those points
that are closer to the sweep line than any site above the sweep line.

What are the geometric properties of the boundary between these two regions? The set of points q that are
equidistant from the sweep line to their nearest site above the sweep line is called the beach line. Observe that
for any point q above the beach line, we know that its closest site cannot be affected by any site that lies below

Lecture Notes 70 CMSC 754

the sweep line. Hence, the portion of the Voronoi diagram that lies above the beach line is “safe” in the sense
that we have all the information that we need in order to compute it (without knowing about which sites are still
to appear below the sweep line).

What does the beach line look like? Recall from high school geometry that the set of points that are equidistant
from a site lying above a horizontal line and the line itself forms a parabola that is open on top (see the figure
below, left). With a little analytic geometry, it is easy to show that the parabola becomes “skinnier” as the site
becomes closer to the line. In the degenerate case when the line contains the site the parabola degenerates into
a vertical ray shooting up from the site. (You should work through the distance equations to see why this is so.)

points equidistant

p

L

from p and L

beach line

sweep line

Figure 61: The beach line. Notice that only the portion of the Voronoi diagram that lies above the beach line is
computed. The sweep line status maintains the intersection of the Voronoi diagram with the beach line.

Thus, the beach line consists of the lower envelope of these parabolas, one for each site. Note that the parabola
of some sites above the beach line will not touch the lower envelope and hence will not contribute to the beach
line. Because the parabolas are x-monotone, so is the beach line. Also observe that the vertex where two arcs of
the beach line intersect, which we call a breakpoint, is a point that is equidistant from two sites and the sweep
line, and hence must lie on some Voronoi edge. In particular, if the beach line arcs corresponding to sites pi and
pj share a common breakpoint on the beach line, then this breakpoint lies on the Voronoi edge between pi and
pj . From this we have the following important characterization.

Lemma: The beach line is an x-monotone curve made up of parabolic arcs. The breakpoints of the beach line
lie on Voronoi edges of the final diagram.

Fortune’s algorithm consists of simulating the growth of the beach line as the sweep line moves downward,
and in particular tracing the paths of the breakpoints as they travel along the edges of the Voronoi diagram. Of
course, as the sweep line moves the parabolas forming the beach line change their shapes continuously. As with
all plane-sweep algorithms, we will maintain a sweep-line status and we are interested in simulating the discrete
event points where there is a “significant event”, that is, any event that changes the topological structure of the
Voronoi diagram and the beach line.

Sweep Line Status: The algorithm maintain the current location (y-coordinate) of the sweep line. It stores, in
left-to-right order the set of sites that define the beach line. Important: The algorithm never needs to store
the parabolic arcs of the beach line. It exists solely for conceptual purposes.

Events: There are two types of events.

Site events: When the sweep line passes over a new site a new arc will be inserted into the beach line.
Vertex events: (What our text calls circle events.) When the length of a parabolic arc shrinks to zero, the

arc disappears and a new Voronoi vertex will be created at this point.

The algorithm consists of processing these two types of events. As the Voronoi vertices are being discovered
by vertex events, it will be an easy matter to update a DCEL for the diagram as we go, and so to link the entire
diagram together. Let us consider the two types of events that are encountered.

Lecture Notes 71 CMSC 754

Site events: A site event is generated whenever the horizontal sweep line passes over a site. As we mentioned before,
at the instant that the sweep line touches the point, its associated parabolic arc will degenerate to a vertical ray
shooting up from the point to the current beach line. As the sweep line proceeds downwards, this ray will widen
into an arc along the beach line. To process a site event we will determine the arc of the sweep line that lies
directly above the new site. (Let us make the general position assumption that it does not fall immediately below
a vertex of the beach line.) We then split this arc of the beach line in two by inserting a new infinitesimally small
arc at this point. As the sweep proceeds, this arc will start to widen, and eventually will join up with other edges
in the diagram. (See the figure below.)

Figure 62: Site events.

It is important to consider whether this is the only way that new arcs can be introduced into the sweep line. In
fact it is. We will not prove it, but a careful proof is given in the text. As a consequence of this proof, it follows
that the maximum number of arcs on the beach line can be at most 2n − 1, since each new point can result in
creating one new arc, and splitting an existing arc, for a net increase of two arcs per point (except the first).

The nice thing about site events is that they are all known in advance. Thus, after sorting the points by y-
coordinate, all these events are known.

Vertex events: In contrast to site events, vertex events are generated dynamically as the algorithm runs. As with the
line segment plane sweep algorithm, the important idea is that each such event is generated by objects that are
neighbors on the beach line. However, unlike the segment intersection where pairs of consecutive segments
generated events, here triples of points generate the events.

In particular, consider any three consecutive sites pi, pj , and pk whose arcs appear consecutively on the beach
line from left to right. (See the figure below.) Further, suppose that the circumcircle for these three sites lies at
least partially below the current sweep line (meaning that the Voronoi vertex has not yet been generated), and
that this circumcircle contains no points lying below the sweep line (meaning that no future point will block the
creation of the vertex).

Consider the moment at which the sweep line falls to a point where it is tangent to the lowest point of this
circle. At this instant the circumcenter of the circle is equidistant from all three sites and from the sweep line.
Thus all three parabolic arcs pass through this center point, implying that the contribution of the arc from pj has
disappeared from the beach line. In terms of the Voronoi diagram, the bisectors (pi, pj) and (pj , pk) have met
each other at the Voronoi vertex, and a single bisector (pi, pk) remains. (See the figure below.)

Sweep-line algorithm: We can now present the algorithm in greater detail. The main structures that we will maintain
are the following:

(Partial) Voronoi diagram: The partial Voronoi diagram that has been constructed so far will be stored in a
DCEL. There is one technical difficulty caused by the fact that the diagram contains unbounded edges. To
handle this we will assume that the entire diagram is to be stored within a large bounding box. (This box
should be chosen large enough that all of the Voronoi vertices fit within the box.)

Lecture Notes 72 CMSC 754

pk
pi

pj pj

pk
pi pi

kp

jp

Figure 63: Vertex events.

Beach line: The beach line is represented using a dictionary (e.g. a balanced binary tree or skip list). An
important fact of the construction is that we do not explicitly store the parabolic arcs. They are just there
for the purposes of deriving the algorithm. Instead for each parabolic arc on the current beach line, we
store the site that gives rise to this arc. Notice that a site may appear multiple times on the beach line (in
fact linearly many times in n). But the total length of the beach line will never exceed 2n−1. (You should
try to construct an example where a single site contributes multiple arcs to the beach line.)

Between each consecutive pair of sites pi and pj , there is a breakpoint. Although the breakpoint moves as
a function of the sweep line, observe that it is possible to compute the exact location of the breakpoint as a
function of pi, pj , and the current y-coordinate of the sweep line. In particular, the breakpoint is the center
of a circle that passes through pi, pj and is tangent to the sweep line. Thus, as with beach lines, we do not
explicitly store breakpoints. Rather, we compute them only when we need them.

The important operations that we will have to support on the beach line are

(1) Given a fixed location of the sweep line, determine the arc of the beach line that intersects a given
vertical line. This can be done by a binary search on the breakpoints, which are computed “on the
fly”. (Think about this.)

(2) Compute predecessors and successors on the beach line.

(3) Insert an new arc pi within a given arc pj , thus splitting the arc for pj into two. This creates three
arcs, pj , pi, and pj .

(4) Delete an arc from the beach line.

It is not difficult to modify a standard dictionary data structure to perform these operations in O(log n)
time each.

Event queue: The event queue is a priority queue with the ability both to insert and delete new events. Also the
event with the largest y-coordinate can be extracted. For each site we store its y-coordinate in the queue.

For each consecutive triple pi, pj , pk on the beach line, we compute the circumcircle of these points.
(We’ll leave the messy algebraic details as an exercise, but this can be done in O(1) time.) If the lower
endpoint of the circle (the minimum y-coordinate on the circle) lies below the sweep line, then we create a
vertex event whose y-coordinate is the y-coordinate of the bottom endpoint of the circumcircle. We store
this in the priority queue. Each such event in the priority queue has a cross link back to the triple of sites
that generated it, and each consecutive triple of sites has a cross link to the event that it generated in the
priority queue.

The algorithm proceeds like any plane sweep algorithm. We extract an event, process it, and go on to the next
event. Each event may result in a modification of the Voronoi diagram and the beach line, and may result in the
creation or deletion of existing events.

Here is how the two types of events are handled:

Lecture Notes 73 CMSC 754

Site event: Let pi be the current site. We shoot a vertical ray up to determine the arc that lies immediately
above this point in the beach line. Let pj be the corresponding site. We split this arc, replacing it with the
triple of arcs pj , pi, pj which we insert into the beach line. Also we create new (dangling) edge for the
Voronoi diagram which lies on the bisector between pi and pj . Some old triples that involved pj may be
deleted and some new triples involving pi will be inserted.
For example, suppose that prior to insertion we had the beach-line sequence

〈p1, p2, pj , p3, p4〉.
The insertion of pi splits the arc pj into two arcs, denoted p′j and p′′j . Although these are separate arcs,
they involve the same site, pj . The new sequence is

〈p1, p2, p
′
j , pi, p

′′
j , p3, p4〉.

Any event associated with the old triple p2, pj , p3 will be deleted. We also consider the creation of new
events for the triples p2, p

′
j , pi and pi, p

′′
j , p3. Note that the new triple p′j , pi, p

′′
j cannot generate an event

because it only involves two distinct sites.

Vertex event: Let pi, pj , and pk be the three sites that generate this event (from left to right). We delete the
arc for pj from the beach line. We create a new vertex in the Voronoi diagram, and tie the edges for the
bisectors (pi, pj), (pj , pk) to it, and start a new edge for the bisector (pi, pk) that starts growing down
below. Finally, we delete any events that arose from triples involving this arc of pj , and generate new
events corresponding to consecutive triples involving pi and pk (there are two of them).
For example, suppose that prior to insertion we had the beach-line sequence

〈p1, pi, pj , pk, p2〉.
After the event we have the sequence

〈p1, pi, pk, p2〉.
We remove any events associated with the triples p1, pi, pj and pj , pk, p2. (The event pi, pj , pk has already
been removed since we are processing it now.) We also consider the creation of new events for the triples
p1, pi, pk and pi, pk, p2.

The analysis follows a typical analysis for plane sweep. Each event involves O(1) processing time plus a
constant number accesses to the various data structures. Each of these accesses takes O(log n) time, and the
data structures are all of size O(n). Thus the total time is O(n log n), and the total space is O(n).

Lecture 17: Delaunay Triangulations

Reading: Chapter 9 in the 4M’s.

Delaunay Triangulations: Last time we gave an algorithm for computing Voronoi diagrams. Today we consider the
related structure, called a Delaunay triangulation (DT). Since the Voronoi diagram is a planar graph, we may
naturally ask what is the corresponding dual graph. The vertices for this dual graph can be taken to be the sites
themselves. Since (assuming general position) the vertices of the Voronoi diagram are of degree three, it follows
that the faces of the dual graph (excluding the exterior face) will be triangles. The resulting dual graph is a
triangulation of the sites, the Delaunay triangulation.

Delaunay triangulations have a number of interesting properties, that are consequences of the structure of the
Voronoi diagram.

Convex hull: The boundary of the exterior face of the Delaunay triangulation is the boundary of the convex
hull of the point set.

Lecture Notes 74 CMSC 754

