
COS/MUS 314

Twinkle++
Lab assignment due 2/21, 11:59pm

In this assignment, you’ll be working with your lab partner. Take a look at
http://en.wikipedia.org/wiki/Pair_programming for a description of pair
programming. The main idea here is that any given time, one person will be
typing while the other helps and watches for mistakes, and you’ll switch between
these roles at least for every coding question. You’ll hand in one submission and
receive the same grade.

0. Reading

a. Types, values, and variables
 http://chuck.cs.princeton.edu/doc/language/type.html

b. Unit Generators in ChucK
http://chuck.cs.princeton.edu/doc/language/ugen.html

 c. Manipulating Time in ChucK
 http://chuck.cs.princeton.edu/doc/language/time.html
 d. She’s a witch!
 http://www.youtube.com/watch?v=zrzMhU_4m-g

1. Twinkle STK (3 points)
Spice up one of your twinkle codes from Assignment 1 by replacing the SinOsc
with an STK instrument. See the ChucK UGen specification at
http://chuck.cs.princeton.edu/doc/program/ugen.html to see what parameters are
available for the different instruments, and don’t forget to use the noteOn and
noteOff functions. For extra help, look at the sample code stk_examples.ck.

Note on inheritance
Many of the UGen (unit generator) classes extend other UGens. For example, all
STK instrument classes (such as Bowed) extend the StkInstrument class
(you’ll see this explicitly stated in the documentation for each class, for example
http://chuck.cs.princeton.edu/doc/program/ugen_full.html#Bowed says “extends
StkInstrument”). This means that all Bowed objects are also StkInstrument
objects, and they inherit all of the parameters and functions of StkInstrument,
like noteOn() and freq(). StkInstrument is therefore called a “parent” or a
“superclass” of Bowed, and Bowed is a “child” or “subclass” of StkInstrument.
So, if you want to know all the parameters and functions available to a ChucK
object, be sure to look at the documentation for that object and its parent (and its
parent’s parent, and so on…). Unlike some other languages, there is no multiple
inheritance allowed in ChucK, so each class may only have a single parent.

2. Logic exercise (2 points)
Download the skeleton code witch.ck.

a. Once you complete this code, it will print out whether someone is a witch,
given a gender and weight. Replace the if-block at line 13 with something a bit
more complicated, to encode the following logic:

If something weighs the same as the duck, it floats.
If something floats, it’s made of wood.
If it’s made of wood, it burns.
If it burns and it is female, it is a witch.

Don’t add any more variables, but use all the variables defined in the skeleton.
Try changing the initial values of isFemale, weight, and weightOfDuck to verify
that the code does what you expect.

b. Add an appropriate sound effect according to whether the person is found to
be a witch. You can use a UGen we’ve already introduced, like SinOsc or an
StkInstrument, or you can live dangerously and use a SndBuf object to play back
a .wav or .aiff file. Your choice.

See http://chuck.cs.princeton.edu/doc/examples/basic/sndbuf.ck for an example
of using SndBuf; in order for this to work in miniAudicle, you’ll have to initialize
the filename variable to a filename that’s relative to your miniAudicle “current
directory”, which is set in the miniAudicle Preferences menu, under
Miscellaneous. For example, if my miniAudicle working directory is
“/Users/rebecca/assignment2/”, the code

“mySound.wav” => string filename;
indicates that I’m going to be using the file /Users/rebecca/assignment2/
mySound.wav. You can play a file once just by connecting a SndBuf to the dac,
loading the file using the .read function, and advancing time. If you use a SndBuf,
be sure to include your sound file(s) in your submission.

3. Interactive expressivity (5 points)
(Don’t forget to switch programmers!)

a. Surround your twinkle code from question 1 with a while-loop so it never ends.
(Or, if you’re sick of Twinkle, make a different melody or piece of musical code.)

b. Next, add expressive, real-time control to this “composition” by using one or
more of following classes:
 TrackpadFeatureExtractor (314_TrackpadFeatureExtractor.ck) (**You
may have to change mouseDevice to 1 on line 25, especially for Lion)
 MotionFeatureExtractor (314_MotionFeatureExtractor.ck)
 JoystickFeatureExtractor (314_JoystickFeatureExtractor.ck)
 BreathFeatureExtractor (314_BreathEnvelopeExtractor.ck)

Objects of these types have functions that you can call to get the current
trackpad X and Y positions, the current X/Y/Z accelerometer positions, the
current joystick configuration (from a Logitech Extreme 3D pro joystick -- ask us if
you want to check one out from our stash), or an estimate of the current breath
amplitude of someone blowing into the microphone. The comments at the
beginning of each file describe the functions available and give you example
code to try out.

Notice that, unlike SinOsc or Bowed or other built-in UGens, these classes aren’t
built into ChucK. Instead, they’re defined in ChucK .ck files. In order to use an
object of a user-defined type, you’ll need to add the .ck file containing the class
definition to the virtual machine (VM) before adding any code that references the
class. For example, start miniAudicle, add 314_MotionFeatureExtractork.ck to
the VM, then add motion_mandolin.ck. This example file declares a variable of
type MotionFeatureExtractor, calls its setup and extract functions, then uses the
motion sensor values in a simple way to change the pitch of a Mandolin.

For Question 3, pick one or more aspects of your twinkle (or other) piece to
control expressively, using one or more of the input extractor classes
above. For example, you could change the tonality according to the trackpad
position and the tempo according to the tilt. It doesn’t have to be complicated, but
it should be creative and expressively controllable by a human performer.

What to hand in:

• ChucK code for your Twinkle, Twinkle masterpiece for Question 1.
• ChucK code for your witch hunt in Question 2, along with any sound files

you used, if you used a SndBuf.
• ChucK code for your interactive masterpiece in Question 3.
• A brief written description of how to expressively control your composition

in Question 3.
• Be prepared to demo Question 3 in the next precept!

How to hand it in:
Submit just one file per group. Submit via Blackboard, like you did in assignment
1. Also, in the comments box, list your partner(s), so they can get credit, too.

