
 ASCII encoding. When you HexDump a bit-
stream that contains ASCII-encoded charac-
ters, the table at right is useful for reference.
Given a two digit hex number, use the fi rst
hex digit as a row index and the second hex
digit as a column index to fi nd the character
that it encodes. For example, 31 encodes the
digit 1, 4A encodes the letter J, and so forth.
This table is for 7-bit ASCII, so the fi rst hex
digit must be 7 or less. Hex numbers starting
with 0 and 1 (and the numbers 20 and 7F)
correspond to non-printing control charac-
ters. Many of the control characters are left over from the days when physical devices
such as typewriters were controlled by ASCII input; the table highlights a few that you
might see in dumps. For example, SP is the space character, NUL is the null character, LF
is line feed, and CR is carriage return.

In summary, working with data compression requires us to reorient our thinking about
standard input and standard output to include binary encoding of data. BinaryStdIn
and BinaryStdOut provide the methods that we need. They provide a way for you to
make a clear distinction in your client programs between writing out information in-
tended for fi le storage and data transmission (that will be read by programs) and print-
ing information (that is likely to be read by humans).

 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI

1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US

2 SP ! " # $ % & ‘ () * + , - . /

3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

4 @ A B C D E F G H I J K L M N O

5 P Q R S T U V W X Y Z [\] ^ _

6 ` a b c d e f g h i j k l m n o

7 p q r s t u v w x y z { | } ~ DEL

 Hexadecimal-to-ASCII conversion table

8155.5 Q Data Compression

// expand Huffman-encoded input from standard input and write to standard output

public static void expand() {

// read in Huffman trie from input stream

Node root = readTrie();

// number of bytes to write

int length = BinaryStdIn.readInt();

// decode using the Huffman trie

for (int i = 0; i < length; i++) {

Node x = root;

while (!x.isLeaf()) {

boolean bit = BinaryStdIn.readBoolean();

if (bit) x = x.right;

else x = x.left;

}

BinaryStdOut.write(x.ch);

}

BinaryStdOut.close();

}

1

