
‣ R-way tries
‣ ternary search tries
‣ character-based operations

Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2011 · April 15, 2012 6:33:17 AM

Algorithms
F O U R T H E D I T I O N

R O B E R T S E D G E W I C K K E V I N W A Y N E

5.2 TRIES Review: summary of the performance of symbol-table implementations

Order of growth of the frequency of operations.

Q. Can we do better?
A. Yes, if we can avoid examining the entire key, as with string sorting.

2

implementation

typical case
ordered

operations
operations

on keys
implementation

search insert delete
operations on keys

red-black BST log N log N log N yes compareTo()

hash table 1 † 1 † 1 † no
equals()

hashcode()

† under uniform hashing assumption

String symbol table. Symbol table specialized to string keys.

Goal. Faster than hashing, more flexible than BSTs.

3

String symbol table basic API

 public class StringST<Value> public class StringST<Value>

StringST()StringST() create an empty symbol table

void put(String key, Value val)put(String key, Value val) put key-value pair into the symbol table

Value get(String key)get(String key) return value paired with given key

void delete(String key)delete(String key) delete key and corresponding value

⋮⋮

4

String symbol table implementations cost summary

Challenge. Efficient performance for string keys.

Parameters
• N = number of strings
• L = length of string
• R = radix

file size words distinct

moby.txt 1.2 MB 210 K 32 K

actors.txt 82 MB 11.4 M 900 K

character accesses (typical case)character accesses (typical case)character accesses (typical case)character accesses (typical case) dedupdedup

implementation
search

hit
search
miss

insert
space

(references)
moby.txt actors.txt

red-black BST L + c lg 2 N c lg 2 N c lg 2 N 4N 1.40 97.4

hashing
(linear probing)

L L L 4N to 16N 0.76 40.6

5

‣ R-way tries
‣ ternary search tries
‣ character-based operations

Tries. [from retrieval, but pronounced "try"]

• Store characters in nodes (not keys).

• Each node has R children, one for each possible character.

• For now, we do not draw null links.

6

Tries

e

r

e

a l

l

s

b

y

o

h

e

t

7

50

3

1

6

4

s

l

l

e

h

s

root
link to trie for all keys

that start with s
link to trie for all keys

that start with she

value for she in node
corresponding to last

key character

key value

by 4

sea 6

sells 1

she 0

shells 3

shore 7

the 5

Follow links corresponding to each character in the key.

• Search hit: node where search ends has a non-null value.

• Search miss: reach a null link or node where search ends has null value.

7

Search in a trie

e

r

get("shells")

e

a l

l

s

b

y

o

h

e

t

7

50

3

1

6

4

ss

ll

ll

ee

hh

ss

return value associated
with last key character

(return 3)
3

Follow links corresponding to each character in the key.

• Search hit: node where search ends has a non-null value.

• Search miss: reach a null link or node where search ends has null value.

8

Search in a trie

e

r

get("she")

e

a l

l

s

b

y

o

h

e

t

7

50

3

1

6

4

s

l

l

ee

hh

ss

search may terminated
at an intermediate node

(return 0)

0

Follow links corresponding to each character in the key.

• Search hit: node where search ends has a non-null value.

• Search miss: reach a null link or node where search ends has null value.

9

Search in a trie

e

r

get("shell")

e

a l

l

s

b

y

o

h

e

t

7

50

3

1

6

4

s

ll

ll

ee

hh

ss

no value associated
with last key character

(return null)

Follow links corresponding to each character in the key.

• Search hit: node where search ends has a non-null value.

• Search miss: reach a null link or node where search ends has null value.

10

Search in a trie

e

r

get("shelter")

e

a l

l

s

b

y

o

h

e

t

7

50

3

1

6

4

s

l

ll

ee

hh

ss

no link to 't'
(return null)

Follow links corresponding to each character in the key.

• Encounter a null link: create new node.

• Encounter the last character of the key: set value in that node.

11

Insertion into a trie

e

r

put("shore", 7)

e

a l

l

s

e

l

s

b

y

l

o

h

e

t

hh

ss

7

50

3

1

6

4

12

Trie construction demo

13

Trie representation: Java implementation

Node. A value, plus references to R nodes.

private static class Node
{
 private Object value;
 private Node[] next = new Node[R];
}

Trie representation

each node has
an array of links

and a value

characters are implicitly
defined by link index

s

h

e 0

e

l

l

s 1

a

s

h

e

e

l

l

s

a
0

1

22

neither keys nor
characters are

explicitly stored

use Object instead of Value since
no generic array creation in Java

public class TrieST<Value>
{
 private static final int R = 256;
 private Node root;

 private static class Node
 { /* see previous slide */ }

 public void put(String key, Value val)
 { root = put(root, key, val, 0); }

 private Node put(Node x, String key, Value val, int d)
 {
 if (x == null) x = new Node();
 if (d == key.length()) { x.val = val; return x; }
 char c = key.charAt(d);
 x.next[c] = put(x.next[c], key, val, d+1);
 return x;
 }

 ⋮

14

R-way trie: Java implementation

extended ASCII

 ⋮

 public boolean contains(String key)
 { return get(key) != null; }

 public Value get(String key)
 {
 Node x = get(root, key, 0);
 if (x == null) return null;
 return (Value) x.val;
 }

 private Node get(Node x, String key, int d)
 {
 if (x == null) return null;
 if (d == key.length()) return x;
 char c = key.charAt(d);
 return get(x.next[c], key, d+1);
 }

}

15

R-way trie: Java implementation (continued)

cast needed

Trie performance

Search hit. Need to examine all L characters for equality.

Search miss.

• Could have mismatch on first character.

• Typical case: examine only a few characters (sublinear).

Space. R null links at each leaf.
(but sublinear space possible if many short strings share common prefixes)

Bottom line. Fast search hit and even faster search miss, but wastes space.

16

17

String symbol table implementations cost summary

R-way trie.

• Method of choice for small R.

• Too much memory for large R.

Challenge. Use less memory, e.g., 65,536-way trie for Unicode!

character accesses (typical case)character accesses (typical case)character accesses (typical case)character accesses (typical case) dedupdedup

implementation
search

hit
search
miss insert

space
(references) moby.txt actors.txt

red-black BST L + c lg 2 N c lg 2 N c lg 2 N 4N 1.40 97.4

hashing
(linear probing)

L L L 4N to 16N 0.76 40.6

R-way trie L log R N L (R+1) N 1.12
out of

memory

18

Digression: out of memory?

“ 640 K ought to be enough for anybody. ”
 — (mis)attributed to Bill Gates, 1981
 (commenting on the amount of RAM in personal computers)

“ 64 MB of RAM may limit performance of some Windows XP
 features; therefore, 128 MB or higher is recommended for
 best performance. ” — Windows XP manual, 2002

“ 64 bit is coming to desktops, there is no doubt about that.
 But apart from Photoshop, I can't think of desktop applications
 where you would need more than 4GB of physical memory, which
 is what you have to have in order to benefit from this technology.
 Right now, it is costly. ” — Bill Gates, 2003

Digression: out of memory?

A short (approximate) history.

19

machine year
address

bits
addressable

memory
typical actual

memory cost

PDP-8 1960s 12 6 KB 6 KB $16K

PDP-10 1970s 18 256 KB 256 KB $1M

IBM S/360 1970s 24 4 MB 512 KB $1M

VAX 1980s 32 4 GB 1 MB $1M

Pentium 1990s 32 4 GB 1 GB $1K

Xeon 2000s 64 enough 4 GB $100

?? future 128+ enough enough $1

“ 512-bit words ought to be enough for anybody. ”
 — Kevin Wayne, 1995

A modest proposal

Number of atoms in the universe (estimated). ≤ 2266.
Age of universe (estimated). 14 billion years ~ 259 seconds ≤ 289 nanoseconds.

Q. How many bits address every atom that ever existed?
A. Use a unique 512-bit address for every atom at every time quantum.

Ex. Use 256-way trie to map each atom to location.

• Represent atom as 64 8-bit chars (512 bits).

• 256-way trie wastes 255/256 actual memory.

• Need better use of memory.

20

266 bits 89 bits 157 bits

atom time cushion for whatever

21

‣ R-way tries
‣ ternary search tries
‣ character-based operations

22

Ternary search tries

• Store characters and values in nodes (not keys).

• Each node has three children: smaller (left), equal (middle), larger (right).

Jon L. Bentley* Robert Sedgewick#

Abstract
We present theoretical algorithms for sorting and

searching multikey data, and derive from them practical C
implementations for applications in which keys are charac-
ter strings. The sorting algorithm blends Quicksort and
radix sort; it is competitive with the best known C sort
codes. The searching algorithm blends tries and binary
search trees; it is faster than hashing and other commonly
used search methods. The basic ideas behind the algo-
rithms date back at least to the 1960s but their practical
utility has been overlooked. We also present extensions to
more complex string problems, such as partial-match
searching.

1. Introduction
Section 2 briefly reviews Hoare’s [9] Quicksort and

binary search trees. We emphasize a well-known isomor-
phism relating the two, and summarize other basic facts.

The multikey algorithms and data structures are pre-
sented in Section 3. Multikey Quicksort orders a set of II
vectors with k components each. Like regular Quicksort, it
partitions its input into sets less than and greater than a
given value; like radix sort, it moves on to the next field
once the current input is known to be equal in the given
field. A node in a ternary search tree represents a subset of
vectors with a partitioning value and three pointers: one to
lesser elements and one to greater elements (as in a binary
search tree) and one to equal elements, which are then pro-
cessed on later fields (as in tries). Many of the structures
and analyses have appeared in previous work, but typically
as complex theoretical constructions, far removed from
practical applications. Our simple framework opens the
door for later implementations.

The algorithms are analyzed in Section 4. Many of the
analyses are simple derivations of old results.

Section 5 describes efficient C programs derived from
the algorithms. The first program is a sorting algorithm

Fast Algorithms for Sorting and Searching Strings

that is competitive with the most efficient string sorting
programs known. The second program is a symbol table
implementation that is faster than hashing, which is com-
monly regarded as the fastest symbol table implementa-
tion. The symbol table implementation is much more
space-efficient than multiway trees, and supports more
advanced searches.

In many application programs, sorts use a Quicksort
implementation based on an abstract compare operation,
and searches use hashing or binary search trees. These do
not take advantage of the properties of string keys, which
are widely used in practice. Our algorithms provide a nat-
ural and elegant way to adapt classical algorithms to this
important class of applications.

Section 6 turns to more difficult string-searching prob-
lems. Partial-match queries allow “don’t care” characters
(the pattern “so.a”, for instance, matches soda and sofa).
The primary result in this section is a ternary search tree
implementation of Rivest’s partial-match searching algo-
rithm, and experiments on its performance. “Near neigh-
bor” queries locate all words within a given Hamming dis-
tance of a query word (for instance, code is distance 2
from soda). We give a new algorithm for near neighbor
searching in strings, present a simple C implementation,
and describe experiments on its efficiency.

Conclusions are offered in Section 7.

2. Background
Quicksort is a textbook divide-and-conquer algorithm.

To sort an array, choose a partitioning element, permute
the elements such that lesser elements are on one side and
greater elements are on the other, and then recursively sort
the two subarrays. But what happens to elements equal to
the partitioning value? Hoare’s partitioning method is
binary: it places lesser elements on the left and greater ele-
ments on the right, but equal elements may appear on
either side.

* Bell Labs, Lucent Technologies, 700 Mountam Avenue, Murray Hill.
NJ 07974; jlb@research.bell-labs.com.

Princeton University. Princeron. NJ. 08514: rs@cs.princeton.edu.

Algorithm designers have long recognized the desir-
irbility and difficulty of a ternary partitioning method.
Sedgewick [22] observes on page 244: “Ideally, we would
llke to get all [equal keys1 into position in the file, with all

360

• Store characters and values in nodes (not keys).

• Each node has three children: smaller (left), equal (middle), larger (right).

23

Ternary search tries

TST representation of a trie

each node has
three links

link to TST for all keys
that start with s

link to TST for all keys
that start with
a letter before s

t

h

e 8

a

r

e 12

s

h u

e 10

e

l

l

s 11

l

l

s 15

r 0

e

l

y 13

o

7

r

e

b

y 4

a 14

t

h

e 8

a

r

e 12

s

h
u

e 10

e

l

l

s 11

l

l

s 15

r 0

e

l

y 13

o

7

r

e

b

y 4

a
14

Follow links corresponding to each character in the key.

• If less, take left link; if greater, take right link.

• If equal, take the middle link and move to the next key character.

Search hit. Node where search ends has a non-null value.
Search miss. Reach a null link or node where search ends has null value.

24

Search in a TST

TST search example

return value
associated with

last key character

match: take middle link,
move to next char

mismatch: take left or right link,
 do not move to next char

t

h

e 8

a

r

e 12

s

h
u

e 10

e

l

l

s 11

l

l

s 15

r

e

l

y 13

o

7

r

e

b

y 4

a14

get("sea")

25

Search in a TST

o

r

e 7

t

h

e 5

b

y 4

a

get("sea")

e

h

s

e

l

l

s 1

6

l

s

l

3

0

a

l

e

h

s

return value associated
with last key character

6

26

Search in a TST

o

r

e 7

t

h

e 5

b

y 4

a

get("shelter")

e

h

s

e

l

l

s 1

6

l

s

l

3

0e

h

s

l

l

no link to 't'
(return null)

27

TST construction demo

26-way trie. 26 null links in each leaf.

TST. 3 null links in each leaf.

28

26-way trie vs. TST

26-way trie (1035 null links, not shown)

TST (155 null links)

now
for
tip
ilk
dim
tag
jot
sob
nob
sky
hut
ace
bet
men
egg
few
jay
owl
joy
rap
gig
wee
was
cab
wad
caw
cue
fee
tap
ago
tar
jam
dug
and

A TST node is five fields:

• A value.

• A character c.

• A reference to a left TST.

• A reference to a middle TST.

• A reference to a right TST.

29

TST representation in Java

private class Node
{
 private Value val;
 private char c;
 private Node left, mid, right;
}

Trie node representations

s

e h u

link for keys
that start with s

link for keys
that start with su

h
ue

standard array of links (R = 26) ternary search tree (TST)

s

30

TST: Java implementation

public class TST<Value>
{
 private Node root;

 private class Node
 { /* see previous slide */ }

 public void put(String key, Value val)
 { root = put(root, key, val, 0); }

 private Node put(Node x, String key, Value val, int d)
 {
 char c = key.charAt(d);
 if (x == null) { x = new Node(); x.c = c; }
 if (c < x.c) x.left = put(x.left, key, val, d);
 else if (c > x.c) x.right = put(x.right, key, val, d);
 else if (d < key.length() - 1) x.mid = put(x.mid, key, val, d+1);
 else x.val = val;
 return x;
 }

 ⋮

31

TST: Java implementation (continued)

 ⋮

 public boolean contains(String key)
 { return get(key) != null; }

 public Value get(String key)
 {
 Node x = get(root, key, 0);
 if (x == null) return null;
 return x.val;
 }

 private Node get(Node x, String key, int d)
 {
 if (x == null) return null;
 char c = key.charAt(d);
 if (c < x.c) return get(x.left, key, d);
 else if (c > x.c) return get(x.right, key, d);
 else if (d < key.length() - 1) return get(x.mid, key, d+1);
 else return x;
 }
}

32

String symbol table implementation cost summary

Remark. Can build balanced TSTs via rotations to achieve L + log N

worst-case guarantees.

Bottom line. TST is as fast as hashing (for string keys), space efficient.

character accesses (typical case)character accesses (typical case)character accesses (typical case)character accesses (typical case) dedupdedup

implementation
search

hit
search
miss insert

space
(references) moby.txt actors.txt

red-black BST L + c lg 2 N c lg 2 N c lg 2 N 4 N 1.40 97.4

hashing
(linear probing)

L L L 4 N to 16 N 0.76 40.6

R-way trie L log R N L (R + 1) N 1.12
out of

memory

TST L + ln N ln N L + ln N 4 N 0.72 38.7

33

TST with R2 branching at root

Hybrid of R-way trie and TST.

• Do R 2-way branching at root.

• Each of R 2 root nodes points to a TST.

Q. What about one- and two-letter words?

TST TST TST TSTTST
…

array of 262 roots

aa ab ac zy zz

34

String symbol table implementation cost summary

character accesses (typical case)character accesses (typical case)character accesses (typical case)character accesses (typical case) dedupdedup

implementation
search

hit
search
miss insert

space
(references) moby.txt actors.txt

red-black BST L + c lg 2 N c lg 2 N c lg 2 N 4 N 1.40 97.4

hashing
(linear probing)

L L L 4 N to 16 N 0.76 40.6

R-way trie L log R N L (R + 1) N 1.12
out of

memory

TST L + ln N ln N L + ln N 4 N 0.72 38.7

TST with R2 L + ln N ln N L + ln N 4 N + R2 0.51 32.7

35

TST vs. hashing

Hashing.

• Need to examine entire key.

• Search hits and misses cost about the same.

• Performance relies on hash function.

• Does not support ordered symbol table operations.

TSTs.

• Works only for strings (or digital keys).

• Only examines just enough key characters.

• Search miss may involve only a few characters.

• Supports ordered symbol table operations (plus others!).

Bottom line. TSTs are:

• Faster than hashing (especially for search misses).
More flexible than red-black BSTs. [stay tuned]

36

‣ R-way tries
‣ ternary search tries
‣ character-based operations

Character-based operations. The string symbol table API supports several
useful character-based operations.

Prefix match. Keys with prefix "sh": "she", "shells", and "shore".

Wildcard match. Keys that match ".he": "she" and "the".

Longest prefix. Key that is the longest prefix of "shellsort": "shells".
37

String symbol table API

key value

by 4

sea 6

sells 1

she 0

shells 3

shore 7

the 5

Remark. Can also add other ordered ST methods, e.g., floor() and rank().
38

String symbol table API

 public class StringST<Value> public class StringST<Value> public class StringST<Value>

StringST() create a symbol table with string keys

void put(String key, Value val) put key-value pair into the symbol table

Value get(String key) value paired with key

void delete(String key) delete key and corresponding value

⋮

Iterable<String> keys() all keys

Iterable<String> keysWithPrefix(String s) keys having s as a prefix

Iterable<String> keysThatMatch(String s) keys that match s (where . is a wildcard)

String longestPrefixOf(String s) longest key that is a prefix of s

To delete a key-value pair:

• Find the node corresponding to key and set value to null.

• If that node has all null links, remove that node (and recur).

39

Deletion in an R-way trie

e

r

delete("shells")

e

a l

l

s

b

y

o

h

e

t

7

50

3

1

6

4

s

set value to nulls

l

l

e

h

s

null value and links
(delete node)

To iterate through all keys in sorted order:

• Do inorder traversal of trie; add keys encountered to a queue.

• Maintain sequence of characters on path from root to node.

40

Ordered iteration

o

r

e 7

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

b
by
s

se
sea
sel
sell

sells
sh
she

shell
shells

sho
shor

shore
t

th
the

by

by sea

by sea sells

by sea sells she

by sea sells she shells

by sea sells she shells shore

by sea sells she shells shore the

Collecting the keys in a trie (trace)

key q

keysWithPrefix("");

To iterate through all keys in sorted order:

• Do inorder traversal of trie; add keys encountered to a queue.

• Maintain sequence of characters on path from root to node.

41

Ordered iteration: Java implementation

public Iterable<String> keys()
{
 Queue<String> queue = new Queue<String>();
 collect(root, "", queue);
 return queue;
}

private void collect(Node x, String prefix, Queue<String> q)
{
 if (x == null) return;
 if (x.val != null) q.enqueue(prefix);
 for (char c = 0; c < R; c++)
 collect(x.next[c], prefix + c, q);
}

sequence of characters
on path from root to x

Find all keys in symbol table starting with a given prefix.

Ex. Autocomplete in a cell phone, search bar, text editor, or shell.

• User types characters one at a time.

• System reports all matching strings.

42

Prefix matches

Find all keys in symbol table starting with a given prefix.

43

Prefix matches

o

r

e 7

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

find subtrie for all
keys beginning with "sh"

o

r

e 7

t

h

e 5

s

h

e 0

e

l

l

s 1

l

l

s 3

b

y 4

a 6

collect keys
in that subtrie

keysWithPrefix("sh");

Pre!x match in a trie

sh
she
shel
shell
shells

sho
shor
shore

she

she shells

she shells shore

key q

public Iterable<String> keysWithPrefix(String prefix)
{
 Queue<String> queue = new Queue<String>();
 Node x = get(root, prefix, 0);
 collect(x, prefix, queue);
 return queue;
}

root of subtrie for all strings
beginning with given prefix

44

Longest prefix

Find longest key in symbol table that is a prefix of query string.

Ex. To send packet toward destination IP address, router chooses IP address
in routing table that is longest prefix match.

Note. Not the same as floor:

represented as 32-bit
binary number for IPv4

(instead of string)

floor("128.112.100.16") = "128.112.055.15"

"128"

"128.112"

"128.112.055"

"128.112.055.15"

"128.112.136"

"128.112.155.11"

"128.112.155.13"

"128.222"

"128.222.136"

longestPrefixOf("128.112.136.11") = "128.112.136"

longestPrefixOf("128.112.100.16") = "128.112"

longestPrefixOf("128.166.123.45") = "128"

45

Longest prefix

Find longest key in symbol table that is a prefix of query string.

• Search for query string.

• Keep track of longest key encountered.

Possibilities for longestPrefixOf()

s

h

e 0

e

l

l

s 1

l

l

s 3

a 2

"she" "shell"

search ends at
end of string

value is not null
 return she

s

h

e 0

e

l

l

s 1

l

l

s 3

a 2 search ends at
end of string
value is null
return she

(last key on path)

"shellsort"

s

h

e 0

e

l

l

s 1

l

l

s 3

a 2

search ends at
 null link

return shells
(last key on path)

search ends at
 null link

return she
(last key on path)

"shelters"

s

h

e 0

e

l

l

s 1

l

l

s 3

a 2

46

Longest prefix: Java implementation

Find longest key in symbol table that is a prefix of query string.

• Search for query string.

• Keep track of longest key encountered.

 public String longestPrefixOf(String query)
 {
 int length = search(root, query, 0, 0);
 return query.substring(0, length);
 }

 private int search(Node x, String query, int d, int length)
 {
 if (x == null) return length;
 if (x.val != null) length = d;
 if (d == query.length()) return length;
 char c = query.charAt(d);
 return search(x.next[c], query, d+1, length);
 }

47

T9 texting

Goal. Type text messages on a phone keypad.

Multi-tap input. Enter a letter by repeatedly pressing a key until the desired
letter appears.

T9 text input.

• Find all words that correspond to given sequence of numbers.

• Press 0 to see all completion options.

Ex. hello

• Multi-tap: 4 4 3 3 5 5 5 5 5 5 6 6 6

• T9: 4 3 5 5 6

www.t9.com

"a much faster and more fun way to enter text"

48

Patricia trie

Patricia trie. [Practical Algorithm to Retrieve Information Coded in Alphanumeric]

• Remove one-way branching.

• Each node represents a sequence of characters.

• Implementation: one step beyond this course.

Applications.

• Database search.

• P2P network search.

• IP routing tables: find longest prefix match.

• Compressed quad-tree for N-body simulation.

• Efficiently storing and querying XML documents.
1

1 2

2

put("shells", 1);
put("shellfish", 2);

Removing one-way branching in a trie

h

e

l

f

i

s

h

l

s

s s

shell

fish

internal
one-way

branching

external
one-way

branching

standard
trie

no one-way
branching

49

Suffix tree

Suffix tree.

• Patricia trie of suffixes of a string.

• Linear-time construction: one steps beyond this lecture.

Applications.

• Linear-time: longest repeated substring, longest common substring,
longest palindromic substring, substring search, tandem repeats, ….

• Computational biology databases (BLAST, FASTA).

BANANAS A NA S

NA S S NAS

NAS S

suffix tree for BANANAS

50

String symbol tables summary

A success story in algorithm design and analysis.

Red-black BST.

• Performance guarantee: log N key compares.

• Supports ordered symbol table API.

Hash tables.

• Performance guarantee: constant number of probes.

• Requires good hash function for key type.

Tries. R-way, TST.

• Performance guarantee: log N characters accessed.

• Supports character-based operations.

Bottom line. You can get at anything by examining 50-100 bits (!!!)

