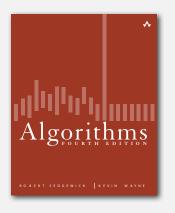
4.4 SHORTEST PATHS

Shortest paths in a weighted digraph

Given an edge-weighted digraph, find the shortest (directed) path from s to t.



- edge-weighted digraph API
- shortest-paths properties
- Dijkstra's algorithm
- edge-weighted DAGs
- ▶ negative weights

<mark>edge-weig</mark> 4->5	hted dig	raph
5->4	0.35	$ (1)$ \rightarrow (2)
4->7	0.37	
5->7	0.28	
7->5	0.28	
5->1	0.32	
0->4	0.38	(4) ← − − − 6)
0->2	0.26	
7->3	0.39	shortest path from 0 to 6
1->3	0.29	0->2 0.26
2->7	0.34	2->7 0.34
6->2	0.40	7->3 0.39
3->6	0.52	3->6 0.52
6->0	0.58	5-20 0.32
6->4	0.93	

Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2011 · April 4, 2012 8:10:33 AM

Google maps

Continental U.S. routes (August 2010)



http://www.continental.com/web/en-US/content/travel/routes

Shortest path applications

- PERT/CPM.
- Map routing.
- Seam carving.
- Robot navigation.
- Texture mapping.
- Typesetting in TeX.
- Urban traffic planning.
- Optimal pipelining of VLSI chip.
- Telemarketer operator scheduling.
- Routing of telecommunications messages.
- Network routing protocols (OSPF, BGP, RIP).
- Exploiting arbitrage opportunities in currency exchange.
- Optimal truck routing through given traffic congestion pattern.

Reference: Network Flows: Theory, Algorithms, and Applications, R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Prentice Hall, 1993.

http://en.wikipedia.org/wiki/Seam_carving

Shortest path variants

Which vertices?

- Source-sink: from one vertex to another.
- Single source: from one vertex to every other.
- All pairs: between all pairs of vertices.

Restrictions on edge weights?

- Nonnegative weights.
- Arbitrary weights.
- Euclidean weights.

Cycles?

- No directed cycles.
- No "negative cycles."

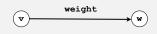
Simplifying assumption. There exists a shortest path from s to each vertex v.

6

Weighted directed edge API

public class DirectedEdge

	DirectedEdge(int v, int w, double weight)	weighted edge $v \rightarrow w$
int	from()	vertex v
int	to()	vertex w
double	weight()	weight of this edge
String	toString()	string representation



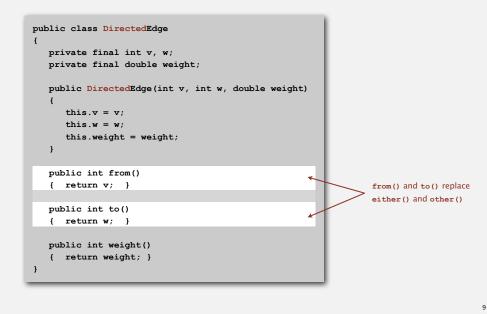
Idiom for processing an edge e: int v = e.from(), w = e.to();

edge-weighted digraph API

- shortest-paths propert
- Dijkstra's algorithm
- edge-weighted DAG
- negative weight:

Weighted directed edge: implementation in Java

Similar to Eage for undirected graphs, but a bit simpler.

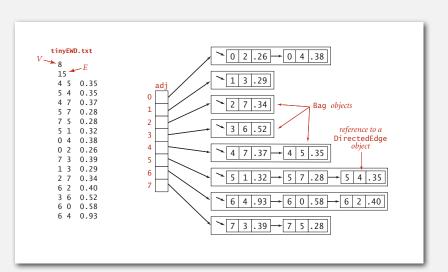


Edge-weighted digraph API

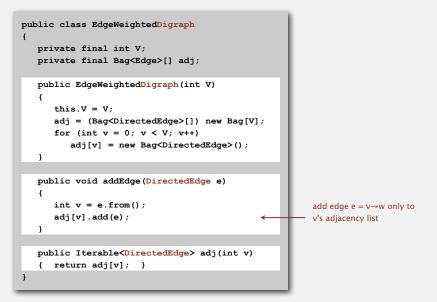
public classEdgeWeightedDigraphedge-weighted digraph with V verticesEdgeWeightedDigraph(int V)edge-weighted digraph with V verticesEdgeWeightedDigraph(In in)edge-weighted digraph from input streamvoidaddEdge(DirectedEdge e)add weighted directed edge eintv()number of verticesintE()number of edgesIterable<DirectedEdge>edges()all edgesStringtoString()string representation

Conventions. Allow self-loops and parallel edges.

Edge-weighted digraph: adjacency-lists representation



Edge-weighted digraph: adjacency-lists implementation in Java



Goal. Find the shortest path from s to every other vertex.

public class	SP	
	SP(EdgeWeightedDigraph G, int s)	shortest paths from s in graph G
double	distTo(int v)	length of shortest path from s to v
<pre>Iterable <directededge></directededge></pre>	pathTo(int v)	shortest path from s to v
boolean	hasPathTo(int v)	is there a path from s to v?

```
SP sp = new SP(G, s);
for (int v = 0; v < G.V(); v++)
{
    StdOut.printf("%d to %d (%.2f): ", s, v, sp.distTo(v));
    for (DirectedEdge e : sp.pathTo(v))
        StdOut.print(e + " ");
    StdOut.println();
}</pre>
```

13

15

adaa waightad digraph AD

shortest-paths properties

bijnstru s urgeritini

eage weighted bac

negative weights

Single-source shortest paths API

Goal. Find the shortest path from s to every other vertex.

public class	SP	
	SP(EdgeWeightedDigraph G, int s)	shortest paths from s in graph G
double	distTo(int v)	length of shortest path from s to v
Iterable <directededge></directededge>	pathTo(int v)	shortest path from s to v
boolean	hasPathTo(int v)	is there a path from s to v?
<pre>% java SP tin</pre>	yEWD.txt 0	
0 to 0 (0.00)	:	
0 to 1 (1.05)	: 0->4 0.38 4->5 0.35 5->1 0.32	
0 to 2 (0.26)	: 0->2 0.26	
0 to 3 (0.99)	: 0->2 0.26 2->7 0.34 7->3 0.39	
0 to 4 (0.38)	: 0->4 0.38	
$0 \pm 0.5 (0.73)$: 0->4 0.38 4->5 0.35	

0 to 6 (1.51): 0->2 0.26 2->7 0.34 7->3 0.39 3->6 0.52

Data structures for single-source shortest paths

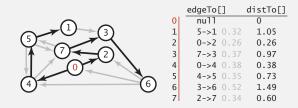
0 to 7 (0.60): 0->2 0.26 2->7 0.34

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of shortest path from s to v.
- edgeTo[v] is last edge on shortest path from s to v.



shortest-paths tree from 0

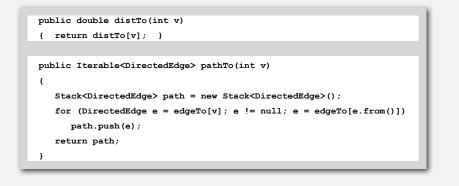
Data structures for single-source shortest paths

Goal. Find the shortest path from s to every other vertex.

Observation. A shortest-paths tree (SPT) solution exists. Why?

Consequence. Can represent the SPT with two vertex-indexed arrays:

- distTo[v] is length of shortest path from s to v.
- edgeTo[v] is last edge on shortest path from s to v.



Edge relaxation

Relax edge $e = v \rightarrow w$.

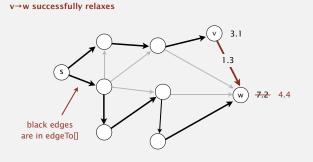
- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeTo[w] is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ gives shorter path to w through v, update distTo[w] and edgeTo[w].

pri {	.vate void relax(DirectedEdge e)
	int $v = e.from()$, $w = e.to()$;
	<pre>if (distTo[w] > distTo[v] + e.weight())</pre>
	{
	distTo[w] = distTo[v] + e.weight();
	edgeTo[w] = e;
	}
}	

Edge relaxation

Relax edge $e = v \rightarrow w$.

- distTo[v] is length of shortest known path from s to v.
- distTo[w] is length of shortest known path from s to w.
- edgeto[w] is last edge on shortest known path from s to w.
- If $e = v \rightarrow w$ gives shorter path to w through v, update distro[w] and edgeto[w].



Shortest-paths optimality conditions

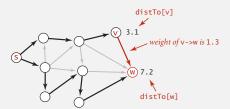
Proposition. Let G be an edge-weighted digraph.

Then distro[] are the shortest path distances from s iff:

- For each vertex v, distTo[v] is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, distTo[w] \leq distTo[v] + e.weight().

Pf. \leftarrow [necessary]

- Suppose that distTo[w] > distTo[v] + e.weight() for some edge $e = v \rightarrow w$.
- Then, e gives a path from s to w (through v) of length less than distTo[w].



17

Shortest-paths optimality conditions

Proposition. Let G be an edge-weighted digraph.

Then distro[] are the shortest path distances from s iff:

- For each vertex v, distTo[v] is the length of some path from s to v.
- For each edge $e = v \rightarrow w$, distTo[w] \leq distTo[v] + e.weight().

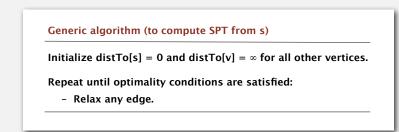
Pf. \Rightarrow [sufficient]

- Suppose that $s = v_0 \rightarrow v_1 \rightarrow v_2 \rightarrow \dots \rightarrow v_k = w$ is a shortest path from s to w.
- Then, distTo[v_k] \leq distTo[v_{k-1}] + e_k .weight() distTo[v_{k-1}] \leq distTo[v_{k-2}] + e_{k-1} .weight() \cdots distTo[v_1] \leq distTo[v_0] + e_1 .weight()
- Add inequalities; simplify; and substitute distTo[v_0] = distTo[s] = 0:

```
\begin{array}{l} distTo[w] = distTo[v_k] \leq e_k.weight() + e_{k-1}.weight() + ... + e_1.weight() \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &
```

• Thus, distTo[w] is the weight of shortest path to w.

21



Efficient implementations. How to choose which edge to relax?

- Ex 1. Dijkstra's algorithm (nonnegative weights).
- Ex 2. Topological sort algorithm (no directed cycles).
- Ex 3. Bellman-Ford algorithm (no negative cycles).

Generic shortest-paths algorithm

Generic algorithm (to compute SPT from s)

Initialize distTo[s] = 0 and distTo[v] = ∞ for all other vertices.

Repeat until optimality conditions are satisfied:

Relax any edge.

Proposition. Generic algorithm computes SPT (if it exists) from s. Pf sketch.

- Throughout algorithm, distTo[v] is the length of a simple path from s to v (and edgeTo[v] is last edge on path).
- Each successful relaxation decreases distTo[v] for some v.
- The entry distTo[v] can decrease at most a finite number of times.

shortest-paths properties

Dijkstra's algorithm

edge-weighted DAGs

negative weights

Edsger W. Dijkstra: select quotes

Edsger W. Dijkstra: select quotes

" Do only what only you can do."

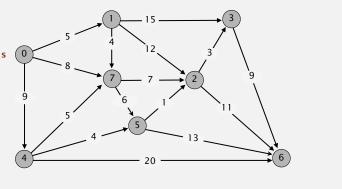
- " In their capacity as a tool, computers will be but a ripple on the surface of our culture. In their capacity as intellectual challenge, they are without precedent in the cultural history of mankind."
- "The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a criminal offence."
- " It is practically impossible to teach good programming to students that have had a prior exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of regeneration."
- " APL is a mistake, carried through to perfection. It is the language of the future for the programming techniques of the past: it creates a new generation of coding bums."

Edsger W. Dijkstra Turing award 1972

25

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distTo[] value).
- Add vertex to tree and relax all edges pointing from that vertex.

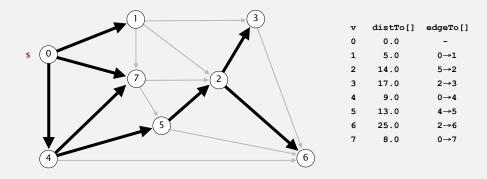


an edge-weighted digraph

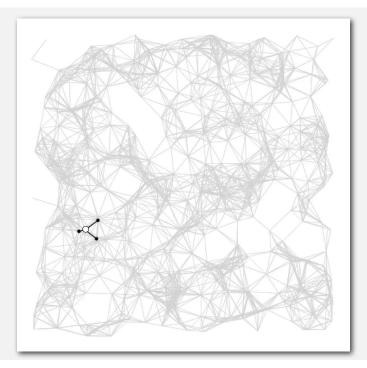
5.0 $0 \rightarrow 1$ 9.0 8.0 12.0 1→2 15.0 1→3 4.0 3.0 11.0 9.0 4.0 20.0 5.0 1.0 13.0 6.0 7→5 7.0 7→2

Dijkstra's algorithm demo

- Consider vertices in increasing order of distance from s (non-tree vertex with the lowest distro[] value).
- Add vertex to tree and relax all edges pointing from that vertex.



shortest-paths tree from vertex s



29

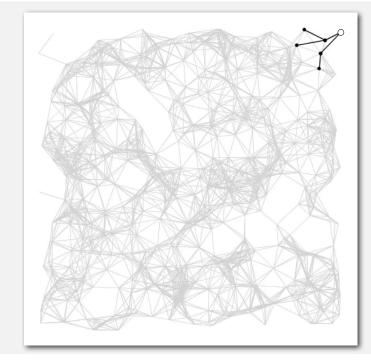
Dijkstra's algorithm: correctness proof

Proposition. Dijkstra's algorithm computes a SPT in any edge-weighted digraph with nonnegative weights.

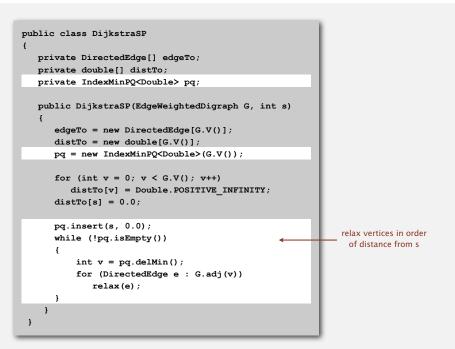
Pf.

- Each edge e = v→w is relaxed exactly once (when v is relaxed), leaving distTo[w] ≤ distTo[v] + e.weight().
- Inequality holds until algorithm terminates because:
- - edge weights are nonnegative and we cho lowest distTo[] value at each step
- Thus, upon termination, shortest-paths optimality conditions hold.

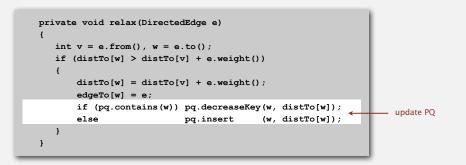
Dijkstra's algorithm visualization



Dijkstra's algorithm: Java implementation



31



Dijkstra's algorithm: which priority queue?

Depends on PQ implementation: V insert, V delete-min, E decrease-key.

PQ implementation	insert	delete-min	decrease-key	total
array	1	v	1	V ²
binary heap	log V	log V	log V	E log V
d-way heap (Johnson 1975)	d log _d V	d log _d V	log _d V	E log _{E/V} V
Fibonacci heap (Fredman-Tarjan 1984)] †	log V †] †	E + V log V

† amortized

Bottom line.

- Array implementation optimal for dense graphs.
- Binary heap much faster for sparse graphs.
- d-way heap worth the trouble in performance-critical situations.
- Fibonacci heap best in theory, but not worth implementing.

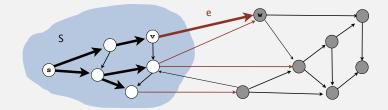
33

35

Priority-first search

Insight. Four of our graph-search methods are the same algorithm!

- Maintain a set of explored vertices S.
- Grow S by exploring edges with exactly one endpoint leaving S.
- DFS. Take edge from vertex which was discovered most recently.
- BFS. Take edge from vertex which was discovered least recently.
- Prim. Take edge of minimum weight.
- Dijkstra. Take edge to vertex that is closest to S.



Challenge. Express this insight in reusable Java code.

edge-weighted digraph AF
 shortest-paths properties

Dijkstra's algorithm

edge-weighted DAGs

negative weights

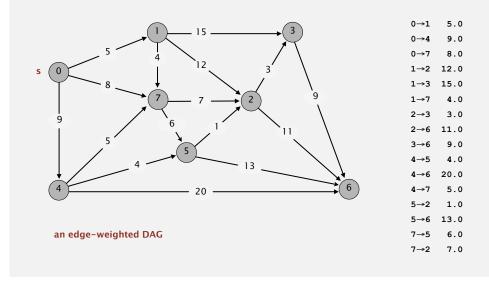
Acyclic edge-weighted digraphs

- ${\sf Q}.\;$ Suppose that an edge-weighted digraph has no directed cycles.
- Is it easier to find shortest paths than in a general digraph?

A. Yes!

Topological sort algorithm demo

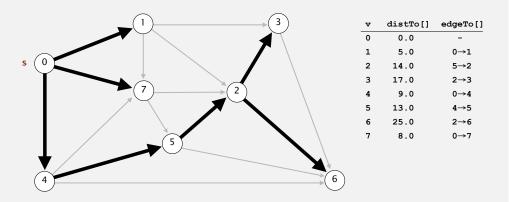
- Consider vertices in topologically order.
- Relax all edges pointing from vertex.



37

Topological sort algorithm demo

- Consider vertices in topologically order.
- Relax all edges pointing from vertex.



Shortest paths in edge-weighted DAGs

Proposition. Topological sort algorithm computes SPT in any edge-weighted DAG in time proportional to E + V.

38

can be negative!

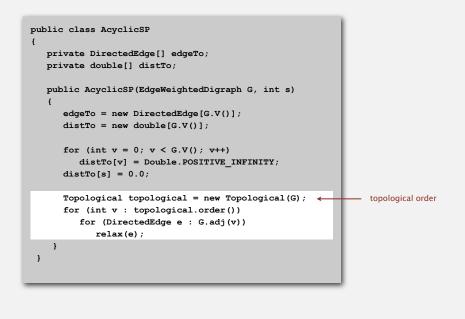
Pf.

• Each edge $e = v \rightarrow w$ is relaxed exactly once (when v is relaxed),

leaving distTo[w] \leq distTo[v] + e.weight().

- Inequality holds until algorithm terminates because:
- Thus, upon termination, shortest-paths optimality conditions hold.

shortest-paths tree from vertex s



41

Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

In the wild. Photoshop CS 5, Imagemagick, GIMP, ...

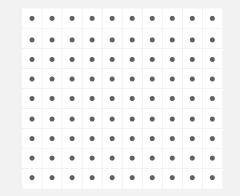
Content-aware resizing

Seam carving. [Avidan and Shamir] Resize an image without distortion for display on cell phones and web browsers.

Content-aware resizing

To find vertical seam:

- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path from top to bottom.

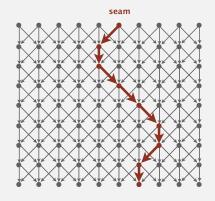


43

Content-aware resizing

To find vertical seam:

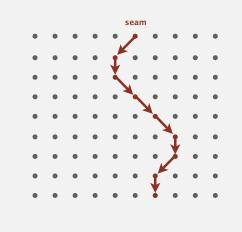
- Grid DAG: vertex = pixel; edge = from pixel to 3 downward neighbors.
- Weight of pixel = energy function of 8 neighboring pixels.
- Seam = shortest path from top to bottom.



Content-aware resizing

To remove vertical seam:

• Delete pixels on seam (one in each row).

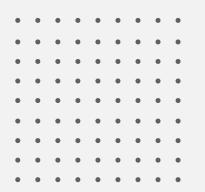


45

Content-aware resizing

To remove vertical seam:

• Delete pixels on seam (one in each row).

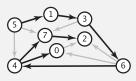


Longest paths in edge-weighted DAGs

Formulate as a shortest paths problem in edge-weighted DAGs.

- Negate all weights.
- Find shortest paths.
- Negate weights in result.

longest paths input		shortest paths input
5->4	0.35	5->4 -0.35
4->7	0.37	4->7 -0.37
5->7	0.28	5->7 -0.28
5->1	0.32	5->1 -0.32
4->0	0.38	4->0 -0.38
0->2	0.26	0->2 -0.26
3->7	0.39	3->7 -0.39
1->3	0.29	1->3 -0.29
7->2	0.34	7->2 -0.34
6->2	0.40	6->2 -0.40
3->6	0.52	3->6 -0.52
6->0	0.58	6->0 -0.58
6->4	0.93	6->4 -0.93

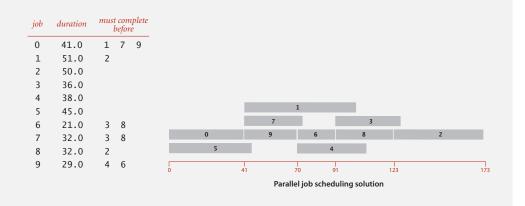


equivalent: reverse sense of equality in **relax()**

Key point. Topological sort algorithm works even with negative edge weights.

Longest paths in edge-weighted DAGs: application

Parallel job scheduling. Given a set of jobs with durations and precedence constraints, schedule the jobs (by finding a start time for each) so as to achieve the minimum completion time, while respecting the constraints.

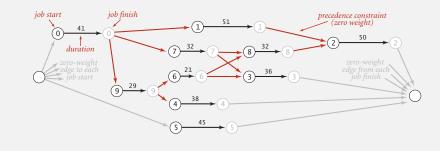


Critical path method

CPM. To solve a parallel job-scheduling problem, create edge-weighted DAG:

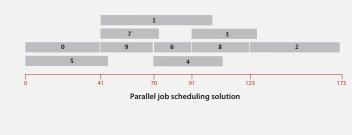
- Source and sink vertices.
- Two vertices (begin and end) for each job.
- Three edges for each job.
 - begin to end (weighted by duration)
 - source to begin (0 weight)
 - end to sink (0 weight)
- One edge for each precedence constraint (0 weight).

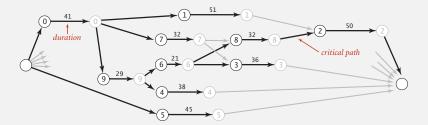
job	duration	must complet before		
0	41.0	1	7	9
1	51.0	2		
2	50.0			
3	36.0			
4	38.0			
5	45.0			
6	21.0	3	8	
7	32.0	3	8	
8	32.0	2		
9	29.0	4	6	



Critical path method

CPM. Use longest path from the source to schedule each job.





edge-weighted digraph AP
 shortest-paths properties
 Dijkstra's algorithm
 edge-weighted DAGs

▶ negative weights

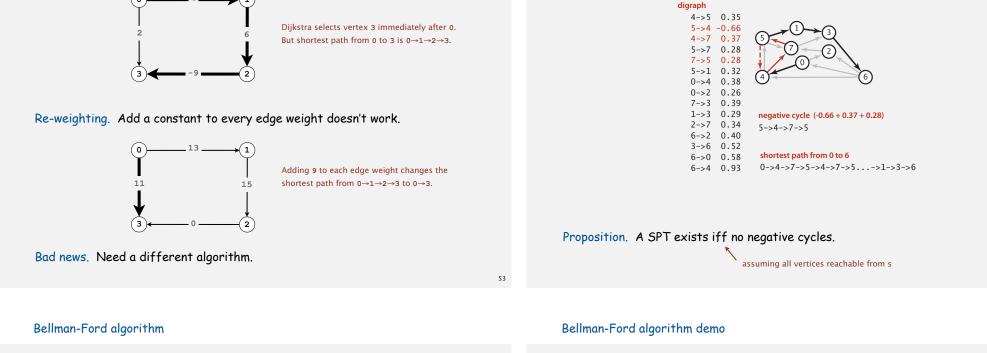
49

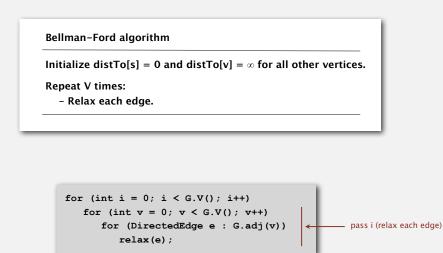
Shortest paths with negative weights: failed attempts

Dijkstra. Doesn't work with negative edge weights.

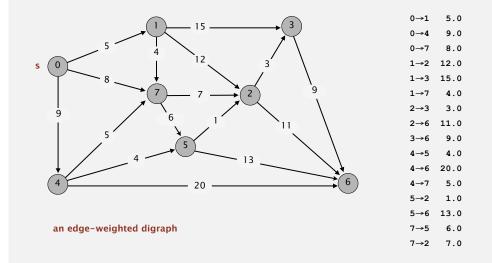
Negative cycles

Def. A negative cycle is a directed cycle whose sum of edge weights is negative.

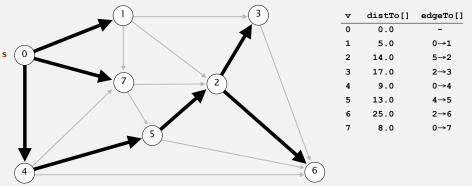




Repeat V times: relax all E edges.

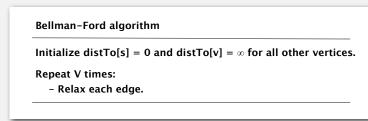


Repeat V times: relax all E edges.



shortest-paths tree from vertex s

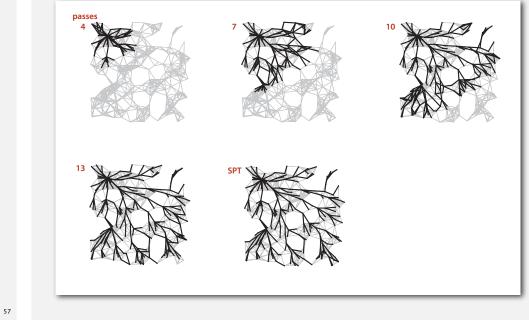
Bellman-Ford algorithm: analysis



Proposition. Dynamic programming algorithm computes SPT in any edgeweighted digraph with no negative cycles in time proportional to $E \times V$.

Pf idea. After pass i, found shortest path containing at most i edges.

Bellman-Ford algorithm visualization



Bellman-Ford algorithm: practical improvement

Observation. If distTo[v] does not change during pass i, no need to relax any edge pointing from v in pass i + 1.

FIFO implementation. Maintain queue of vertices whose distro[] changed.

58

be careful to keep at most one copy of each vertex on queue (why?)

Overall effect.

- The running time is still proportional to $E \times V$ in worst case.
- But much faster than that in practice.

<pre>private double[] distTo; private DirectedEdge[] edgeTo; private boolean[] onQ; private Queue<integer> queue; public BellmanFordSPT(EdgeWeightedDigraph G, i { distTo = new double[G.V()]; edgeTo = new DirectedEdge[G.V()]; onq = new boolean[G.V()]; queue = new Queue<integer>();</integer></integer></pre>	queue of vertices whose distTo[] value changes .nt s) private void relax(DirectedEdge e) {
<pre>for (int v = 0; v < V; v++) distTo[v] = Double.POSITIVE_INFINITY; distTo[s] = 0.0;</pre>	<pre>int v = e.from(), w = e.to(); if (distTo[w] > distTo[v] + e.weight()) { distTo[w] = distTo[v] + e.weight();</pre>
<pre>queue.enqueue(s); while (!queue.isEmpty()) { int v = queue.dequeue(); onQ[v] = false; for (DirectedEdge e : G.adj(v)) relax(e); } </pre>	<pre>distro[w] = distro[v] + e.weight(); edgeTo[w] = e; if (!onQ[w]) { queue.enqueue(w); onQ[w] = true; } }</pre>

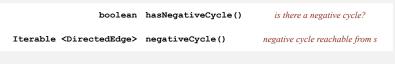
Single source shortest-paths implementation: cost summary

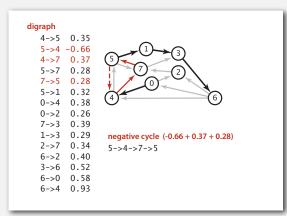
algorithm	restriction	typical case	worst case	extra space
topological sort	no directed cycles	E + V	E + V	V
Dijkstra (binary heap)	no negative weights	E log V	E log V	V
Bellman-Ford	no negative	EV	EV	V
Bellman-Ford (queue-based)	cycles	E + V	EV	v

Remark 1. Directed cycles make the problem harder.Remark 2. Negative weights make the problem harder.Remark 3. Negative cycles makes the problem intractable.

Finding a negative cycle

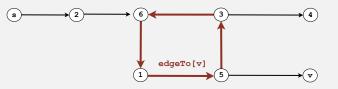
Negative cycle. Add two method to the API for sp.





Finding a negative cycle

Observation. If there is a negative cycle, Bellman-Ford gets stuck in loop, updating distro[] and edgeto[] entries of vertices in the cycle.



Proposition. If any vertex v is updated in phase V, there exists a negative cycle (and can trace back edgeto[v] entries to find it).

In practice. Check for negative cycles more frequently.

Negative cycle application: arbitrage detection

Problem. Given table of exchange rates, is there an arbitrage opportunity?

	USD	EUR	GBP	CHF	CAD
USD	1	0.741	0.657	1.061	1.011
EUR	1.350	1	0.888	1.433	1.366
GBP	1.521	1.126	1	1.614	1.538
CHF	0.943	0.698	0.620	1	0.953
CAD	0.995	0.732	0.650	1.049	1

Ex. $1,000 \Rightarrow 741$ Euros $\Rightarrow 1,012.206$ Canadian dollars $\Rightarrow 1,007.14497$.

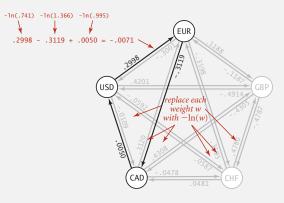
 $1000 \times 0.741 \times 1.366 \times 0.995 = 1007.14497$

65

Negative cycle application: arbitrage detection

Model as a negative cycle detection problem by taking logs.

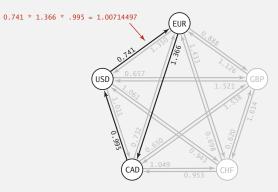
- Let weight of edge $v \rightarrow w$ be -ln (exchange rate from currency v to w).
- Multiplication turns to addition; > 1 turns to < 0.
- Find a directed cycle whose sum of edge weights is < 0 (negative cycle).



Negative cycle application: arbitrage detection

Currency exchange graph.

- Vertex = currency.
- Edge = transaction, with weight equal to exchange rate.
- Find a directed cycle whose product of edge weights is > 1.



Challenge. Express as a negative cycle detection problem.

Shortest paths summary

Dijkstra's algorithm.

- Nearly linear-time when weights are nonnegative.
- Generalization encompasses DFS, BFS, and Prim.

Acyclic edge-weighted digraphs.

- Arise in applications.
- Faster than Dijkstra's algorithm.
- Negative weights are no problem.

Negative weights and negative cycles.

- Arise in applications.
- If no negative cycles, can find shortest paths via Bellman-Ford.
- If negative cycles, can find one via Bellman-Ford.

Shortest-paths is a broadly useful problem-solving model.

Remark. Fastest algorithm is extraordinarily valuable!