Directed graphs
Digraph. Set of vertices connected pairwise by directed edges.

4.2 DIRECTED GRAPHS

vertex of
outdegree 4
and indegree 2

y
@ directed
/ cycle

» digraph API
» digraph search ,
. directed path
» topological sort from 0 to 2 ~, @
9
\:§®
&

» strong components

Algorithms

FOURTH EDITIC

Copyright © 2002-2012 March 28,2012 12:27:10 PM

Algorithms, 4™ Edition Robert Sedgewick and Kevin Wayne
Political blogosphere graph

Road network
Vertex = intersection; edge = one-way street. Vertex = political blog; edge = link.
o e < ’ 5 4, 4
t g & %, S & o,
H s % == o & 3 S
= Vestry sy & k- %, o é“? Ga 7 s‘b@"
= I % & Siaton 1] /) e”o@’ AN
t i Vestry st -\ sl’s‘/d, \s@ 1 /
S
‘ t 5 L ©
-aight St —= 5 X g /) N
H Laightst 3 \ 7
§, Laight g1 Gy
H } it R = = Laight St — g, &
bert st = t 9@ 1S > by) \
= = Hube, Y |} £ i & N3
5 s (s =9 S5
£ LE 5 7 § o@ 2 5
§ £ = z York st kS %/d‘ g”
& 5 g P o $ X & >
S 3 o = +'SY 52 &
£ ‘ Ky &
Beach 5y = Z N\ 1 /) &
i Enicsson gf . /) ~ .
64
- 8, “r,
= g 3 S)
+= NMoore s &
¢ 5 Nioora s > Y T /
< HIRR 4 Sansi 1 Sat
5 A 7 4 N tiseT)
- Frankiin sy 2 S 1 Sl
5 =
g = Frankiin ¢ Sl é,;‘? AN % 55? ‘9/4»8,6‘ (7
5 = 2 S ™~ &
N 3.0
armson s 0| . X M e/ IS f
lamison s¢ —~ o, § t i L
oz /¢ s /) B N ¥
¥,
©2008 Google - Map data ©2008 Sanbofm, NA\/TEQ"‘-‘[ermsojuseh/s The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005
3

Staple g
"y

Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

The Topology of the Federal Funds Market, Bech and Atalay, 2008

Combinational circuit

Vertex = logical gate; edge = wire.

out

Implication graph

Vertex = variable; edge = logical implication.

if x5 is true,
then x0 is true

/

(%)

WordNet graph
Vertex = synset; edge = hypernym relationship.

event

happeningoccurrence occurrent natural_event

miracle

act human_action human_activity

change alteration modification miracle \

group_action
damage harm impairment transition increase forfeit forfeiture sacrifice action
resistance opposition transgression
leap jump saltation jumpleap
change
demotion variation
motion movement move
locomotion travel descent
runrunning jump parachuting

http://wordnet.princeton.edu dash sprint

The McChrystal Afghanistan PowerPoint slide Digraph applications

Afghanistan Stability / COIN Dynamics g oo ‘

— transportation street intersection one-way street
———OUTSIDE SUPPORT __
—TO INSURGENT S i
“FACTIONS e web web page hyperlink
N\~
food web species predator-prey relationship
WordNet synset hypernym
scheduling task precedence constraint
SOVERALL| /“ / POPULATION = financial bank transaction
"GOVERNMENT/ 4 / onnilions]
cell phone person placed call
infectious disease person infection
| |
OALITION :
=4DOMESTIC -, JL‘_/TR'BA{ . : <R b game board position legal move
citation journal article citation
object graph object pointer
inheritance hierarchy class inherits from
WORKING DRAFT - V3
control flow code block jump
Page 22

http:/ /www.guardian.co.uk/news/datablog/2010/apr/29/mcchrystal-afghanistan-powerpoint-slide 9

Some digraph problems

Path. Is there adirected path froms o ¢?

Shortest path. What is the shortest directed path from s to ¢ ?

Topological sort. Can you draw the digraph so that all edges point upwards?
Strong connectivity. Is there a directed path between all pairs of vertices?

Transitive closure. For which vertices v and w is there a path from v o w ?

PageRank. What is the importance of a web page?

Digraph APT Digraph API
tinyDG. txt
public class Digraph V\ng % java Digraph tinyDG.txt
«E
22 0->5
Digraph (int V) create an empty digraph with V vertices 4 2 0->1
Di h(In in) 1) § g .
igrap. n in create a digraph from input stream -
6 0 e 2->3
void addEdge (int v, int w) add a directed edge v—w 9 1 ©)6 3->5
’ g 2 0 3->2
. 11 12 -
Iterable<Integer> adj(int v) vertices pointing from v 12 9 4->3
4->2
: 9 10 o
int V() number of vertices 9 11 ®/' @ 5->4
79 :
int E() number of edges 10 12 11->4
11 4 11->12
Digraph reverse () reverse of this digraph g 3 12-9
5
String toString() string representation g 2
In in = new In(args[0]); read digraph from In in = new In(args[0]); read digraph from
Digraph G = new Digraph (in) ; input stream Digraph G = new Digraph (in); U SHTCERYii
for (J.nt.v =0; v< C-i.V(); v++) G O ety for (l“t_v =0; v< ?'V(); Natit) print out each
for (int w : G.adj(v)) T o) for (int w : G.adj(v)) edge (once)
StdOut.println(v + "->" + w); StdOut.println(v + "->" + w);

Adjacency-lists digraph representation Adjacency-lists graph representation: Java implementation

Maintain vertex-indexed array of lists.

public class Graph
{
private final int V;
private final Bag<Integer>[] adj; <«—+— adjacency lists
adj[]
0 public Graph(int V)
1 { | create empty graph
5 this.V = V; “T] with V vertices
3 adj = (Bag<Integer>[]) new Bag[V];
4 for (int v = 0; v < V; v++)
@ 5 adj[v] = new Bag<Integer>();
~] }
©)o ; ~EFEE0)
7
9 ¢ public void addEdge (int v, int w) «—L add edge v-w
0 9 { '
@/ @ 10 adj[v].add(w) ;
adj[w] .add (v) ;
n) 3 [w].add (v)
12
public Iterable<Integer> adj(int v) -l iterator for vertices
{ return adj[vl; } adjacent to v
}

Adjacency-lists digraph representation: Java implementation Digraph representations

In practice. Use adjacency-lists representation.
public class Digraph

(* Algorithms based on iterating over vertices pointing from v.
private final int V; ¢ Real-world digraphs tend to be sparse.
private final Bag<Integer>[] adj; <«—+— adjacency lists y\
huge number of vertices,
public Digraph (int V) small average vertex degree
{ . crgate empr digraph
this.V = V; with V vertices

adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)

adj[v] = new Bag<Integer>(); representation insert edge edge from |teraFe pver vertices

} from v to w v to w? pointing from v?
public void addEdge (int v, int w) <«—+— add edge v—w list of edges E 1 E E
{

adj[v] .add (w) ; adjacency matrix V2 1t 1 \Y
} adjacency lists E+V 1 outdegree(v) outdegree(v)
public Iterable<Integer> adj(int v) -l iteratgr for vertices t disallows parallel edges
{ return adj[vl; } pointing from v

}
17
Reachability

Problem. Find all vertices reachable from s along a directed path.
‘ I

» digraph search L 4 <—¢—>I—> +—I

faeess

-9

Depth-first search in digraphs
Same method as for undirected graphs.

 Every undirected graph is a digraph (with edges in both directions).
» DFS is a digraph algorithm.

DFS (to visit a vertex v) @

Mark v as visited. @ e
Recursively visit all unmarked
vertices w pointing from v. o

oge

©)
o

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

public class DepthFirstSearch
{

private boolean[] marked; «——+— trueifpathtos

public DepthFirstSearch(Graph G, int s)
{

constructor marks

- . 1t
marked = new boolean[G.V()]; vertices connected to s
dfs (G, s);
}
private void dfs(Graph G, int v) <«———+— recursive DFS does the work
{
marked[v] = true;

for (int w : G.adj(v))
if ('marked[w]) dfs(G, w);

public boolean visited(int v) client can ask whether any
{ return marked[v]; } vertex is connected to s

Depth-first search demo

22

Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one.
[substitute pigraph for Graph]

public class DirectedDFS
{

private boolean[] marked; <«———+— true if path from s

public DirectedDFS (Digraph G, int s)
{

constructor marks

marked = new boolean[G.V()]; “—B Vertices reachable from's
dfs (G, s);
}
private void dfs(Digraph G, int v) <«——+— recursive DFS does the work
{
marked[v] = true;

for (int w : G.adj(v))
if ('marked[w]) dfs(G, w);
}

public boolean visited(int v) client can ask whether any
{ return marked[v]; } vertex is reachable from s

24

Reachability application: program control-flow analysis

Every program is a digraph.
* Vertex = basic block of instructions (straight-line program).
* Edge = jump.

0: <=

2 2t
Dead-code elimination. .
Find (and remove) unreachable code. e o
o ' wes o asyens E
Infinite-loop detection. unae
p . = neBEsBEN0 B0

Determine whether exit is unreachable. wessuny |

- HRBUGH N0 DW

w0
2: <1
% <

12BN J

ume l AT
28:16<= 15 EBEIO uf

nedson #inen
neBBon ——
ne@om
j .T
0 =uu

2: <= 48:10<= 110
j /— R—

n@Buno neBuom

4

IH

25

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]
* Mark: mark all reachable objects.
* Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object (plus DFS stack).

o
2
R

=
J/JfJ

5=,

51004

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.
* Vertex = object.
* Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program
(starting at a root and following a chain of pointers).

s

N

S1004

R

J/JJ‘J

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.
Y ¢ Reachability.

* Path finding.

* Topological sort.

* Directed cycle detection.

Basis for solving difficult digraph problems.
o 2-satisfiability.

* Directed Euler path.

+ Strongly-connected components.

SIAM J. Coupur.
Vol. 1, No. 2, June 1972

DEPTH-FIRST SEARCH AND LINEAR GRAPH ALGORITHMS*
ROBERT TARJANt

Abstract. The value of depth-first search or “backtracking” as a technique for solving problems is
illustrated by two examples. An improved version of an algorithm for finding the strongly connected
components of a directed graph and an algorithm for finding the biconnected components of an un-
direct graph are presented. The space and time requirements of both algorithms are bounded by
K,V + kyE + kyfor some constants k, , k;, and ks, where V is the number of vertices and E is the number
of edges of the graph being examined.

=
_,'/J

26

28

Breadth-first search in digraphs

Same method as for undirected graphs.

 Every undirected graph is a digraph (with edges in both directions).

* BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty:
- remove the least recently added vertex v

- for each unmarked vertex pointing from v:

add to queue and mark as visited.

Proposition. BFS computes shortest paths (fewest number of edges).

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu.

Solution. BFS with implicit graph.

BFS.
* Choose root web page as source s.
* Maintain a gueue of websites to explore.
* Maintain a seT of discovered websites.
* Dequeue the next website and enqueue
websites to which it links
(provided you haven't done so before).

Q. Why not use DFS?

31

Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source vertices,
find shortest path from any vertex in the set to each other vertex.

Ex. Shortest path from {1,7,10} to 5 is 7—=6—4—3—5.

-0 ®

o

%

Q. How to implement multi-source constructor?

A. Use BFS, but initialize by enqueuing all source vertices.

Bare-bones web crawler: Java implementation

Queue<String> queue = new Queue<String>();
SET<String> discovered = new SET<String>();

String root = "http://www.princeton.edu";
queue.enqueue (root) ;
discovered.add (root) ;

while (!queue.isEmpty())
{
String v = queue.dequeue();
StdOut.println(v);
In in = new In(v);
String input = in.readAll();

String regexp = "http:// (\\w+\\.)* (\\w+)";
Pattern.compile (regexp) ; «——

Pattern pattern
Matcher matcher pattern.matcher (input) ;
while (matcher.find())

{

String w = matcher.group();
if ('discovered.contains (w))
{
discovered.add (w) ;
queue.enqueue (W) ;

<«——+—— queue of websites to crawl
<«——+—— setof discovered websites
<«—+—— start crawling from root website
«—+t readin raw html from next

website in queue

use regular expression to find all URLs
in website of form nttp://xxx.yyy.zzz
[crude pattern misses relative URLs]

if undiscovered, mark it as discovered
and put on queue

30

32

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints,
in which order should we schedule the tasks?

Digraph model. vertex = task; edge = precedence constraint.

0. Algorithms @
1. Complexity Theory
2. Artificial Intelligence o
» topological sort 3. Intro to €3 ©
4. Cryptography
5. Scientific Computing
6. Advanced Programming
tasks precedence constraint graph e
feasible schedule
33
Topological sort Topological sort demo

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point upwards.

0—5 0—2
0—1 3—6

35 34 @4_@ 9

54 64 /
60 3—2 @
14

directed edges DAG e
©

Soluﬁon. DFS WhGT else? topological order

FrOE

35

Depth-first search order

public class DepthFirstOrder
{
private boolean[] marked;
private Stack<Integer> reversePost;

public DepthFirstOrder (Digraph G)
{
reversePost = new Stack<Integer>();
marked = new boolean[G.V()];
for (int v = 0; v < G.V(); v++)
if ('marked([v]) dfs(G, v);
}

private void dfs(Digraph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w]) dfs(G, w);
reversePost.push(v) ;

}

public Iterable<Integer> reversePost() <—p— 'eturnsallverticesin
{ return reversePost; } reverse DFS postorder

37

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle.
Pf.

* If directed cycle, topological order impossible.
* If no directed cycle, DFS-based algorithm finds a topological order.

a digraph with a directed cycle

Goal. Given a digraph, find a directed cycle.
Solution. DFS. What else? See textbook.

39

Topological sort ina DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.
Pf. Consider any edge v—w. When dts (v) is called:

dfs (0)
dfs (1)

o Case 1: dafs(w) has already been called and returned. ags (4)

Thus, w was done before v.

4 done
1 done
dfs (2)
2 done
dfs (5)

* Case 2: dfs(w) has not yet been called.

5 done

dfs (w) will get called directly or indirectly 0 done

by dfs (v) and will finish before dafs (v).

Thus, w will be done before v.

ExX: ————> dfs(3)

case 1 <:>

* Case 3: dfs(w) has already been called, case 2 <} :f:;,s,;
but has not yet returned. 3 done
Can't happen in a DAG: function call stack contains
path from w to v, so v—w would complete a cycle. done

all vertices pointing from 3 are done before 3 is done,
so they appear after 3 in topological order

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence
constraints, in what order should we schedule the tasks?

PAGE 3
DEPARTMENT COURSE

DESCRIPTION PREREQS

COMPUTER CPsC Y32
SCENCE

DEPENDENCY RESOLUTION.

INTERMEDIATE COMPIER [CPSC 432
DESIGN, WITH A FOCUS ON

—

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

38

40

Directed cycle detection application: cyclic inheritance Directed cycle detection application: spreadsheet recalculation

The Java compiler does cycle detection. Microsoft Excel does cycle detection (and has a circular reference toolbar!)
. € Workbook1
public class A extends B % javac A.java < m A m - B m - C m D
{ A.java:1: cyclic inheritance 1 "=B1+1 =Cl+1 =Al +1
coo involving A 2
} public class A extends B { } 3
~ 4
1 error 5
public class B extends C 8 i
7 Microsoft Excel cannot calculate a formula.
{ 8 M Cell references in the formula refer to the formula's
@ result, creating a circular reference. Try one of the
9 following:
! « If you accidentally created the circular reference, click
10 OK. This will display the Circular Reference toolbar and
11 helpforu_sing ino_(orre(tyourformn_:la_. _
« To continue leaving the formula as it is, click Cancel.
- (Gance)
public class C extends A 13
{ 14
15
} 16
17
18

Sheetl _ Sheet2 Sheet3

41 42

Strongly-connected components

Def. Vertices v.and w are strongly connected if there is a directed path

from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:

* vis strongly connected to v.

» If vis strongly connected to w, then w is strongly connected to v.

 If vis strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.

.
(6 =)

@ (2)
ol oS

(4)

(19
© (=12

43 44

Connected components vs. strongly-connected components

v and w are connected if there is
a path between v and w

v and w are strongly connected if there is a directed
path from v to w and a directed path from w to v

O NO-0

O (2)
ot

5 strongly-connected components

3 connected components

connected component id (easy to compute with DFS) strongly-connected component id (how to compute?)

0 1 2 3 4 5 6 7 8 91011 12 0 1 2 3 4 5 6 7 8 910 11 12
cc[] O 0 0 00 0 1 1 1 2 2 2 2 sce[] 1 0 1 1 1 1 3 4 3 2 2 2 2

public int connected(int v, int w) public int stronglyConnected(int v, int w)

{ return cc[v] == cc[w]; } { return scc[v] == scc[w]; }

| |
constant-time client connectivity query constant-time client strong-connectivity query

45

Strong component application: software modules

Software module dependency graph.
* Vertex = software module.
* Edge: from module to dependency.

Firefox Internet Explorer
Strong component. Subset of mutually interacting modules.
Approach 1. Package strong components together.
Approach 2. Use to improve design!

47

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer o consumer.

5| .

WA
M o~ vole) greategret

fox # AN ‘Ra
o i ‘,(,.,L:E::E:M,{ / blue-gill fish
\ Qﬂ > shiew

A
L &)

mosquito

algae (magnified)

cattails

http://www.twingroves.district96.k12.il.us/Wetlands /SalGraphics/ gif

Strong component. Subset of species with common energy flow.

46

Strong components algorithms: brief history

1960s: Core OR problem.
* Widely studied; some practical algorithms.
» Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

* Classic algorithm.

* Level of difficulty: Algs4++.

» Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju-Sharir).
» Forgot notes for lecture; developed algorithm in order to teach it!
* Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.
* Gabow: fixed old OR algorithm.
* Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

48

Kosaraju's algorithm: intuition
Reverse graph. Strong components in G are same as in G~.

Kernel DAG. Contract each strong component into a single vertex.

Idea how to compute?

/

» Compute topological order (reverse postorder) in kernel DAG.
* Run DFS, considering vertices in reverse fopological order.

first vertex is a sink
(has no edges pointing from it)

7
O 90

digraph G and its strong components kernel DAG of G (in reverse topological order)
49

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.
* Run DFS on G® to compute reverse postorder.
* Run DFS on G, considering vertices in order given by first DFS.

DFS in original digraph G

P ©

check unmarked vertices in the order
102453119121067 8

dfs(1) dfs(0) dfs(11) dfs(6) dfs(7)
1 done dfs(5) check 4 check 9 check 6
dfs(4) dfs(12) check 4 check 9
dfs(3) dfs(9) dfs(8) 7 done
check 5 check 11 check 6
dfs(2) dfs(10) 8 done
check 0 check 12 check 0
check 3 10 done 6 done
2 done 9 done
3 done 12 done
check 2 11 done
4 done
5 done
check 1
0 done

Proposition. Second DFS gives strong components. (Il)

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.

* Run DFS on G* to compute reverse postorder.
* Run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph G*

TrEop -

check unmarked vertices in the order reverse postorder for use in second dfs ()
0123456789101112 102453119121067 38

dfs(0)
dfs(6)
dfs(8)
check 6
8 done
dfs(7)
7 done
6 done
dfs(2)
dfs(4)
dfs(11)
dfs(9)
dfs(12)
check 11
dfs(10)
check 9
10 done
12 done
check 7
check 6

Connected components in an undirected graph (with DFS)

public class CC
{

private boolean marked[];
private int[] id;
private int count;

public CC(Graph G)

{
marked = new boolean[G.V()];
id = new int[G.V()];

for (int v = 0; v < G.V(); v++)
if ('!'marked[v])
{

dfs (G, v);
count++;

}
}

private void dfs(Graph G, int v)
{

marked[v] = true;

id[v] = count;

for (int w : G.adj(v))

if (!'marked[w])
dfs (G, w);

}

public boolean connected(int v, int w)
{ return id[v] == id[w]; }

50

52

Strong components in a digraph (with two DFSs)

DepthFirstOrder dfs = new DepthFirstOrder (G.reverse());
for (int v : dfs.reversePost())

53

Digraph-processing summary: algorithms of the day

single-source DES
reachability
topological sort
DFS
(DAG)
strong Kosaraju
components DFS (twice)

54

