Undirected graphs

4.1 UNDIRECTED GRAPHS

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?
* Thousands of practical applications.
* Hundreds of graph algorithms known.
* Interesting and broadly useful abstraction.
» graph API * Challenging branch of computer science and discrete math.

» depth-first search
» breadth-first search

: » connected components
Algorithms P
FOURTH EDITION >Cha"enges

RoBERT sEpcEwick | KEVIN WAYNE

Algorithms, 4 Edition 0 Robert Sedgewick and Kevin Wayne - Copyright © 2002-2012 - March 26,2012 5:38:13 AM 2

Protein-protein interaction network

http://en.wikipedia.org/wiki/Internet

Reference: Jeong et al, Nature Review | Genetics

Map of science clickstreams

10 million Facebook friends

aterial science
Engineering

Econornics

Physical
chemistry, %

sneq
Piosoptif "o,
/3 2

Biocheistry

0 3
Chemical
Engineering

facebook

"Visualizing Friendships" by Paul Butler

http://www.plosone.org/article/info:doi/10.1371/journal.pone.0004803

5 6
benjamin rogers a shankman . weidon Jicated Comparies
KEY. bilragp andy vince kaminsi Great
EMPLOYEE (E-MAIL ADDRESS)- curn.ommperger Zpper | acy geaccone 7
gren theresa staab. —
AT LEAST ONE E-MAIL CONTACT- Charies wok LS S N) @ _ teviokey
BETWEEN EMPLOYEES ciopurchey @ o g umaines Jy
craigdean @ 0% o scott ula Plan Suppoc Ginel Comctricaiins.
dan hyv sus . i
Mo sisK
danny.mecany @ stephanie panus ontana PSC
danel schookratt @ rieyhoron el Ao
darrongron o /‘\ . .nvm!:;annr:) @ stacy.dickson
daviddelainey g O fletcher sturm g @
Gebea peringiere o M"’;m :'g"‘] @ sara shackleton
d.marin g harry arora @ @ salybock
oo i & The analysis detected © ryen st
d.vomas g e 8 ananomaly: anewe- | @ amatn —— rings Telephone
Joerere mail address for this © stownkem i
enasee S joon tavorato g person, who had been | @ scottnes @ rckbuy
o haodicke g lettiing @ “phillip.allen” for 131 @ richard shapro @ richard sanders
jim. schwieger @ previous weeks. |
alzaberh sager g ® e kachen @ richard g
jooparks @ 7 <
el mesavghin wvin prosto itp platter
wine joe.quenet @ / @ jott o @ ohim
t.campboll g Py W @ phapiove
- o ° @ barry tychole
qe.soberg @ - ames.sefies @ paui thomas
N [x.atten] 7 ® v poora
gerald nemec @ jobn 2utent @ % ®mson N
viadi prmenov o
regwhaley @ Tengiay © ocisuykendal ® mpresto c W,
juan hemandez @ fy M
holden saisbury @ ® tom donohoe @ monika caushol R\ o
judy townsend @ @ Caca ooy ® thomas martin
james derrck @ xeith hotst @ onigsby b » ® miove
jason witiams @ hevaruscn @ S © ke meconnel
 sioven.soutn State o Havaii
jason wotle @ tarry.may ® @ s.snivey ® michelle lokay . 4 ° . . Alask
Loy ® ¢ Alaska
ey hodge @ e Q- Lirimway © michote cash
nkman @ mart cuita® @ robert benson ® m fomey
matthew o ® (ovort badeer
jeft.skilling ® aiin® ©\% ® Ouncuge © matt smn
y | tormer @ m-m;sc:m;’ o0 OM o © mark whit A
mike. pet vey L
mike.swerzbi ‘ patrice mms. ® mark taylor S e,
monique sanchez M. tholt ® mark ha e ol
Company leaders e-mail Y A Pypuiveg
less frequently, leaving sponcriich @ powd Sources: D
some communication to otngrinen ® o Y . et
subordinates. omon® o Park Jonns. Senicas
J-sturm -
opkins
amsoe o ? sy -
hate symes
Kay.mann M| yimbedy watson ey
Finding Patterns kenneth.lay *mved
In Corporate Chatter
“The Evolution of FCC Lobbying Coalitions” by Pierre de Vries in JoSS Visualization Symposium 2010

Framingham heart study

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, =30) and green denotes a nonobese person. The colors of the
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
denotes a familial tie.

“The Spread of Obesity in a Large Social Network over 32 Years” by Christakis and Fowler in New England Journal of Medicine, 2007

Graph fterminology

Path. Sequence of vertices connected by edges.
Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

vertex
lcyclehof elllge
ength 5 \
path of
« length 4
vertex of
degree 3™\
connected
components

Graph applications

communication
circuit
mechanical
financial
transportation
internet
game
social relationship
neural network
protein network

chemical compound

telephone, computer
gate, register, processor
joint
stock, currency
street intersection, airport
class C network
board position
person, actor
neuron
protein

molecule

fiber optic cable
wire
rod, beam, spring
transactions
highway, airway route
connection
legal move
friendship, movie cast
synapse
protein-protein interaction

bond

Some graph-processing problems

Path. Is there a path between s and ¢?
Shortest path. What is the shortest path between s and ¢ ?

Cycle. Is there a cycle in the graph?

Euler tour. Is there a cycle that uses each edge exactly once?

Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there away to connect all of the vertices?
MST. What is the best way to connect all of the vertices?
Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges?

Graph isomorphism. Do two adjacency lists represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?

» graph API

Graph representation

Vertex representation.

* This lecture: use integers between 0 and V- 1.

* Applications: convert between names and integers with symbol table.

symbol table

=

Anomalies.

° arallel
sel); loop Pe Hezs

¢
(LY

=

Graph representation

Graph drawing. Provides intuition about the structure of the graph.

Caveat. Intuition can be misleading.

two drawings of the same graph

Graph API

public class Graph

Graph (int V)
Graph (In in)
void addEdge (int v, int w)
Iterable<Integer> adj(int v)
int V()
int E()

String toString()

In in = new In(args[0]);
Graph G = new Graph(in) ;

for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v))
StdOut.println(v + "-" + w);

create an empty graph with V vertices
create a graph from input stream
add an edge v-w
vertices adjacent to v
number of vertices
number of edges

string representation

read graph from

—
input stream

print out each
edge (twice)

Graph API: sample client

Graph input format.

tinyG. txt

ava Test tinyG.txt

4
01
9 12 ©)0,
6 4 -
54 (3) (19 -
02 X4 A\ -
nn O D) _
9 10
(7) g 12-11
9 11 12-9
53
In in = new In(args[0]);
-
Graph G = new Graph(in) ;
for (int v = 0; v < G.V(); v++)
for (int w : G.adj(v)) D
StdOut.println(v + "-" + w);

Set-of-edges graph representation

Maintain a list of the edges (linked list or array).

W d b WWOoOOoOoo
© o U1 BT o D K

[y
o

i

= o
B R
NN R

read graph from
input stream

print out each
edge (twice)

Typical graph-processing code

public static int degree(Graph G, int v)
{
int degree = 0;
for (int w : G.adj(v)) degree++;
return degree;

compute the degree of v

public static int maxDegree(Graph G)
{
int max = 0;
for (int v = 0; v < G.VO; v++)
if (degree(G, v) > max)
max = degree(G, Vv);
return max;

compute maximum degree

public static double averageDegree(Graph G)
compute average degree { return 2.0 * G.EQ / G.VO; 1}

public static int numberOfSelfLoops(Graph G)
{

int count = 0;
for (int v = 0; v < G.VQ; v++)
for (int w : G.adj(v))
if (v == w) count++;
return count/2; // each edge counted twice

count self-loops

Adjacency-matrix graph representation

Maintain a two-dimensional V-by-V boolean array:;

for each edge v—w in graph: adjiv]w] = adj[w][v] = true.

two entries

for each edge \
2

)
w

-
o

-
I

-
Y

0 ° o !

r/o o o=
H o o o R|a

© © 0o 0o © ofx

0
\o
)
©O 0O 0O oo 0ORr KRB O OR K O
O O O O O O O O O O O O =
0O O O O O O O O O o o
0O O O O O O O B B Oo/Jo
O O O O O O =
0O O O O 0O 0o oc/j)jo »/r O O K | u

OOOOHO

© o o o o

oooooHooooooom

H K KM O OOOO OO OO OO OO oOOoO|w

©O O O H O O O O O o o o o

H O OB OO OO O ©o © © ©

O H OH OO OO0 o o o o o

20

Adjacency-list graph representation

Maintain vertex-indexed array of lists.

o adj[]

/

II

representations
of the same edge

=
~

Graph representations

In practice. Use adjacency-lists representation.
* Algorithms based on iterating over vertices adjacent to v.
* Real-world graphs tend fo be sparse.

\ huge number of vertices,
small average vertex degree

sparse (E=200)

dense (E=1000)

Two graphs (V =50)

21

Adjacency-list graph representation: Java implementation

public class Graph

{
private final int V;
private Bag<Integer>[] adj;

public Graph(int V)
{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>();

public void addEdge(int v, int w)
{

adj[v] .add (w) ;

adj[w] .add(v) ;

public Iterable<Integer> adj(int v)
{ return adj[v]; }

Graph representations

In practice. Use adjacency-lists representation.

adjacency lists
(using Bag data type)

create empty graph
with v vertices

add edge v-w

(parallel edges allowed)

iterator for vertices adjacent to v

* Algorithms based on iterating over vertices adjacent to v.

* Real-world graphs tend to be sparse.

\ huge number of vertices,
small average vertex degree

representation add edge

edge between

iterate over vertices
adjacent to v?

list of edges E 1
adjacency matrix V2 1*
adjacency lists E+V 1

\

degree(v)

* disallows parallel edges

22

24

Maze exploration

Maze graphs.
* Vertex = intersection.
* Edge = passage.

i N f — =
D[EI:J‘]D
-

intersection passage

Goal. Explore every infersection in the maze.

25 26

Trémaux maze exploration Trémaux maze exploration

Algorithm. Algorithm.

* Unroll a ball of string behind you. * Unroll a ball of string behind you.

* Mark each visited intersection and each visited passage. * Mark each visited intersection and each visited passage.
* Retfrace steps when no unvisited options. * Retrace steps when no unvisited options.

First use? Theseus entered labyrinth to kill the monstrous Minotaur;

= =3 =% R
M A &

Claude Shannon (with Theseus mouse)

28

Maze exploration

Depth-first search

Goal. Systematically search through a graph.
Idea. Mimic maze exploration.

DFS (to visit a vertex v)

Mark v as visited.
Recursively visit all unmarked

vertices w adjacent to v.

Typical applications.
* Find all vertices connected to a given source vertex.
* Find a path between two vertices.

Maze exploration

gl

ol

30

Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.
* Create a Graph object.

* Pass the craph to a graph-processing routine, e.g., Paths.

* Query the graph-processing routine for information.

public class Paths

Paths (Graph G, int s) find paths in G from source s
boolean hasPathTo (int v) is there a path from s to v?
Iterable<Integer> pathTo (int v) path from s to v; null if no such path

Paths paths = new Paths (G, s);
for (int v = 0; v < G.V(); v++)
if (paths.hasPathTo (v))

print all vertices
StdOut.println(v) ; —

connected to s

32

Depth-first search demo

Depth-first search

public class DepthFirstPaths
{
private boolean[] marked; <«
private int[] edgeTo; —
private int s;

public DepthFirstSearch(Graph G, int s)
{

]

dfs (G, s); DE—

private void dfs(Graph G, int v) «—
{
marked[v] = true;
for (int w : G.adj(v))
if (!'marked[w])
{
dfs (G, w);
edgeTo[w] = v;

marked[v] = true
if v connected to s

edgeTo[v] = previous vertex
on path from s to v

initialize data structures

find vertices connected to s

recursive DFS does the work

35

Depth-first search

Goal. Find all vertices connected to s (and a path).
Idea. Mimic maze exploration.

Algorithm.

* Use recursion (ball of string).

* Mark each visited vertex (and keep track of edge taken to visit it).
* Return (retrace steps) when no unvisited options.

Data structures.
* boolean[] marked to mark visited vertices.
* int[] edgeTo to keep tree of paths.

(edgeTo[w] == v) means that edge v-w taken to visit w for first time

Depth-first search properties

Proposition. DFS marks all vertices connected to s in time proportional to
the sum of their degrees.

Pf.

e Correctness:

source set of marked

/ vertices

- if w marked, then w connected to s (Why?)
- if w connected to s, then w marked
(if w unmarked, then consider last edge

N no such edge
set of «— can exist
unmarked

vertices

on a path from s to w that goes from a
marked vertex to an unmarked one)

* Running time: each vertex
connected to s is visited once.

36

Depth-first search properties Depth-first search application: preparing for a date

Proposition. After DFS, can find vertices connected to s in constant time and

can find a path to s (if one exists) in time proportional to its length. OKAYWHATKINDS OF + HAM. WHICH SNAKES ARE
WHAT_SITUATIONS EMERGONCIES (ANHPPEN? DPNGEROUS? LETS SEE... THE RESEARCH COMPRRING
MIGHT T FREPPRE RR?) A) SNAKEBITE DAYD (o e, Ve SNPKEVENDS S SCATTERED
1) MEDICAL EMERGENCY B) LIGHTNNG STRIKE ¥) GARTER SNAKE. 7 gowmi;% 'ILLMﬁ
Pf. edgeTol] is a parent-link representation of a tree rooted at s. 2 o O FALLRIM AR © COPRERHERD SREADSHEET o ORGIZE T
o 0 o
o 05 o] OO
7]
public boolean hasPathTo (int v) /1\ g ;;:
{ return marked[v]; }
edgeTol[] IMHEREOPCK. BY LDy, THE INND
public Iterable<Integer> pathTo (int v) @_> g ;glﬁ’ YOU'? WPFNGP:ASMDQN?E@
{ DRESSED? VENOM OF ANY SNAKE

v WN R
wwNOoN

if ('hasPathTo(v)) return null; o @ /
Stack<Integer> path = new Stack<Integer>();
for (int x = v; x != s; x = edgeTo[x]) e 9 @ N
path.push (x) ;
path.push(s) ;
return path;
! |

xked

http://xked.com/761/

T REALY NEED To STop
USING DEPTH-FIRST SEARCHES.

37

38

Depth-first search application: flood fill

Challenge. Flood fill (Photoshop magic wand).
Assumptions. Picture has millions to billions of pixels.

» breadth-first search

Solution. Build a grid graph.
* Vertex: pixel.
* Edge: between two adjacent gray pixels.

* Blob: all pixels connected to given pixel.

39 40

Breadth-first search demo

41

Breadth-first search properties

Proposition. BFS computes shortest path (number of edges) from s
in a connected graph in time proportional to E + V.

Pf.
* Correctness: queue always consists of zero or more vertices of distance &

from s, followed by zero or more vertices of distance &+ 1.

* Running time: each vertex connected fo s is visited once.

standard drawing dist =0 dist =1 dist = 2
43

Breadth-first search

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to ¢ that uses fewest number of edges.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited.

Repeat until the queue is empty:

- remove the least recently added vertex v

- add each of v's unvisited neighbors to the queue,

and mark them as visited.

Intuition. BFS examines vertices in increasing distance from s.

Breadth-first search

public class BreadthFirstPaths

{

private boolean[] marked;
private boolean[] edgeTol[];
private final int s;

private void bfs(Graph G, int s)
{

Queue<Integer> q = new Queue<Integer>();

g.enqueue (s) ;
marked[s] = true;
while (!'q.isEmpty())
{
int v = g.dequeue() ;
for (int w : G.adj(v))
{
if ('marked[w])
{
g.enqueue (w) ;
marked[w] = true;
edgeTo[w]

v

s

d

42

44

Breadth-first search application: routing

Fewest number of hops in a communication network.

v SATELLITE CIRCUIT
o e

& PLURIBUS MP

(NOTE THIS MAP DOES NOT SHOW ARPA'S EXPERIMENTAL

SATELLITE CONNECTIONS)

NAMES SHOWN ARE 1MP NAMCS, NOT INECESSARILY) HOST NAMES

ARPANET, July 1977

Kevin Bacon graph

¢ Include a vertex for each performer and for each movie.

* Connect a movie to all performers that appear in that movie.
» Compute shortest path from s = Kevin Bacon.

movie
vertex

performer

/ vertex

45

47

Breadth-first search application: Kevin Bacon numbers

Kevin Bacon numbers.

The Oracle of Bacon.
1t/ S racieoTbacen o/ Co-Bin mevielnks

1 wte of Mhusic COS 126 FOR MM Awarés Wang 514 McCiechy | Wemenage Stocks COSIZEFOT TPM RS (1742 Kschaten

THE ORACLE
OF BACON

arme=Cafrstname= Kevie s 8aco O B Q-

Buzz Mauro
St Oroams 2005)
leu‘ﬂamnz
Interior de un llul:lo (2005)
Ams Suarez
Carlta’s sm (2004) |
Paula Lemos U]
mem;n 2008)

Kevin Bacon

10 uz Moo Tind b) (Vere comoms 5>

http://oracleofbacon.org

Breadth-first search application: Erdds humbers

Endless Games board game

New 2 Degrees
Uma Thurman
acted in
Be Cool (2005)
with
Scott Adsit
who acted in
The Informant! (2009)
with

Matt Damon

2

up

SixDegrees iPhone App

hand-drawing of part of the Erdos graph by Ron Graham

46

48

Connectivity queries

Def. Vertices v and w are connected if there is a path between them.

Goal. Preprocess graph to answer queries: is v connected to w?
in constant time.

public class CC

CC (Graph G) find connected components in G
boolean connected(int v, int w) are v and w connected?
int id(int v) component identifier for v

Union-Find? Not quite.
Depth-first search. Yes. [next few slides]

49

Connected components Connected components

The relation "is connected to" is an equivalence relation: Def. A connected component is a maximal set of connected vertices.
* Reflexive: v is connected fo v.
« Symmetric: if vis connected to w, then w is connected to v.

* Transitive: if v connected to w and w connected to x, then v connected to x.

Def. A connected component is a maximal set of connected vertices.

v id[v]
O Lo
2 0
3 0
S 00 Lo
O [\ o
6/ Q-0 8 1
9 2
10 2
3 connected components 11 2
12 2
Remark. Given connected components, can answer queries in constant time.

63 connected components

Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all
vertices discovered as part of the same component.

tinyG. txt

9’0

(® -G

C-®
D

Finding connected components with DFS

public class CC

{
private boolean marked[];
private int[] id;
private int count;

public CC(Graph G)
{
marked = new boolean[G.V()];
id = new int[G.V()];
for (int v = 0; v < G.V(); v++)
{
if ('marked([v])
{

dfs (G, v);
count++;

public int count()
public int id(int v)
private void dfs(Graph G, int v)

VMONOUWVWREROUVIO WO ~O

id[v] = id of component containing v

number of components

run DFS from one vertex in
each component

see next slide

Connected components demo

Finding connected components with DFS (continued)

public int count()

{ return count; }
public int id(int v) -t
{ return id[v]; }
private void dfs(Graph G, int v)
{
marked[v] = true;
id[v] = count; 1

for (int w : G.adj(v))
if ('marked[w])
dfs (G, w);

number of components

id of component containing v

all vertices discovered in
same call of dfs have same id

54

56

Connected components application: study spread of STDs Connected components application: particle detection

o Particle detection. Given grayscale image of particles, identify "blobs."
NI I
k;/ », / » Vertfex: pixel.
ey P)¢ ’\(’ £ 3 '\4 \Q/ » Edge: befween two adjacent pixels with grayscale value = 70.
[—+- ¥, oD 5 g o N 2
L X e At ﬁb\/f:’—v‘%*‘ N 7\ * Blob: connected component of 20-30 pixels. k=0
'Zé>.;:* -}:+“5«:<* \\ white = 255
> R e »
a//(g 5’& JH JA.}\X .
6 B o S e e
4 vy

Relationship graph at "Jefferson High"

Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of Particle ’rmcking. Track moving par‘ﬂcles over time.

adolescent romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.

Graph-processing challenge 1

Problem. Is a graph bipartite?

How difficult? oo
* Any COS 126 student could do it.
* Need to be a typical diligent COS 226 student. O,

* Hire an expert.
* Intractable.

3 challenges * No one knows.

Impossible.

& & DN EH OO o o

o Ube WWwo K

= = NN KH O o o o

o W Wwo b K

Graph-processing challenge 1 Bipartiteness application

Problem. Is agraph bipartite?

S
W e /
: i: L] P Y. \(
o 0-1 ":’;\‘_.j:.’f(\V_.\“ Lo y;"*k“ e /<\~
0-2 . ~ P h"‘\'&“\/**"‘”f > 7\ /
0-5 —h;)'s l\ﬁ k:*_“‘{.\?/
0-6 v = G
w L
ifficult? 1-3 g
HOW dlfflCUH'. e o P ()(,?’“)\‘* _7:‘%;/\::.)(\‘_‘
* Any COS 126 student could do it. 2-4 ¢ 7t RN T
. - - X1 ——
* Need to be a typical diligent COS 226 student. O, i Ve S ; I/ o
. e
* Hire an expert. \)/ \/_ { I \ \'(\ % 4
* Intractable. simple DFS-based solution \\ /\ ’ i
(see textbook) 0-1
* No one knows. 0-2 N \ s e
63
* Impossible. o { (.
- — Female
=g
258
2-4 Relationship graph at "Jefferson High"
4-5
4-6
Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of
adolescent romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.
61
Graph-processing challenge 2 Graph-processing challenge 3
Problem. Find a cycle. Problem. Find a cycle that uses every edge.

Assumption. Need to use each edge exactly once.

How difficult? 2 How difficult?

Any COS 126 student could do it. OO * Any COS 126 student could do it.

Need to be a typical diligent COS 226 student. * Need to be a typical diligent COS 226 student.
* Hire an expert. * Hire an expert. 0-1-2-3-4-2-0-6-4-5-0

Intractable.

DDNNIT'OOOO
o Ud WWwo LN K

Intractable.

* No one knows. * No one knows.

Impossible. (1) (2)

Impossible.

63

S s W INNKFH OO OoOOo
o Ue s WNOOGDNPR

Graph-processing challenge 4 Graph-processing challenge 5

Problem. Find a cycle that visits every vertex. Problem. Are two graphs identical except for vertex names?
Assumption. Need to visit each vertex exactly once.

() 0-1 ()
\\ o-s
0-5
OO o ®© ® ©
How difficult? (O 1-2 How difficult? G
2-6
* Any COS 126 student could do it. / 3-4 * Any COS 126 student could do it. /
* Need to be a typical diligent COS 226 student. O ::2 * Need to be a typical diligent COS 226 student. O,
* Hire an expert. 0-5-3-4-6-2-1-0 4-6 * Hire an expert.
* Intractable. * Intractable.)
* No one knows. * No one knows. (2)
* Impossible. » Impossible. (47

04, 1<>3, 2<>2, 3<6, 4<>5, 5<0,

65

Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

How difficult? (3) ﬂ
* Any COS 126 student could do it. "0
* Need to be a typical diligent COS 226 student. (5)

* Hire an expert.

.h.n.ww?ooo
o UL NP

e Intractable. o
* No one knows.

Impossible. (1) (2) Ts)

67

S B W Wwo o oo
(- NS I © I N © I S B)

U WN K+ KH OOOo
o B U1l o U1

o
&

