2 3 QU|CKSO RT Two classic sorting algorithms

Critical components in the world's computational infrastructure.
* Full scientific understanding of their properties has enabled us
to develop them into practical system sorts.

* Quicksort honored as one of top 10 algorithms of 20™ century
in science and engineering.

» quicksort
» selection

. » duplicate keys * Perl, C++ stable sort, Python stable sort, Firefox JavaScript, ...
AlgOI‘ltth » system sorts

Mergescr"r, <«—— last lecture

» Java sort for objects.

FOURTH EDITION

QUiCkSOI"T, <«—— this lecture

* Java sort for primitive types.
* C gsort, Unix, Visual C++, Python, Matlab, Chrome JavaScript, ...

Algorithms, 4™ Edition 0 Robert Sedgewick and Kevin Wayne ° Copyright © 2002-2012 - February 22,2012 5:24:30 AM

Quicksort t-shirt

/
/
’{aublic static void quicksort(char(] items, int left, int right) I A ‘
inti, j;
charx, y;
i = left; j = right;
x = items|{left + right) / 2];
do

while ((items[i] < x) && (i < right)} i++;
) while ([x < itemslj]) && (j > left)) j--;

» quicksort
<=
{
y = items|i];
items(i] = itemsfj];
itemslj] = y;
i+
b
} while (i <= j);
if (left < j) quicksort(items, left, j);
, if (i < right) quicksort(items, i, right);

Quicksort

Basic plan.
 Shuffle the array.
 Partition so that, for some j
- entfry a[3j] is in place
- no larger entry to the left of 5
- no smaller entry to the right of j
+ Sort each piece recursively.

Sir Charles Antony Richard Hoare
1980 Turing Award

imput Q U I C K S O R TE X A M P L E
shuffle K ‘w P UIMAQC 0 S
partitioning item
partition E C A I E K L P U T M Q R X 0 S
™ not greater not less =~
sortleft A C E E I
sort right L M O P QR ST X
resut A C E E I KL M O P Q R S T U X

Quicksort partitioning

Basic plan.

* Scan i from left for an item that belongs on the right.
 Scan j from right for an item that belongs on the left.
* Exchange a[i] and a[j].

* Repeat until pointers cross.

ali]

.

\
j\O 12 3 4 5 6 7 8 91011 12 13 14 15
)

initial values 0 16 K RATETLEU®PUTIMNAQ
scan left, scan right 1 12 _R»
exchange 1 12 C
scan left, scan right 3 9 A_I I M Q
exchange 3 9 I T
scan left, scan right 5 6 E_I; E P U
exchange 5 6 E L
scan left, scan right 6 5 u_
final exchange 5 E K L
result 5 ECATIEIKTL®PUTMRAQ Q

Partitioning trace (array contents before and after each exchange)

c X 0 S

C X 0 S

R X 0 S

Quicksort partitioning demo

Quicksort: Java code for partitioning

before v

U
To

private static int partition(Comparable[] a, int lo, int hi)
{

int i = lo, j = hi+l;

while (true)

{
while (less(a[++i], a[lo])) find item on left to swap
if (i == hi) break;
while (less(a[lo]l, a[--3])) find item on right to swap
if (j == lo) break;
if (i >= j) break; check if pointers cross
exch(a, i, j); swap
}

exch(a, lo, j); swap with partitioning item

return j; return index of item now known to be in place

during V\ =v ‘ =v after =v

Quicksort: Java implementation

public class Quick

{
private static int partition(Comparable[] a, int lo, int hi)
{ /* see previous slide */ }

public static void sort(Comparable[] a)
{

StdRandom.shuffle(a) ;

sort(a, 0, a.length - 1);
}

private static void sort(Comparable[] a, int lo, int hi)
{

if (hi <= lo) return;

int j = partition(a, lo, hi);

sort(a, lo, j-1);

sort(a, j+1, hi);

Quicksort animation

50 random items

http://www.sorting-algorithms.com/quick-sort

“‘>

shuffle needed for
performance guarantee
(stay tuned)

algorithm position
in order

current subarray
not in order

Quicksort trace

lo j hi 0 1 2 3 4 5 6 7 8 91011 12 13 14 15
initial values Q U I CKSORTENXAMPTLE
random shuffle K RAATELE®PUTIM~OQUOCXO S
0 5 15 ECATIEIKL®PUTMAQRXO0S
0 3 4 E C A E I
0o 2 2 A C E
0o 0 1 A C
C
I
. /6 6 15 L PUTMAQRX 0 S
1o partition 7 9 15 M 0O P T Q R X U S
for subarrays 7 7 8 M 0
of size] T~ 0
10 13 15 S Q R T U X
10 12 12 R Q S
10 11 11 Q R
Q
14 14 15 u X
X
result A CEETIKLMOUPOQRSTUX

Quicksort trace (array contents after each partition)

Quicksort: implementation details

Partitioning in-place. Using an extra array makes partitioning easier
(and stable), but is not worth the cost.

Terminating the loop. Testing whether the pointers cross is a bit frickier
than it might seem.

Staying in bounds. The (3 == 1o) test is redundant (why?),
but the (i == ni) fest is not.

Preserving randomness. Shuffling is needed for performance guarantee.

Equal keys. When duplicates are present, it is (counter-intuitively) better
to stop on keys equal to the partitioning item's key.

Quicksort: empirical analysis

Running fime estimates:
* Home PC executes 108 compares/second.
* Supercomputer executes 10'2 compares/second.

merassort (¥ioa 19

quicksort (N log N)

(
compute usand million M usand million billion million billion

home instant 2.8 hours 317 years instant 1 second 18 min instant 0.6 sec 12 min

super instant 1 second 1 week instant instant instant instant instant instant

Lesson 1. Good algorithms are better than supercomputers.
Lesson 2. Great algorithms are better than good ones.

Quicksort: worst-case analysis

Worst case. Number of compares is ~ 12 N2.

af]

lo j hi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
initial values A B CDZEFGH 1 J KL MNDO
randomshuffe A°-' B C D E F G H | J K L M N O
0O 0 14 AB CDETFGH I J KLMNDO
1 1 14 B CDETFGH I J KL MNDO
2 2 14 CDEFGH I J KLMNDO
3 3 14 DEFGH I J KLMNDO
4 4 14 EFGHI J KLMNDO
5 5 14 F GH I J K LMNDO
6 6 14 GH I J KLMNDO
7 7 14 H 1 J K L MNO
8 8 14 I J K L MNO
9 9 14 J K L MNO
10 10 14 K L M N O
11 11 14 L MNO
12 12 14 M N O
13 13 14 N O
(o}

A B CDZETFGH I J KLMNDO

Quicksort: best-case analysis

Best case. Number of compares is ~Nlg N.

a[]
lo j hi 0 1 2 3 4 5 6 7 8 9 1011 12 13 14
initial values H A COBF EGDTUL I K J NMDO
randomshuffe H A C B F E G D L I K J N M O
0O 7 14 DACBTFEGHTLI K J NMDO
0O 3 6 B A CDF EG
o 1 2 A B C
A
C
4 5 6 E F G
E
G
8 11 14 J I K L NMO
8 9 10 I J K
|
K
12 13 14 M N O
M
(0]
A B CDETFGHII J KLMNDO

Quicksort: average-case analysis

Proposition. The average number of compares Cy to quicksort an array of
N distinct keys is ~ 2N In N (and the number of exchanges is ~ % N In N).

Pf 1. Cy satisfies the recurrence C,=C,=0and for N > 2:

N left right
partitioning i i
}
Co+Cn— Cy + Cn— Cne1 +C
Cy= (N+1) + (%) 4 (%) I (NlTJrO>

partitioning probability

* Multiply both sides by N and collect terms:
NCy = N(N+1) + 2(Co + Cy + ... +Cn_1)
* Subtract this from the same equation for N - 1:
NCy — (N=1)Cn_1 =2N + 2Cn_1
* Rearrange terms and divide by N (N + 1):
Cn Cn-1 2

N+1i_~ N TNt

Quicksort: average-case analysis

* Repeatedly apply above equation:

CN o CN,1 n 2
N+1_~ N N+1
Cn_2 2 2 : ' :
= + — 4+ ——— <«—— substitute previous equation
: . N-1 ' N ' N+1
previous equation
_ Oy, 2 2, 2
- N-2 N-1 N ' N+1
_2,2,2, . 2
3 4 5 77 N+1
* Approximate sum by an integral:
11 1 1
Cn = 2N+ (=+=+=+...
N (+)<3+4+5+ N+1>

N+1
~ 2(N+1)/ —dx
3 T

* Finally, the desired result:

Cny ~ 2(N+1)InN =~ 1.39NIgN

Quicksort: average-case analysis

Proposition. The average number of compares Cy to quicksort an array of
N distinct keys is ~ 2N In N (and the number of exchanges is ~ 5 N In N).

Pf 2. Consider BST representation of keys 1 fo N.
* A key is compared only with its ancestors and descendants.
* Probability i and j are compared equals 2/ |j - i + 1. \

3 and 6 are compared
(when 3 is partition)

1 and 6 are not compared
(because 3 is partition)

first partitioning

§ L item
first partitioning \
item in
left subarray \

Quicksort: average-case analysis

Proposition. The average number of compares Cy to quicksort an array of
N distinct keys is ~2N InN (and the number of exchanges is ~ s N In N).

Pf 2. Consider BST representation of keys 1 to .

shuffle

9 10 2 5 8 7 6 1 m 12 13 3 4

first partitioning

. L item
first partitioning \
item in
left subarray \

Quicksort: average-case analysis

Proposition. The average number of compares Cy to quicksort an array of
N distinct keys is ~ 2N InN (and the number of exchanges is ~ % N In N).

Pf 2. Consider BST representation of keys 1 to M.
* A key is compared only with its ancestors and descendants.
* Probability i and j are compared equals 2/ |j - i +1].

N N
2 1
* Expected number of compares = Y > e = 2y =
=1 jeit1d = ° + =1 =2 7
/ ol
all pairs i and j - = i
N
1
~ 2N — dx
z=1 L

= 2NInN

20

Quicksort: summary of performance characteristics

Worst case. Number of compares is quadratic.
e N+(N-D+(N-2) +...+1 ~ AN2
* More likely that your computer is struck by lightning bolt.

Average case. Number of compares is ~1.39 Nig N.
* 39% more compares than mergesort.
* But faster than mergesort in practice because of less data movement.

Random shuffle.
* Probabilistic guarantee against worst case.
* Basis for math model that can be validated with experiments.

Caveat emptor. Many textbook implementations go quadratic if array
* Is sorted or reverse sorted.
* Has many duplicates (even if randomized!)

Quicksort: practical improvements

Insertion sort small subarrays.

* Even quicksort has too much overhead for tiny subarrays.
o Cutoff to insertion sort for = 10 items.

* Note: could delay insertion sort until one pass at end.

private static void sort(Comparable[] a, int lo, int hi)
{
if (hi <= lo + CUTOFF - 1)
{
Insertion.sort(a, lo, hi);
return;
}
int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);

Quicksort properties

Proposition. Quicksort is an in-place sorting algorithm.
Pf.
* Partitioning: constant extra space.

* Depth of recursion: logarithmic extra space (with high probability).

can guarantee logarithmic depth by
recurring on smaller subarray
before larger subarray

Proposition. Quicksort is not stable.
Pf.

B C C A

1 3 B, G Al
1 3 B, Ay Ci
0 1 Al B, C C

22

Quicksort: practical improvements

Median of sample.

* Best choice of pivot item = median.

* Estimate true median by taking median of sample.
* Median-of-3 (random) items.

N

~ 12/7 N In N compares (slightly fewer)
~ 12/35 N In N exchanges (slightly more)

private static void sort(Comparable[] a, int lo, int hi)
{

if (hi <= lo) return;

int m = medianOf3(a, lo, lo + (hi - lo)/2, hi);
swap(a, lo, m);

int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);

24

Quicksort with median-of-3 and cutoff to insertion sort: visualization

input .|I|||||||||||.||I.|.|"ll.l”lll".ll“.":||||I.| ""||I”|||..II.||||||||.||.I|I.||..|.I|.||"I

partitioning element

result of
first partition 11

i
uldimndini .
sl
partilysoreed
A
it
I
Ay
both subarrays|.|.m...||||III|||IIII||I||||||""“l"l""”l"l""l"l""||"|""l""””"""””

partially sorted

resultuuuumlll|||IIIIIIIII||||||||||||||||||||""l"""l""””""""”""l
25 26
Selection Quick-select
Goal. Given an array of N items, find the & largest. Partition array so that:
Ex. Min (k=0), max (k=N -1), median (k=N/2). * Entry ar3] is in place.

* No larger entry to the left of ;.
Applications. * No smaller entry to the right of ;.
* Order statistics.

¢ Find the "top £." Repeat in one subarray, depending on j; finished when 3 equals k.

Use ‘rheor‘y asa guide. public static Comparable select(Comparable[] a, int k)

? { if a[k] is here if a[k] is here
 Easy Nlog N upper bound. Hows? R seat[hi] 15 her s:t[lc]> s her
* Easy N upper bound for k=1,2,3. How? int lo = 0, hi = a.length - 1; ’ ’

while (hi > lo) /

 Easy N lower bound. Why? {

J:.nt j = p?rtition(a, J-.o, hi); =v ‘V‘ =v

if (J <k) lo=3 + 1; 7 n n
Which is true? else if (j > k) hi = j - 1; 1o j hi

else return alk];
* NlogN lower bound? <«<—— s selection as hard as sorting? }
e N upper bound? <«——— is there a linear-time algorithm for each k?) =R)

27

28

Quick-select: mathematical analysis
Proposition. Quick-select takes linear time on average.

Pf sketch.
* Intuitively, each partitioning step splits array approximately in half:
N+N/2+N/4+...+1 ~ 2N compares.

 Formal analysis similar to quicksort analysis yields:
Cy = 2N +kIn(N/k) +(N—k) In(N/(N-k))

(2+21In2)N to find the median

Remark. Quick-select uses ~ ! N2 compares in the worst case, but
(as with quicksort) the random shuffle provides a probabilistic guarantee.

Generic methods

In our select() implementation, client needs a cast.

Double[] a = new Double[N];
for (int i = 0; i < N; i++)
a[i] = StdRandom.uniform() ;

unsafe cast
Double median = (Double) Quick.select(a, N/2);

required in client

The compiler complains.

% javac Quick.java
Note: Quick.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

Q. How to fix?

31

Theoretical context for selection

Proposition. [Blum, Floyd, Pratt, Rivest, Tarjan, 1973] There exists a

compare-based selection algorithm whose worst-case running time is linear.

Time Bounds for Selection

by .

Manuel Blum, Robert W. Floyd, Vaughan Pratt,
Ronald L. Rivest, and Robert E. Tarjan

Abstract

The number of comparisons required to select the i-th smallest of
n numbers is shown to be at most a linear function of n by analysis of
a new selection algorithm -- PICK. gSpecifically, no more than

5.4305 n comparisons are ever required. This bound is improved for

Remark. But, constants are too high = not used in practice.

Use theory as a guide.
* Still worthwhile to seek practical linear-time (worst-case) algorithm.
* Until one is discovered, use quick-select if you don't need a full sort.

Generic methods

Pedantic (safe) version. Compiles cleanly, no cast needed in client.

generic type variable

public class QuickPedantic (5 e inferred from argument a[])

{
public static <Key extends Comparable<Key>> Key select(Key[] a, int k)

{ /* as before */ } \ /

return type matches array type

public static <Key extends Comparable<Key>> void sort(Key[] a)
{ /* as before */ }

private static <Key extends Comparable<Key>> int partition(Key[] a, int lo, int hi)
{ /* as before */ }

private static <Key extends Comparable<Key>> boolean less(Key v, Key w)
{ /* as before */ }

private static <Key extends Comparable<Key>> void exch(Key[] a, int i, int j)
{ Key swap = a[i]; a[i] = a[j]; a[j] = swap; }

} can declare variables of generic type

http://www.cs.princeton.edu/algs4/23quicksort/QuickPedantic.java.html

Remark. Obnoxious code needed in system sort; not in this course (for brevity).

30

32

» duplicate keys

33

Duplicate keys
Mergesort with duplicate keys. Always between % Nlg N and N lg N compares.

Quicksort with duplicate keys.
* Algorithm goes quadratic unless partitioning stops on equal keys!
» 1990s C user found this defect in gsort ().

\ several textbook and system
implementation also have this defect

STOPONEQUALKETYS

! (.

swap if we don't stop if we stop
on equal keys on equal
keys

35

Duplicate keys

Often, purpose of sort is to bring items with equal keys together.
* Sort population by age.

* Find collinear points. ~<—— seeAssignment 3

* Remove duplicates from mailing list.

* Sort job applicants by college attended.

Chicago 09:25:52
Chicago 09:03:13

Typical characteristics of such applications. Chicago 09:21:05

R F4 Chicago 09:19:46
uge array. Chicago 09:19:32
Chicago 09:00:00

* Small humber of key values. Chicago 09:35:21

Chicago 09:00:59
Houston 09:01:10
Houston 09:00:13
Phoenix 09:37:44
Phoenix 09:00:03
Phoenix 09:14:25
Seattle 09:10:25
Seattle 09:36:14
Seattle 09:22:43
Seattle 09:10:11
Seattle 09:22:54

T
l

key

34

Duplicate keys: the problem

Mistake. Put all items equal to the partitioning item on one side.
Consequence. ~ Y% N? compares when all keys equal.

BAABABBBCCC AAAAAAAAARANA

Recommended. Stop scans on items equal to the partitioning item.
Consequence. ~ N lg N compares when all keys equal.

BAABABCCBCRB AAAAAAAAAAA

Desirable. Put all items equal to the partitioning item in place.

AAABBBBBCCC AAAAAAAAAAA

36

3-way partitioning

Goal. Partition array into 3 parts so that:

* Entries between 1t and gt equal to partition item v.
* No larger entries to left of 1t.

* No smaller entries to right of gt.

before |V| | |
4 t

Tlo hi

after | <v | =v >V |

4 4 t t

Tlo 1t gt hi

Dutch national flag problem. [Edsger Dijkstra]

* Conventional wisdom until mid 1990s: not worth doing.

* New approach discovered when fixing mistake in C library gsort().
* Now incorporated into gsort () and Java system sort.

37

Dijkstra 3-way partitioning algorithm

3-way partitioning.

* Let v be partitioning item a[1o].

* Scan i from left to right.
- a[i] less than vi exchange a[1t] with a[i] and increment both 1t and i
- a[i] greater than v: exchange aigt] with a[i] and decrement gt
- a[i] equal to v: increment i

before |V| | |
f f
o q To hi
Most of the right properties.
during | <V | =V | | >V |
* In-place. t ot t
1t i gt
* Not much code.
) - after | <v | =v | >v |
o Linear time if keys are all equal.] N 7 3
To 1t gt hi

39

Dijkstra's 3-way partitioning: demo

Dijkstra's 3-way partitioning: trace

v al]

1t i gt \ 0 1 2 3 4 5 6 7 8 91011
0 0 11 R B W WR W B R R W B R
0 1 11 R. B R
1 2 11 R W R
1 2 10 R R B

1 3 10 R W B

1 3 9 R B W

2 4 9 R R W

2 5 9 R W W

2 5 8 R W R

2 5 7 R R R

2 6 7 R B R

3 7 7 R R

3 8 7 R R W

3 8 7 B B B R R RRIRWWWW
3-way partitioning trace (array contents after each loop iteration)

38

40

3-way quicksort: Java implementation

private static void sort(Comparable[] a, int lo, int hi)
{
if (hi <= lo) return;
int 1t = lo, gt = hi;
Comparable v = a[lo];
int i = lo;
while (i <= gt)
{
int cmp = a[i] .compareTo (V) ;
if (cmp < 0) exch(a, lt++, i++);
else if (cmp > 0) exch(a, i, gt--);
else i++;
}
before lV[[l
sort(a, lo, 1t - 1); 1 t
sort(a, gt + 1, hi); lo i
} during l <V [=V [[>V l
1’t i g’t
after [<v [=v [>V]
t 1 t t
Tlo 1t gt hi

41

Duplicate keys: lower bound

Sorting lower bound. If there are n distinct keys and the i one occurs
x; times, any compare-based sorting algorithm must use at least

N! n T
Ig <ﬁ> ~ - E z;lg == «—— NlgN when all distinct;
Ty T2: - Ty i1 N linear when only a constant number of distinct keys

compares in the worst case.

Proposition. [Sedgewick-Bentley, 1997] proportional to lower bound
Quicksort with 3-way partitioning is entropy-optimal.

Pf. [beyond scope of course]

Bottom line. Randomized quicksort with 3-way partitioning reduces running
time from linearithmic to linear in broad class of applications.

43

3-way quicksort: visual trace

T i
equal to partitioning element <

42

44

Sorting applications

Sorting algorithms are essential in a broad variety of applications:
e Sort a list of names.

* Organize an MP3 library.

obvious applications

* Display Google PageRank results.
 List RSS feed in reverse chronological order.

* Find the median.
* Find the closest pair.

* Binary search in a database. problems become easy once items

 Identify statistical outliers. are in sorted order

* Find duplicates in a mailing list.

* Data compression.
e Computer graphics.
» Computational biology.

. non-obvious applications
* Supply chain management.

* Load balancing on a parallel computer.

Every system needs (and has) a system sort!

45

War story (C gsort function)

AT&T Bell Labs (1991). Allan Wilks and Rick Becker discovered that a gsort ()
call that should have taken a few minutes was consuming hours of CPU time.

Why is gsort() so slow?
\/—_/

At the time, almost all gsort () implementations based on those in:
* Version 7 Unix (1979): quadratic time to sort organ-pipe arrays.
* BSD Unix (1983): quadratic time to sort random arrays of Os and 1s.

47

Java system sorts

Arrays.sort().

* Has different method for each primitive type.

* Has a method for data types that implement comparable.

* Has a method that uses a comparator.

* Uses tuned quicksort for primitive types; tfuned mergesort for objects.

import java.util.Arrays;

public class StringSort
{
public static void main(String[] args)
{
String[] a = StdIn.readStrings());
Arrays.sort(a);
for (int i = 0; i < N; i++)
StdOut.println(a[i]) ;

Q. Why use different algorithms for primitive and reference types?

46

Engineering a system sort

Basic algorithm = quicksort.
* Cutoff to insertion sort for small subarrays.
* Partitioning scheme: Bentley-McIlroy 3-way partitioning. [ahead]
* Partitioning item.
- small arrays: middle entry
- medium arrays: median of 3
- large arrays: Tukey's ninther [next slide]

Engineering a Sort Function

JON L. BENTLEY
M. DOUGLAS McILROY
AT&T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974, U.SA.

SUMMARY

We recount the history of a new gsort function for a C library. Our function is clearer, faster and more
robust than existing sorts. It chooses partitioning elements by a new sampling scheme; it partitions by a
novel solution to Dijkstra’s Dutch National Flag problem; and it swaps efficiently. Its behavior was
assessed with timing and debugging testbeds, and with a program to certify performance. The design
techniques apply in domains beyond sorting.

Now widely used. C, C++, Java,

48

Tukey's ninther

Tukey's ninther. Median of the median of 3 samples, each of 3 entries.
* Approximates the median of 9.
* Uses at most 12 compares.

nine evenly
; R a M G X K B J E
spaced entries
groups of 3 R a M G X K B J E

medians M K E

ninther K

Q. Why use Tukey's ninther?
A. Better partitioning than random shuffle and less costly.

49

Achilles heel in Bentley-McIlroy implementation (Java system sort)

Q. Based on all this research, Java's system sort is solid, right?
more disastrous consequences in C
A. No: a killer input. /
* Overflows function call stack in Java and crashes program.
» Would take quadratic time if it didn't crash first.

% more 250000.txt % java IntegerSort 250000 < 250000.txt

0 Exception in thread "main"

218750 java.lang.StackOverflowError

222662 at java.util.Arrays.sortl (Arrays.java:562)

11 at java.util.Arrays.sortl (Arrays.java:606)

166672 at java.util.Arrays.sortl (Arrays.java:608)

247070 at java.util.Arrays.sortl (Arrays.java:608)

83339 at java.util.Arrays.sortl (Arrays.java:608)
| |

250,000 integers Java's sorting library crashes, even if
between 0 and 250,000 you give it as much stack space as Windows allows

Bentley-McIlroy 3-way partitioning

Partition items into four parts:

* No larger entries to left of i.

* No smaller entries to right of ;.
* Equal entries to left of p.

* Equal entries to right of q.

Afterwards, swap equal keys into center.

All the right properties.
* In-place.
* Not much code.

* Linear time if keys are all equal.

Small overhead if no equal keys.

50

Achilles heel in Bentley-McIlroy implementation (Java system sort)

McIlroy's devious idea. [A Killer Adversary for Quicksort]
* Construct malicious input on the fly while running system quicksort,

in response to the sequence of keys compared.
* Make partitioning item compare low against all items not seen during
selection of partitioning item (but don't commit fo their relative order).
* Not hard to identify partitioning item.

Consequences.

* Confirms theoretical possibility.

* Algorithmic complexity attack: you enter linear amount of data;
server performs quadratic amount of work.

Good news. Attack is not effective if sort() shuffles input array.

Q. Why do you think arrays.sort() is deterministic?

52

System sort: Which algorithm to use? System sort: Which algorithm fo use?

Many sorting algorithms to choose from: Applications have diverse attributes.
attributes

» Stable? 123 4
Internal sorts. * Parallel? dlgorithm 4 e e .
« Insertion sort, selection sort, bubblesort, shaker sort. * Deterministic? et
* Quicksort, mergesort, heapsort, samplesort, shellsort. * Keys all distinct? Et ..
* Solitaire sort, red-black sort, splaysort, Dobosiewicz sort, psort, ... * Multiple key types? ..

* Linked list or arrays? o L
External sorts. Poly-phase mergesort, cascade-merge, oscillating sort. * Large or small items? Ko .

* Is your array randomly ordered?

String/radix sorts. Distribution, MSD, LSD, 3-way string quicksort. * Need guaranteed performance? ;fr’l‘gurfe"s'fh‘;";ﬁ’égarf;ﬁ:fs°f

Parallel sorts. Elementary sort may be method of choice for some combination.
e Bitonic sort, Batcher even-odd sort. Cannot cover all combinations of attributes.
* Smooth sort, cube sort, column sort.
* GPUsort. Q. TIs the system sort good enough?
A. Usually.

Sorting summary

selection

v

N2/2 N2/2 N2/2 N exchanges

v v N2/2 N2/4 N use for small N or partially ordered
shell v ? ? N tight code, subquadratic
merge v NligN Nlig N Nlig N Nlog N guarantee, stable
e v N2/2 2NInN NligN Nlog N probabilistic guarantee

fastest in practice

improves quicksort in presence

N i 2
3-way quick v N2/2 2NInN N of duplicate keys

v v NligN NligN NligN holy sorting grail

