
Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2012 · February 15, 2012 5:42:22 AM

Algorithms
F O U R T H E D I T I O N

R O B E R T S E D G E W I C K K E V I N W A Y N E

2.1 ELEMENTARY SORTS

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ shellsort
‣ shuffling
‣ convex hull

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ shellsort
‣ shuffling
‣ convex hull

2

Ex. Student records in a university.

Sort. Rearrange array of N items into ascending order.

3

Sorting problem

item

key

Chen 3 A 991-878-4944 308 Blair

Rohde 2 A 232-343-5555 343 Forbes

Gazsi 4 B 766-093-9873 101 Brown

Furia 1 A 766-093-9873 101 Brown

Kanaga 3 B 898-122-9643 22 Brown

Andrews 3 A 664-480-0023 097 Little

Battle 4 C 874-088-1212 121 Whitman

Andrews 3 A 664-480-0023 097 Little

Battle 4 C 874-088-1212 121 Whitman

Chen 3 A 991-878-4944 308 Blair

Furia 1 A 766-093-9873 101 Brown

Gazsi 4 B 766-093-9873 101 Brown

Kanaga 3 B 898-122-9643 22 Brown

Rohde 2 A 232-343-5555 343 Forbes

Goal. Sort any type of data.
Ex 1. Sort random real numbers in ascending order.

4

Sample sort client

% java Experiment 10
0.08614716385210452
0.09054270895414829
0.10708746304898642
0.21166190071646818
0.363292849257276
0.460954145685913
0.5340026311350087
0.7216129793703496
0.9003500354411443
0.9293994908845686

public class Experiment
{
 public static void main(String[] args)
 {
 int N = Integer.parseInt(args[0]);
 Double[] a = new Double[N];
 for (int i = 0; i < N; i++)
 a[i] = StdRandom.uniform();
 Insertion.sort(a);
 for (int i = 0; i < N; i++)
 StdOut.println(a[i]);
 }
}

seems artificial, but stay tuned for an application

Goal. Sort any type of data.
Ex 2. Sort strings from file in alphabetical order.

5

Sample sort client

% more words3.txt
bed bug dad yet zoo ... all bad yes

% java StringSorter words3.txt
all bad bed bug dad ... yes yet zoo

public class StringSorter
{
 public static void main(String[] args)
 {
 String[] a = In.readStrings(args[0]);
 Insertion.sort(a);
 for (int i = 0; i < a.length; i++)
 StdOut.println(a[i]);
 }
}

Goal. Sort any type of data.
Ex 3. Sort the files in a given directory by filename.

6

% java FileSorter .
Insertion.class
Insertion.java
InsertionX.class
InsertionX.java
Selection.class
Selection.java
Shell.class
Shell.java
ShellX.class
ShellX.java

Sample sort client

import java.io.File;
public class FileSorter
{
 public static void main(String[] args)
 {
 File directory = new File(args[0]);
 File[] files = directory.listFiles();
 Insertion.sort(files);
 for (int i = 0; i < files.length; i++)
 StdOut.println(files[i].getName());
 }
}

7

Callbacks

Goal. Sort any type of data.

Q. How can sort() know how to compare data of type Double, String, and
java.io.File without any information about the type of an item's key?

Callback = reference to executable code.

• Client passes array of objects to sort() function.

• The sort() function calls back object's compareTo() method as needed.

Implementing callbacks.

• Java: interfaces.

• C: function pointers.

• C++: class-type functors.

• C#: delegates.

• Python, Perl, ML, Javascript: first-class functions.

Callbacks: roadmap

8

sort implementation

client object implementation

import java.io.File;
public class FileSorter
{
 public static void main(String[] args)
 {
 File directory = new File(args[0]);
 File[] files = directory.listFiles();
 Insertion.sort(files);
 for (int i = 0; i < files.length; i++)
 StdOut.println(files[i].getName());
 }
}

key point: no dependence
on File data type

public static void sort(Comparable[] a)
{
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0; j--)
 if (a[j].compareTo(a[j-1]) < 0)
 exch(a, j, j-1);
 else break;
}

public class File
implements Comparable<File>
{
 ...
 public int compareTo(File b)
 {
 ...
 return -1;
 ...
 return +1;
 ...
 return 0;
 }
}

Comparable interface (built in to Java)

public interface Comparable<Item>
{
 public int compareTo(Item that);
}

A total order is a binary relation ≤ that satisfies

• Antisymmetry: if v ≤ w and w ≤ v, then v = w.

• Transitivity: if v ≤ w and w ≤ x, then v ≤ x.

• Totality: either v ≤ w or w ≤ v or both.

Ex. Integers, real numbers, alphabetical order for strings,
chronological order for dates, ...

9

Total order

an intransitive relation

Implement compareTo() so that v.compareTo(w)

• Implements a total order.

• Returns a negative integer, zero, or positive integer
if v is less than, equal to, or greater than w, respectively.

• Throws an exception if incompatible types (or either is null).

Built-in comparable types. Integer, Double, String, Date, File, ...
User-defined comparable types. Implement the Comparable interface.

10

Comparable API

less than (return -1) equal to (return 0) greater than (return +1)

v

w v

w
v w

Date data type. Simplified version of java.util.Date.

public class Date implements Comparable<Date>
{
 private final int month, day, year;

 public Date(int m, int d, int y)
 {
 month = m;
 day = d;
 year = y;
 }

 public int compareTo(Date that)
 {
 if (this.year < that.year) return -1;
 if (this.year > that.year) return +1;
 if (this.month < that.month) return -1;
 if (this.month > that.month) return +1;
 if (this.day < that.day) return -1;
 if (this.day > that.day) return +1;
 return 0;
 }
}

11

Implementing the Comparable interface

only compare dates
to other dates

Helper functions. Refer to data through compares and exchanges.

Less. Is item v less than w ?

Exchange. Swap item in array a[] at index i with the one at index j.

12

Two useful sorting abstractions

private static boolean less(Comparable v, Comparable w)
{ return v.compareTo(w) < 0; }

private static void exch(Comparable[] a, int i, int j)
{
 Comparable swap = a[i];
 a[i] = a[j];
 a[j] = swap;
}

Goal. Test if an array is sorted.

Q. If the sorting algorithm passes the test, did it correctly sort the array?
A.

13

Testing

private static boolean isSorted(Comparable[] a)
{
 for (int i = 1; i < a.length; i++)
 if (less(a[i], a[i-1])) return false;
 return true;
}

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ shellsort
‣ shuffling
‣ convex hull

14

15

Selection sort demo

16

Selection sort

Algorithm. ↑ scans from left to right.

Invariants.

• Entries the left of ↑ (including ↑) fixed and in ascending order.

• No entry to right of ↑ is smaller than any entry to the left of ↑.

in final order ↑

17

Selection sort inner loop

To maintain algorithm invariants:

• Move the pointer to the right.

• Identify index of minimum entry on right.

• Exchange into position.

i++;

↑

int min = i;
for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;

↑↑

exch(a, i, min);
↑↑

in final order

in final order

in final order

18

Selection sort: Java implementation

public class Selection
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 {
 int min = i;
 for (int j = i+1; j < N; j++)
 if (less(a[j], a[min]))
 min = j;
 exch(a, i, min);
 }
 }

 private static boolean less(Comparable v, Comparable w)
 { /* as before */ }

 private static void exch(Comparable[] a, int i, int j)
 { /* as before */ }
}

Selection sort: mathematical analysis

Proposition. Selection sort uses (N – 1) + (N – 2) + ... + 1 + 0 ~ N 2 / 2 compares
and N exchanges.

Running time insensitive to input. Quadratic time, even if input array is sorted.
Data movement is minimal. Linear number of exchanges.

19

Trace of selection sort (array contents just after each exchange)

 a[]
 i min 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 0 6 S O R T E X A M P L E
 1 4 A O R T E X S M P L E
 2 10 A E R T O X S M P L E
 3 9 A E E T O X S M P L R
 4 7 A E E L O X S M P T R
 5 7 A E E L M X S O P T R
 6 8 A E E L M O S X P T R
 7 10 A E E L M O P X S T R
 8 8 A E E L M O P R S T X
 9 9 A E E L M O P R S T X
10 10 A E E L M O P R S T X

 A E E L M O P R S T X

entries in gray are
in final position

entries in black
are examined to find

the minimum

entries in red
are a[min]

Selection sort: animations

20

http://www.sorting-algorithms.com/selection-sort

20 random items

in final order

not in final order

algorithm position

Selection sort: animations

21

in final order

not in final order

algorithm position

http://www.sorting-algorithms.com/selection-sort

20 partially-sorted items

22

Selection sort: Gypsy folk dance

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ shellsort
‣ shuffling
‣ convex hull

23

24

Insertion sort demo

25

Insertion sort

Algorithm. ↑ scans from left to right.

Invariants.

• Entries to the left of ↑ (including ↑) are in ascending order.

• Entries to the right of ↑ have not yet been seen.

in order ↑ not yet seen

26

Insertion sort inner loop

To maintain algorithm invariants:

• Move the pointer to the right.

• Moving from right to left, exchange
a[i] with each larger entry to its left.

for (int j = i; j > 0; j--)
 if (less(a[j], a[j-1]))
 exch(a, j, j-1);
 else break;

i++;

in order not yet seen

↑

in order not yet seen

↑↑↑↑

Insertion sort: Java implementation

27

public class Insertion
{
 public static void sort(Comparable[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 for (int j = i; j > 0; j--)
 if (less(a[j], a[j-1]))
 exch(a, j, j-1);
 else break;
 }

 private static boolean less(Comparable v, Comparable w)
 { /* as before */ }

 private static void exch(Comparable[] a, int i, int j)
 { /* as before */ }
}

Proposition. To sort a randomly-ordered array with distinct keys,
insertion sort uses ~ ¼ N 2 compares and ~ ¼ N 2 exchanges on average.

Pf. Expect each entry to move halfway back.

Insertion sort: mathematical analysis

28

Trace of insertion sort (array contents just after each insertion)

 a[]
 i j 0 1 2 3 4 5 6 7 8 9 10

 S O R T E X A M P L E

 1 0 O S R T E X A M P L E
 2 1 O R S T E X A M P L E
 3 3 O R S T E X A M P L E
 4 0 E O R S T X A M P L E
 5 5 E O R S T X A M P L E
 6 0 A E O R S T X M P L E
 7 2 A E M O R S T X P L E
 8 4 A E M O P R S T X L E
 9 2 A E L M O P R S T X E
10 2 A E E L M O P R S T X

 A E E L M O P R S T X

entries in black
moved one position
right for insertion

entries in gray
do not move

entry in red
is a[j]

Insertion sort: trace

29

Insertion sort: animation

30

in order

not yet seen

algorithm position

http://www.sorting-algorithms.com/insertion-sort

40 random items

Best case. If the array is in ascending order, insertion sort makes
N - 1 compares and 0 exchanges.

Worst case. If the array is in descending order (and no duplicates),
insertion sort makes ~ ½ N 2 compares and ~ ½ N 2 exchanges.

Insertion sort: best and worst case

31

 X T S R P O M L E E A

 A E E L M O P R S T X

Insertion sort: animation

32

http://www.sorting-algorithms.com/insertion-sort

40 reverse-sorted items

in order

not yet seen

algorithm position

Def. An inversion is a pair of keys that are out of order.

Def. An array is partially sorted if the number of inversions is ≤ c N.

• Ex 1. A subarray of size 10 appended to a sorted subarray of size N.

• Ex 2. An array of size N with only 10 entries out of place.

Proposition. For partially-sorted arrays, insertion sort runs in linear time.
Pf. Number of exchanges equals the number of inversions.

Insertion sort: partially-sorted arrays

33

 A E E L M O T R X P S

T-R T-P T-S R-P X-P X-S
(6 inversions)

number of compares = exchanges + (N – 1)

Insertion sort: animation

34

http://www.sorting-algorithms.com/insertion-sort

40 partially-sorted items

in order

not yet seen

algorithm position

35

Insertion sort: Romanian folk dance

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ shellsort
‣ shuffling
‣ convex hull

36

Shuffling. Rearrange an array so that result is a uniformly random permutation.

How to shuffle an array

37

Shuffling. Rearrange an array so that result is a uniformly random permutation.

How to shuffle an array

38

Knuth shuffle demo

39

Knuth shuffle. [Fisher-Yates 1938]

• In iteration i, pick integer r between 0 and i uniformly at random.

• Swap a[i] and a[r].

Proposition. Knuth shuffling algorithm produces a uniformly random
permutation of the input array in linear time.

Knuth shuffle

40

assuming integers
uniformly at random

not yet seenshuffled

ir

Knuth shuffle. [Fisher-Yates 1938]

• In iteration i, pick integer r between 0 and i uniformly at random.

• Swap a[i] and a[r].

Proposition. Knuth shuffling algorithm produces a uniformly random
permutation of the input array in linear time.

Knuth shuffle

41

assuming integers
uniformly at random

not yet seenshuffled

ir

Knuth shuffle. [Fisher-Yates 1938]

• In iteration i, pick integer r between 0 and i uniformly at random.

• Swap a[i] and a[r].

Knuth shuffle

42

between 0 and i

public class StdRandom
{
 ...
 public static void shuffle(Object[] a)
 {
 int N = a.length;
 for (int i = 0; i < N; i++)
 {
 int r = StdRandom.uniform(i + 1);
 exch(a, i, r);
 }
 }
}

common bug: between 0 and N – 1
correct variant: between i and N – 1

Shuffle sort.

• Generate a random real number for each array entry.

• Sort the array.

Proposition. Shuffle sort produces a uniformly random permutation
of the input array, provided no duplicate values.

Shuffle sort

43

useful for shuffling
columns in a spreadsheet

0.14190.1576 0.42180.48540.8003 0.9157 0.95720.96490.9706

assuming real numbers
uniformly at random

Shuffle sort.

• Generate a random real number for each array entry.

• Sort the array.

Proposition. Shuffle sort produces a uniformly random permutation
of the input array, provided no duplicate values.

Shuffle sort

44

0.1419 0.1576 0.4218 0.4854 0.8003 0.9157 0.9572 0.9649 0.9706

useful for shuffling
columns in a spreadsheet

assuming real numbers
uniformly at random

Microsoft antitrust probe by EU. Microsoft agreed to provide a randomized
ballot screen for users to select browser in Windows 7.

45

War story (Microsoft)

http://www.browserchoice.eu

appeared last
50% of the time

Microsoft antitrust probe by EU. Microsoft agreed to provide a randomized
ballot screen for users to select browser in Windows 7.

Solution? Implement shuffle sort by making comparator always return a
random answer.

46

War story (Microsoft)

 function RandomSort (a,b)
 {
 return (0.5 - Math.random());
 }

Microsoft's implementation in Javascript
 public int compareTo(Browser that)
 {
 double r = Math.random();
 if (r < 0.5) return -1;
 if (r > 0.5) return +1;
 return 0;
 }

browser comparator
(should implement a total order)

Texas hold'em poker. Software must shuffle electronic cards.

War story (online poker)

47

How We Learned to Cheat at Online Poker: A Study in Software Security
http://itmanagement.earthweb.com/entdev/article.php/616221

Bug 1. Random number r never 52 ⇒ 52nd card can't end up in 52nd place.
Bug 2. Shuffle not uniform (should be between i and 51).
Bug 3. random() uses 32-bit seed ⇒ 232 possible shuffles.
Bug 4. Seed = milliseconds since midnight ⇒ 86.4 million possible shuffles.

Exploit. After seeing 5 cards and synchronizing with server clock,
can determine all future cards in real time.

War story (online poker)

48

 for i := 1 to 52 do begin
 r := random(51) + 1;
 swap := card[r];
 card[r] := card[i];
 card[i] := swap;
 end;

between 1 and 51

Shuffling algorithm in FAQ at www.planetpoker.com

“ The generation of random numbers is too important to be left to chance. ”

 — Robert R. Coveyou

Best practices for shuffling (if your business depends on it).

• Use a hardware random-number generator that has passed both
the FIPS 140-2 and the NIST statistical test suites.

• Continuously monitor statistic properties:
hardware random-number generators are fragile and fail silently.

• Use an unbiased shuffling algorithm.

Bottom line. Shuffling a deck of cards is hard!

War story (online poker)

49

‣ rules of the game
‣ selection sort
‣ insertion sort
‣ shellsort
‣ shuffling
‣ convex hull

50

The convex hull of a set of N points is the smallest perimeter fence
enclosing the points.

Equivalent definitions.

• Smallest convex set containing all the points.

• Smallest area convex polygon enclosing the points.

• Convex polygon enclosing the points, whose vertices are points in the set.
51

Convex hull

52

Convex hull

The convex hull of a set of N points is the smallest perimeter fence
enclosing the points.

Convex hull output. Sequence of vertices in counterclockwise order.

vertex

on convex hull boundary,
but not vertices

53

Convex hull: mechanical algorithm

Mechanical algorithm. Hammer nails perpendicular to plane; stretch elastic
rubber band around points.

http://www.dfanning.com/math_tips/convexhull_1.gif

Robot motion planning. Find shortest path in the plane from s to t
that avoids a polygonal obstacle.

Fact. Shortest path is either straight line from s to t or it is one of two
polygonal chains of convex hull.

54

Convex hull application: motion planning

s t
obstacle

55

Convex hull application: farthest pair

Farthest pair problem. Given N points in the plane, find a pair of points with
the largest Euclidean distance between them.

Fact. Farthest pair of points are extreme points on convex hull.

Fact. Can traverse the convex hull by making only counterclockwise turns.

Fact. The vertices of convex hull appear in increasing order of polar angle
with respect to point p with lowest y-coordinate.

56

Convex hull: geometric properties

1

p

3

4

5

67

8

9

10

1112

2

57

Graham scan demo

• Choose point p with smallest y-coordinate.

• Sort points by polar angle with p.

• Consider points in order, and discard unless that would create a ccw turn.

58

Convex hull: Graham scan

1

0

3

4

5

67
9

1112

2

10

8

59

Graham scan: implementation challenges

Q. How to find point p with smallest y-coordinate?
A. Define a total order, comparing y-coordinate. [next lecture]

Q. How to sort points by polar angle with respect to p ?
A. Define a total order for each point p. [next lecture]

Q. How to determine whether p1 → p2 → p3 is a counterclockwise turn?
A. Computational geometry. [next two slides]

Q. How to sort efficiently?
A. Mergesort sorts in N log N time. [next lecture]

Q. How to handle degeneracies (three or more points on a line)?
A. Requires some care, but not hard. [see booksite]

60

CCW. Given three points a, b, and c, is a → b → c a counterclockwise turn?

Lesson. Geometric primitives are tricky to implement.

• Dealing with degenerate cases.

• Coping with floating-point precision.

Implementing ccw

a

b

yes

a

c

no

a

b

yes
(∞-slope)

a

b

no
(collinear)

b

a

no
(collinear)

a

c

no
(collinear)

cc b

c c b

is c to the left of the ray a→b

CCW. Given three points a, b, and c, is a → b → c a counterclockwise turn?

• Determinant (or cross product) gives twice signed area of planar triangle.

• If signed area > 0, then a → b → c is counterclockwise.

• If signed area < 0, then a → b → c is clockwise.

• If signed area = 0, then a → b → c are collinear.

< 0> 0

61

Implementing ccw

€

2 × Area(a, b, c) =
ax ay 1
bx by 1
cx cy 1

= (bx − ax)(cy − ay) − (by − ay)(cx − ax)

(ax, ay)

(bx, by)

(cx, cy) (ax, ay)

(bx, by)

(cx, cy)

(b - a) × (c - a)

(ax, ay)

(cx, cy)

(bx, by)

= 0

counterclockwise clockwise collinear

62

Immutable point data type

public class Point2D
{
 private final double x;
 private final double y;

 public Point(double x, double y)
 {
 this.x = x;
 this.y = y;
 }

 ...

 public static int ccw(Point a, Point b, Point c)
 {
 int area2 = (b.x-a.x)*(c.y-a.y) - (b.y-a.y)*(c.x-a.x);
 if (area2 < 0) return -1; // clockwise
 else if (area2 > 0) return +1; // counter-clockwise
 else return 0; // collinear
 }
}

danger of
floating-point
roundoff error

