
COS 226, SPRING 2012

ALGORITHMS
AND

DATA STRUCTURES

KEVIN WAYNE

http://www.princeton.edu/~cos226

COURSE OVERVIEW

‣ outline
‣ why study algorithms?
‣ usual suspects
‣ coursework
‣ resources

3

What is COS 226?

• Intermediate-level survey course.

• Programming and problem solving, with applications.

• Algorithm: method for solving a problem.

• Data structure: method to store information.

topic data structures and algorithms

data types stack, queue, bag, union-find, priority queue

sorting quicksort, mergesort, heapsort, radix sorts

searching BST, red-black BST, hash table

graphs BFS, DFS, Prim, Kruskal, Dijkstra

strings KMP, regular expressions, TST, Huffman, LZW

advanced B-tree, suffix array, maxflow, simplex

COS 226 course overview

4

Their impact is broad and far-reaching.

Internet. Web search, packet routing, distributed file sharing, ...

Biology. Human genome project, protein folding, ...

Computers. Circuit layout, file system, compilers, ...

Computer graphics. Movies, video games, virtual reality, ...

Security. Cell phones, e-commerce, voting machines, ...

Multimedia. MP3, JPG, DivX, HDTV, face recognition, ...

Social networks. Recommendations, news feeds, advertisements, ...

Physics. N-body simulation, particle collision simulation, ...

 ⋮

Why study algorithms?

Old roots, new opportunities.

• Study of algorithms dates at least to Euclid.

• Formalized by Church and Turing in 1930s.

• Some important algorithms were discovered
by undergraduates in a course like this!

5

300 BCE

1920s
1930s
1940s
1950s
1960s
1970s
1980s
1990s
2000s

Why study algorithms?

6

To solve problems that could not otherwise be addressed.

Ex. Network connectivity. [stay tuned]

Why study algorithms?

7

For intellectual stimulation.

Why study algorithms?

“ For me, great algorithms are the poetry of computation. Just like

 verse, they can be terse, allusive, dense, and even mysterious.

 But once unlocked, they cast a brilliant new light on some

 aspect of computing. ” — Francis Sullivan

“ An algorithm must be seen to be believed. ” — Donald Knuth

2 C O MPUTIN G IN SCIEN CE & EN GINEERIN G

Computational algorithms are probably as old as civilization.
Sumerian cuneiform, one of the most ancient written records,
consists partly of algorithm descriptions for reckoning in base
60. And I suppose we could claim that the Druid algorithm for
estimating the start of summer is embodied in Stonehenge.
(That’s really hard hardware!)

Like so many other things that technology affects, algo-
rithms have advanced in startling and unexpected ways in the
20th century—at least it looks that way to us now. The algo-
rithms we chose for this issue have been essential for progress
in communications, health care, manufacturing, economics,
weather prediction, defense, and fundamental science. Con-
versely, progress in these areas has stimulated the search for
ever-better algorithms. I recall one late-night bull session on
the Maryland Shore when someone asked, “Who first ate a
crab? After all, they don’t look very appetizing.’’ After the usual
speculations about the observed behavior of sea gulls, someone
gave what must be the right answer—namely, “A very hungry
person first ate a crab.”

The flip side to “necessity is the mother of invention’’ is “in-
vention creates its own necessity.’’ Our need for powerful ma-
chines always exceeds their availability. Each significant com-
putation brings insights that suggest the next, usually much
larger, computation to be done. New algorithms are an attempt
to bridge the gap between the demand for cycles and the avail-
able supply of them. We’ve become accustomed to gaining the
Moore’s Law factor of two every 18 months. In effect, Moore’s
Law changes the constant in front of the estimate of running
time as a function of problem size. Important new algorithms
do not come along every 1.5 years, but when they do, they can
change the exponent of the complexity!

For me, great algorithms are the poetry of computation.
Just like verse, they can be terse, allusive, dense, and even

mysterious. But once unlocked, they cast a brilliant new light
on some aspect of computing. A colleague recently claimed
that he’d done only 15 minutes of productive work in his
whole life. He wasn’t joking, because he was referring to the
15 minutes during which he’d sketched out a fundamental op-
timization algorithm. He regarded the previous years of
thought and investigation as a sunk cost that might or might
not have paid off.

Researchers have cracked many hard problems since 1 Jan-
uary 1900, but we are passing some even harder ones on to the
next century. In spite of a lot of good work, the question of
how to extract information from extremely large masses of
data is still almost untouched. There are still very big chal-
lenges coming from more “traditional” tasks, too. For exam-
ple, we need efficient methods to tell when the result of a large
floating-point calculation is likely to be correct. Think of the
way that check sums function. The added computational cost
is very small, but the added confidence in the answer is large.
Is there an analog for things such as huge, multidisciplinary
optimizations? At an even deeper level is the issue of reason-
able methods for solving specific cases of “impossible’’ prob-
lems. Instances of NP-complete problems crop up in at-
tempting to answer many practical questions. Are there
efficient ways to attack them?

I suspect that in the 21st century, things will be ripe for an-
other revolution in our understanding of the foundations of
computational theory. Questions already arising from quan-
tum computing and problems associated with the generation
of random numbers seem to require that we somehow tie to-
gether theories of computing, logic, and the nature of the
physical world.

The new century is not going to be very restful for us, but it
is not going to be dull either!

THE JOY OF ALGORITHMS

Francis Sullivan, Associate Editor-in-Chief

THE THEME OF THIS FIRST-OF-THE-CENTURY ISSUE OF COMPUTING IN

SCIENCE & ENGINEERING IS ALGORITHMS. IN FACT, WE WERE BOLD

ENOUGH—AND PERHAPS FOOLISH ENOUGH—TO CALL THE 10 EXAMPLES WE’VE SE-

LECTED “THE TOP 10 ALGORITHMS OF THE CENTURY.”

F R O M T H E
E D I T O R S

8

To become a proficient programmer.

Why study algorithms?

“ I will, in fact, claim that the difference between a bad programmer

 and a good one is whether he considers his code or his data structures

 more important. Bad programmers worry about the code. Good

 programmers worry about data structures and their relationships. ”

 — Linus Torvalds (creator of Linux)

“ Algorithms + Data Structures = Programs. ” — Niklaus Wirth

They may unlock the secrets of life and of the universe.

Computational models are replacing mathematical models in scientific inquiry.

9

20th century science
(formula based)

€

E = mc2

€

F = ma

€

F = Gm1m2

r2

€

−
2

2m
∇2 + V (r)

⎡

⎣
⎢

⎤

⎦
⎥ Ψ(r) = E Ψ(r)

Why study algorithms?

“ Algorithms: a common language for nature, human, and computer. ” — Avi Wigderson

21st century science
(algorithm based)

for (double t = 0.0; true; t = t + dt)
 for (int i = 0; i < N; i++)
 {
 bodies[i].resetForce();
 for (int j = 0; j < N; j++)
 if (i != j)
 bodies[i].addForce(bodies[j]);
 }

For fun and profit.

10

Why study algorithms?

• Their impact is broad and far-reaching.

• Old roots, new opportunities.

• To solve problems that could not otherwise be addressed.

• For intellectual stimulation.

• To become a proficient programmer.

• They may unlock the secrets of life and of the universe.

• For fun and profit.

11

Why study algorithms?

Why study anything else?

12

Lectures. Introduce new material.

Precepts. Discussion, problem-solving, background for programming assignment.

The usual suspects

What When Where Who

L01 MW 11–12:20 Robertson 100 Kevin Wayne

P01 Th 12:30–1:20 Friend 112 Diego Botero

P01A Th 12:30–1:20 Sherrerd 101 Dave Shue

P01B Th 12:30–1:20 Friend 008 Joey Dodds

P02 Th 1:30–2:20 Sherrerd 101 Josh Hug †

P03 Th 3:30–4:20 Friend 108 Josh Hug †

P04 F 11–11:50 Friend 112 Joey Dodds

P04A F 11–11:50 CS 102 Jacopo Cesareo

† lead preceptor

Piazza. Online discussion forum.

• Low latency, low bandwidth.

• Mark solution-revealing questions
as private.

Office hours.

• High bandwidth, high latency.

• See web for schedule.

Computing laboratory.

• Undergrad lab TAs in Friend 017.

• For help with debugging.

• See web for schedule.
13

Where to get help?

http://www.piazza.com/class#spring2012/cos226

http://www.princeton.edu/~cos226

http://www.princeton.edu/~cos226
14

Programming assignments. 45%

• Due on Tuesdays at 11pm via electronic submission.

• Collaboration/lateness policies: see web.

Written exercises. 15%

• Due on Mondays at 11am in lecture.

• Collaboration/lateness policies: see web.

Exams. 15% + 25%

• Midterm (in class on Monday, March 12).

• Final (to be scheduled by Registrar).

Staff discretion. To adjust borderline cases.

• Report errata.

• Contribute to Piazza discussions.

• Attend and participate in precept/lecture.

Coursework and grading

Final

Exercises

Programs

Midterm

Required reading. Algorithms 4th edition by R. Sedgewick and K. Wayne,
Addison-Wesley Professional, 2011, ISBN 0-321-57351-X.

Available in hardcover and Kindle.

• Online: Amazon ($60 to buy), Chegg ($40 to rent), ...

• Brick-and-mortar: Labyrinth Books (122 Nassau St).

• On reserve: Engineering library.
15

Resources (textbook)

Algorithms
F O U R T H E D I T I O N

R O B E R T S E D G E W I C K K E V I N W A Y N E

30% discount with
PU student ID

1st edition (1982) 3rd edition (1997)2nd edition (1988)

Course content.

• Course info.

• Programming assignments.

• Exercises.

• Lecture slides.

• Exam archive.

• Submit assignments.

Booksites.

• Brief summary of content.

• Download code from book.

16

Resources (web)

http://www.princeton.edu/~cos226

http://www.algs4.princeton.edu

17

Lecture 1. Union find.
Lecture 2. Analysis of algorithms.
Precept 1. Meets this week.

Exercises 1 + 2. Due via hardcopy in lecture at 11am on Monday.
Assignment 1. Due via electronic submission at 11pm on Tuesday.

Right course? See me.
Placed out of COS 126? Review Sections 1.1–1.2 of Algorithms, 4th edition
(includes command-line interface and our I/O libraries).

Not registered? Go to any precept this week.
Change precept? Use SCORE.

What's ahead?

see Colleen Kenny-McGinley in CS 210
if the only precept you can attend is closed

today

Wednesday

Thursday or Friday

Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2012 · February 6, 2012 4:52:25 AM

Algorithms
F O U R T H E D I T I O N

R O B E R T S E D G E W I C K K E V I N W A Y N E

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

1.5 UNION FIND

Steps to developing a usable algorithm.

• Model the problem.

• Find an algorithm to solve it.

• Fast enough? Fits in memory?

• If not, figure out why.

• Find a way to address the problem.

• Iterate until satisfied.

The scientific method.

Mathematical analysis.

2

Subtext of today’s lecture (and this course)

3

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

Given a set of N objects.

• Union command: connect two objects.

• Find/connected query: is there a path connecting the two objects?

4

Dynamic connectivity

union(4, 3)

union(3, 8)

union(6, 5)

union(9, 4)

union(2, 1)

connected(0, 7)

connected(8, 9)

union(5, 0)

union(7, 2)

connected(0, 7)

union(1, 0)

union(6, 1)

0 1 2 3 4

5 6 7 8 9𐄂
✔

✔

5

Connectivity example

p

q

Q. Is there a path connecting p and q ?

A. Yes.

more difficult problem: find the path

Dynamic connectivity applications involve manipulating objects of all types.

• Pixels in a digital photo.

• Computers in a network.

• Friends in a social network.

• Transistors in a computer chip.

• Elements in a mathematical set.

• Variable names in Fortran program.

• Metallic sites in a composite system.

When programming, convenient to name sites 0 to N-1.

• Use integers as array index.

• Suppress details not relevant to union-find.

6

Modeling the objects

can use symbol table to translate from site
names to integers: stay tuned (Chapter 3)

We assume "is connected to" is an equivalence relation:

• Reflexive: p is connected to p.

• Symmetric: if p is connected to q, then q is connected to p.

• Transitive: if p is connected to q and q is connected to r,
then p is connected to r.

Connected components. Maximal set of objects that are mutually connected.

7

Modeling the connections

{ 0 } { 1 4 5 } { 2 3 6 7 }

3 connected components

0 1 2 3

4 5 6 7

Find query. Check if two objects are in the same component.

Union command. Replace components containing two objects with their union.

8

Implementing the operations

union(2, 5)

{ 0 } { 1 4 5 } { 2 3 6 7 }

3 connected components

0 1 2 3

4 5 6 7

{ 0 } { 1 2 3 4 5 6 7 }

2 connected components

0 1 2 3

4 5 6 7

9

Goal. Design efficient data structure for union-find.

• Number of objects N can be huge.

• Number of operations M can be huge.

• Find queries and union commands may be intermixed.

Union-find data type (API)

 public class UF public class UF public class UF

UF(int N)
initialize union-find data structure with

N objects (0 to N – 1)

void union(int p, int q) add connection between p and q

boolean connected(int p, int q) are p and q in the same component?

int find(int p) component identifier for p (0 to N–1)

int count() number of components

10

• Read in number of objects N from standard input.

• Repeat:
- read in pair of integers from standard input

- if they are not yet connected, connect them and print out pair

Dynamic-connectivity client

public static void main(String[] args)
{
 int N = StdIn.readInt();
 UF uf = new UF(N);
 while (!StdIn.isEmpty())
 {
 int p = StdIn.readInt();
 int q = StdIn.readInt();
 if (!uf.connected(p, q))
 {
 uf.union(p, q);
 StdOut.println(p + " " + q);
 }
 }
}

% more tiny.txt
10
4 3
3 8
6 5
9 4
2 1
8 9
5 0
7 2
6 1
1 0
6 7

11

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

12

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q are connected iff they have the same id.

0, 5 and 6 are connected
1, 2, and 7 are connected

3, 4, 8, and 9 are connected

Quick-find [eager approach]

0 1 2 3 4

5 6 7 8 9

0 1

0 1

1 8

2 3

8 0

4 5

0 1

6 7

8 8

8 9

id[]

13

Data structure.

• Integer array id[] of size N.

• Interpretation: p and q are connected iff they have the same id.

Find. Check if p and q have the same id.

Union. To merge components containing p and q, change all entries
whose id equals id[p] to id[q].

after union of 6 and 1

problem: many values can change

Quick-find [eager approach]

id[6] = 0; id[1] = 1

6 and 1 are not connected

0 1

0 1

1 8

2 3

8 0

4 5

0 1

6 7

8 8

8 9

id[]

1 1

0 1

1 8

2 3

8 1

4 5

1 1

6 7

8 8

8 9

id[]

14

Quick-find demo

public class QuickFindUF
{
 private int[] id;

 public QuickFindUF(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++)
 id[i] = i;
 }

 public boolean connected(int p, int q)
 { return id[p] == id[q]; }

 public void union(int p, int q)
 {
 int pid = id[p];
 int qid = id[q];
 for (int i = 0; i < id.length; i++)
 if (id[i] == pid) id[i] = qid;
 }
}

15

change all entries with id[p] to id[q]

(at most 2N + 2 array accesses)

set id of each object to itself
(N array accesses)

Quick-find: Java implementation

check whether p and q

are in the same component
(2 array accesses)

Cost model. Number of array accesses (for read or write).

Quick-find defect. Union too expensive.

Ex. Takes N 2 array accesses to process sequence of N union commands
on N objects.

16

Quick-find is too slow

algorithm initialize union find

quick-find N N 1

order of growth of number of array accesses

quadratic

Rough standard (for now).

• 109 operations per second.

• 109 words of main memory.

• Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

• 109 union commands on 109 objects.

• Quick-find takes more than 1018 operations.

• 30+ years of computer time!

Quadratic algorithms don't scale with technology.

• New computer may be 10x as fast.

• But, has 10x as much memory ⇒ want to solve a problem that is 10x as big.

• With quadratic algorithm, takes 10x as long!

17

a truism (roughly)
since 1950!

Quadratic algorithms do not scale

8T

16T

32T

64T

time

1K 2K 4K 8Ksize

quadratic

linearithmic

linear

18

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

Data structure.

• Integer array id[] of size N.

• Interpretation: id[i] is parent of i.

• Root of i is id[id[id[...id[i]...]]].

Find. Check if p and q have the same root.

Union. To merge components containing p and q,
set the id of p's root to the id of q's root.

19

3's root is 9; 5's root is 6
3 and 5 are not connected

Quick-union [lazy approach]

keep going until it doesn’t change
(algorithm ensures no cycles)

0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 9

8 9

id[]

3

5

4

70 1

9

6 8

2

only one value changes
p

q
0 1

0 1

9 4

2 3

9 6

4 5

6 7

6 7

8 6

8 9

id[]

3

54

70 1 9 6 8

2

p

q

20

Quick-union demo Quick-union: Java implementation

public class QuickUnionUF
{
 private int[] id;

 public QuickUnionUF(int N)
 {
 id = new int[N];
 for (int i = 0; i < N; i++) id[i] = i;
 }

 private int root(int i)
 {
 while (i != id[i]) i = id[i];
 return i;
 }

 public boolean connected(int p, int q)
 {
 return root(p) == root(q);
 }

 public void union(int p, int q)
 {
 int i = root(p)
 int j = root(q);
 id[i] = j;
 }
}

set id of each object to itself
(N array accesses)

chase parent pointers until reach root
(depth of i array accesses)

check if p and q have same root
(depth of p and q array accesses)

change root of p to point to root of q
(depth of p and q array accesses)

21

22

Cost model. Number of array accesses (for read or write).

Quick-find defect.

• Union too expensive (N array accesses).

• Trees are flat, but too expensive to keep them flat.

Quick-union defect.

• Trees can get tall.

• Find too expensive (could be N array accesses).

worst case

† includes cost of finding roots

Quick-union is also too slow

algorithm initialize union find

quick-find N N 1

quick-union N N † N

23

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

Weighted quick-union.

• Modify quick-union to avoid tall trees.

• Keep track of size of each tree (number of objects).

• Balance by linking root of smaller tree to root of larger tree.

24

Improvement 1: weighting

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

smaller
tree

larger
tree

q

p

Weighted quick-union

weighted

quick-union

always chooses the
better alternative

might put the
larger tree lower

25

Weighted quick-union demo

26

Quick-union and weighted quick-union example

Quick-union and weighted quick-union (100 sites, 88 union() operations)

weighted

quick-union

average distance to root: 1.52

average distance to root: 5.11

27

Data structure. Same as quick-union, but maintain extra array sz[i]
to count number of objects in the tree rooted at i.

Find. Identical to quick-union.

Union. Modify quick-union to:

• Link root of smaller tree to root of larger tree.

• Update the sz[] array.

 int i = root(p);
 int j = root(q);
 if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
 else { id[j] = i; sz[i] += sz[j]; }

Weighted quick-union: Java implementation

return root(p) == root(q);

Running time.

• Find: takes time proportional to depth of p and q.

• Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.

28

Weighted quick-union analysis

3

x

5

4

2

7

0

1

8

9

6

N = 10
depth(x) = 3 ≤ lg N

29

Running time.

• Find: takes time proportional to depth of p and q.

• Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.
Pf. When does depth of x increase?
Increases by 1 when tree T1 containing x is merged into another tree T2.

• The size of the tree containing x at least doubles since | T 2 | ≥ | T 1 |.

• Size of tree containing x can double at most lg N times. Why?

Weighted quick-union analysis

 T2

T1

x

30

Running time.

• Find: takes time proportional to depth of p and q.

• Union: takes constant time, given roots.

Proposition. Depth of any node x is at most lg N.

Q. Stop at guaranteed acceptable performance?
A. No, easy to improve further.

† includes cost of finding roots

Weighted quick-union analysis

algorithm initialize union connected

quick-find N N 1

quick-union N N † N

weighted QU N lg N † lg N

Quick union with path compression. Just after computing the root of p,
set the id of each examined node to point to that root.

31

Improvement 2: path compression

1211

9

10

8

6 7

3

x

2

54

0

1

root

p

Quick union with path compression. Just after computing the root of p,
set the id of each examined node to point to that root.

32

Improvement 2: path compression

10

8

6 7

31211

9 2

54

0

1

root

x

p

Quick union with path compression. Just after computing the root of p,
set the id of each examined node to point to that root.

33

Improvement 2: path compression

7

3

10

8

6

1211

9 2

54

0

1

root

x

p

Quick union with path compression. Just after computing the root of p,
set the id of each examined node to point to that root.

34

Improvement 2: path compression

10

8

6 2

54

0

1

7

3

root

x

p

1211

9

Quick union with path compression. Just after computing the root of p,
set the id of each examined node to point to that root.

35

Improvement 2: path compression

10

8

6

7

3

x

root

2

54

0

1

p

1211

9

Two-pass implementation: add second loop to root() to set the id[]
of each examined node to the root.

Simpler one-pass variant: Make every other node in path point to its
grandparent (thereby halving path length).

In practice. No reason not to! Keeps tree almost completely flat.
36

only one extra line of code !

private int root(int i)
{
 while (i != id[i])
 {
 id[i] = id[id[i]];
 i = id[i];
 }
 return i;
}

Path compression: Java implementation

37

Proposition. Starting from an empty data structure,
any sequence of M union-find operations on N objects
makes at most proportional to N + M lg* N array accesses.

• Proof is very difficult.

• But the algorithm is simple!

• Analysis can be improved to N + M α(M, N).

Linear-time algorithm for M union-find ops on N objects?

• Cost within constant factor of reading in the data.

• In theory, WQUPC is not quite linear.

• In practice, WQUPC is linear.

Amazing fact. No linear-time algorithm exists.

see COS 423

N lg* N

1 0

2 1

4 2

16 3

65536 4

265536 5

Weighted quick-union with path compression: amortized analysis

lg* function

in "cell-probe" model of computation

because lg* N is a constant in this universe

Bob Tarjan
(Turing Award '86)

Bottom line. WQUPC makes it possible to solve problems that
could not otherwise be addressed.

Ex. [109 unions and finds with 109 objects]

• WQUPC reduces time from 30 years to 6 seconds.

• Supercomputer won't help much; good algorithm enables solution.
38

M union-find operations on a set of N objects

algorithm worst-case time

quick-find M N

quick-union M N

weighted QU N + M log N

QU + path compression N + M log N

weighted QU + path compression N + M lg* N

Summary

39

‣ dynamic connectivity
‣ quick find
‣ quick union
‣ improvements
‣ applications

40

• Percolation.

• Games (Go, Hex).
✓ Dynamic connectivity.

• Least common ancestor.

• Equivalence of finite state automata.

• Hoshen-Kopelman algorithm in physics.

• Hinley-Milner polymorphic type inference.

• Kruskal's minimum spanning tree algorithm.

• Compiling equivalence statements in Fortran.

• Morphological attribute openings and closings.

• Matlab's bwlabel() function in image processing.

Union-find applications

see also Assignment 1 A model for many physical systems:

• N-by-N grid of sites.

• Each site is open with probability p (or blocked with probability 1 - p).

• System percolates iff top and bottom are connected by open sites.

41

Percolation

N = 8

does not percolatepercolates

open site connected to top

blocked
site

open
site

no open site connected to top

does not percolatepercolates

open site connected to top

blocked
site

full
open
siteempty

open
site

no open site connected to top

A model for many physical systems:

• N-by-N grid of sites.

• Each site is open with probability p (or blocked with probability 1 - p).

• System percolates iff top and bottom are connected by open sites.

42

model system vacant site occupied site percolates

electricity material conductor insulated conducts

fluid flow material empty blocked porous

social interaction population person empty communicates

Percolation

Depends on site vacancy probability p.

43

Likelihood of percolation

p low (0.4)
does not percolate

p medium (0.6)
percolates?

p high (0.8)
percolates

When N is large, theory guarantees a sharp threshold p*.

• p > p*: almost certainly percolates.

• p < p*: almost certainly does not percolate.

Q. What is the value of p* ?

0.5930
0

1

1

site vacancy probability p

percolation
probability

p*

44

Percolation phase transition

N = 100

• Initialize N-by-N whole grid to be blocked.

• Declare random sites open until top connected to bottom.

• Vacancy percentage estimates p*.

45

Monte Carlo simulation

N = 20

empty open site
(not connected to top)

full open site
(connected to top)

blocked site

46

Q. How to check whether an N-by-N system percolates?

Dynamic connectivity solution to estimate percolation threshold

open site

blocked site

N = 5

Q. How to check whether an N-by-N system percolates?

• Create an object for each site and name them 0 to N 2 – 1.

47

Dynamic connectivity solution to estimate percolation threshold

open site

blocked site

N = 5 0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

48

Q. How to check whether an N-by-N system percolates?

• Create an object for each site and name them 0 to N 2 – 1.

• Sites are in same component if connected by open sites.

Dynamic connectivity solution to estimate percolation threshold

open site

blocked site

N = 5

49

Q. How to check whether an N-by-N system percolates?

• Create an object for each site and name them 0 to N 2 – 1.

• Sites are in same component if connected by open sites.

• Percolates iff any site on bottom row is connected to site on top row.

Dynamic connectivity solution to estimate percolation threshold

brute-force algorithm: N 2 calls to connected()

open site

blocked site

N = 5 top row

bottom row

Clever trick. Introduce two virtual sites (and connections to top and bottom).

• Percolates iff virtual top site is connected to virtual bottom site.

50

Dynamic connectivity solution to estimate percolation threshold

virtual top site

virtual bottom site

efficient algorithm: only 1 call to connected()

open site

blocked site

N = 5 top row

bottom row

Q. How to model as dynamic connectivity problem when opening a new site?

51

Dynamic connectivity solution to estimate percolation threshold

open site

blocked site

N = 5

open this site

Q. How to model as dynamic connectivity problem when opening a new site?
A. Connect newly opened site to all of its adjacent open sites.

52

Dynamic connectivity solution to estimate percolation threshold

open this site

open site

blocked site

N = 5

up to 4 calls to union()

53

Q. What is percolation threshold p* ?
A. About 0.592746 for large square lattices.

Fast algorithm enables accurate answer to scientific question.

constant known only via simulation

Percolation threshold

0.5930
0

1

1

site vacancy probability p

percolation
probability

p*

N = 100

Steps to developing a usable algorithm.

• Model the problem.

• Find an algorithm to solve it.

• Fast enough? Fits in memory?

• If not, figure out why.

• Find a way to address the problem.

• Iterate until satisfied.

The scientific method.

Mathematical analysis.

54

Subtext of today’s lecture (and this course)

