
COS 226 Algorithms and Data Structures Fall 2010

Final Solutions

1. Analysis of algorithms.

U Find a maximum spanning tree in a connected edge-weighted graph.
This problem and the MST linear-time reduce to one another (by negating the weights).
The existence of a deterministic linear-time algorithm for the MST is an open problem.

P Find all vertices reachable from a given set of source vertices in a digraph.
We used this subroutine in the NFA simulation algorithm for regular expressions.

I Find a Hamilton path in a digraph (if one exists).
This problem is NP-complete, so unless P = NP , it cannot be solved in polynomial time,
let alone in linear time.

P Find a Hamilton path in a DAG (if one exists).
This can be found by computing the topological order and checking that there is an edge
between each consecutive pair of vertices in the order.

P Find the strong components of a digraph.
Kosaraju’s or Tarjan’s algorithm does this.

P Insert N Comparable keys into a binary heap.
The sink-based heap construction method used in heapsort achieves this.

I Sort an array of N Comparable keys.
This would violate the NlgN sorting lower bound because Comparable keys can be ac-
cessed only through the compareTo() method.

I Insert N Comparable keys into a binary search tree.
This would violate the NlgN sorting lower bound because Comparable keys can be ac-
cessed only through the compareTo() method and an inorder traversal of the BST would
yield the keys in sorted order.

P Compute the inverse Burrows-Wheeler transform.
You did this on Assignment 8.

P Insert N strings into an R-way trie.
Inserting each string takes time proportional to its length.

P The number of nodes in a TST is bounded by the the total number of characters.

P Perform a nearest-neighbor query in a 2-d tree.
You algorithm from Assignment 7 has this property (even though it’s running time is
typically much better in practice).

1

2. Equivalence relations.

X v.equals(w) for objects in a Java class that correctly implements the
equals() method

−−− v.compareTo(w) < 0 for objects in a Java class that correctly imple-
ments the Comparable interface

X connected(v, w) in CC for connectivity in an undirected graph

−−− reachable(v, w) in TransitiveClosure for reachability in a digraph

X stronglyConnected(v, w) in KosarajuSCC for strong connectivity in
a digraph

3. Depth-first search.

(a) preorder: A B G C D F E H I
postorder: G B E I H F D C A

(b) I and II only
The function-call stack always contains a sequence of vertices on a directed path from s
to the current vertex (with s at the bottom and the current vertex at the top).

4. Minimum spanning tree.

(a) 1 2 3 4 6 7 9 15

(b) 6 1 3 2 4 7 9 15

5. Shortest paths.

(a) v edgeTo[] distTo[]

0 - 0.0
1 2->1 33.0 34.0
2 0->2 1.0 1.0
3 2->3 11.0 12.0
4 5->4 33.0 53.0
5 3->5 8.0 20.0
6 1->6 5.0 39.0
7 5->7 46.0 66.0
8 - infinity

(b) v edgeTo[] distTo[]

0 - 0.0
1 2->1 33.0 34.0
2 0->2 1.0 1.0
3 2->3 11.0 12.0
4 *6->4 13.0 *52.0
5 3->5 8.0 20.0
6 1->6 5.0 39.0
7 *6->7 6.0 *45.0
8 *6->8 10.0 *49.0

(c) 2→ 1, 0→ 2, 2→ 3, 7→ 4, 3→ 5, 1→ 6, 6→ 7, 6→ 8

2

6. Polar sort.

(a) Not a transitive relation, as required by the compareTo() contract. To see this, let p be
(0, 0); let q1 be (1, 1); let q2 be (−1, 1); let q3 be (0,−1). Then, with respect to p, q2 is
counterclockwise of q1; q3 is counterclockwise of q2; and q1 is counterclockwise of q3.

(b) When comparing two points q1 and q2 by the polar angle they make with p, first compare
the y-coordinates of q1 and q2 to that of p. If one has a bigger y-coordinate than p and
the other has a smaller y-coordinate than p, then the one with the smaller y-coordinate
makes a greater polar angle with p; otherwise if both have bigger or both have smaller
y-coordinates, then the ccw-based code works. (A special case is needed to handle the
case when q1 and q2 have the same y-coordinate as p.)

7. Kd-trees.

(a) 1 2 3 6 8 9 (though the search may go one extra level, depending on implementation)

(b)

73

Kd-tree, Fall 2010

1
2

3

4

6

7

8

9

10

5

1

2

87

10 9

3

4 6

5

11

12
11

12

8. Substring search.

0 1 2 3 4 5 6
a 1 1 1 4 1 6 1
b 0 2 0 0 5 0 2
c 0 0 3 0 0 3 7

9. Regular expressions.

75

Final, Fall 2010

a (b(| d) *)c

3

10. Substring search and pattern matching.

E brute-force substring search

C/D Knuth-Morris Pratt

E Boyer-Moore (with only mismatch heuristic)

C/D Monte Carlo version of Rabin-Karp

E regular-expression pattern matching

C simulating a DFA

E simulating an NFA

A. M

B. N/M

C. N

D. M + N

E. MN

F. 2M

G. 2N

11. Huffman codes.

code 1: a Huffman (and optimal) prefix-free code

code 2: not a prefix-free code because 00 is a prefix of 001

code 3: a Huffman (and optimal) prefix-free code

code 4: a prefix-free code, but not optimal (or Huffman) because it
produces a 91-bit code (instead of 90)

code 5: an optimal prefix-free code (produces a 90-bit code), but it’s
not a Huffman code because C and F both start with 0

12. Cyclic rotation of a string.

(a) • Form the new string t′ = t + t by concatenating two copies of t.
• Do a substring search for the query string s within the text string t′ using Knuth-

Morris-Pratt. s is a cyclic rotation of t if and only if KMP finds a match.
For example search for winterbreak in breakwinterbreakwinter.

(b) The order-of-growth of the worst-case running time is N .

13. Reductions.

(a) This direction is easy. Solve an instance of Multiplication with x as both arguments.
This computes x× x, as desired.

(b) i. Compute (x− y).
ii. Solve the following three instances of Squaring: x2, y2, (x− y)2.

iii. Compute z = x2 + y2 − (x− y)2 = 2xy

iv. Compute z/2 = xy, noting that z is even.
Steps i, iii, and iv take linear time using the grade-school algorithms for addition, sub-
traction, and division by two. Step 2 calls the subroutine Squaring a constant number
of times on inputs of N bits (or fewer).

(c) I, II, and III

4

