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Floating Point

TEEE 754 representation.
* Used by all modern computers.
= Scientific notation, but in binary.
= Single precision: float = 32 bits.
= Double precision: double = 64 bits.

Ex. Single precision representation of -0.453125.

sign bit exponent significand

/ /

i 01111101 110100O0O0OO0CO0OO0OO0OUO0OTUO0OO0OO0OO0OTUO0OO0TUO0OOUO0OO0

-1 125 1/2 + 1/4 + 1/16 = 0.8125

bias  phantom bit

I/
-1 x 2125-127 x 1.8125 = -0.453125

Applications of Scientific Computing

Science and engineering challenges. Commercial applications.
* Fluid dynamics. * Web search.
* Seismic surveys. * Financial modeling.
* Plasma dynamics. = Computer graphics.
* Ocean circulation. * Digital audio and video.
* Electronics design. * Natural language processing.
* Pharmaceutical design. * Architecture walk-throughs.
* Human genome project. * Medical diagnostics (MRI, CAT).

* Vehicle crash simulation.

* Global climate simulation.

* Nuclear weapons simulation.

* Molecular dynamics simulation.

Common features.
* Problems tend to be continuous instead of discrete.
* Algorithms must scale to handle huge problems.

Floating Point

Remark. Most real numbers are not representable, including = and 1/10.

Roundoff error. When result of calculation is not representable.
Consequence. Non-intuitive behavior for uninitiated.

if (0.1

0.2 ==10.3) { // NO }
if (0.1 + 0.3

o
+ == 0.4) { // YES }

Financial computing. Calculate 9% sales tax on a 50¢ phone call.
Banker's rounding. Round to nearest integer, to even integer if tie.

double al = 1.14 * 75; // 85.49999999999999
double a2 = Math.round(al) ; 85

(G T you lost 1¢
double bl = 1.09 * 50; // 54.50000000000001
double b2 = Math.round(bl); // 55 —

SEC violation (!)



Catastrophic Cancellation

A simple function.  f(x) = l_ﬂ

Goal. Plot f(x) for -4-10% < x < 4-108,

Exact answer

Catastrophic Cancellation

public static double fl (double x) {
return (1.0 - Math.cos(x)) / (x * x);
}

Ex. Evaluate £1 (x) for x = 1.1e-8.

" Math.cos(x) = 0.99999999999999988897769753748434595763683319091796875.

~

= (1.0 - Math.cos(x)) = 1.1102e-16

nearest floating point value agrees with
exact answer to 16 decimal places.

inaccurate estimate of exact answer (6.05 - 10'7)
= (1.0 - Math.cos(x)) / (x * x) = 0.9175

807% larger than exact answer (about 0.5)

Catastrophic cancellation. Devastating loss of precision when small
numbers are computed from large numbers, which themselves are
subject to roundoff error.

Catastrophic Cancellation

A simple function.  f(x) = l_ﬂ

Goal. Plot f(x) for -4-10% < x < 4-108,
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TEEE 754 double precision answer

Numerical Catastrophes

Ariane 5 rocket. [June 4, 1996]

* 10 year, $7 billion ESA project exploded after launch.
= 64-bit float converted to 16 bit signed int.

* Unanticipated overflow.

Copyright, Arianespace
Vancouver stock exchange. [November, 1983]
= Index undervalued by 44%.
" Recalculated index after each trade by adding change in price.
= 22 months of accumulated truncation error.

Patriot missile accident. [February 25, 1991]
* Failed to track scud; hit Army barracks, killed 28.
= Inaccuracy in measuring time in 1/20 of a second
since using 24 bit binary floating point.




Gaussian Elimination

Chemical Equilibrium

Ex. Combustion of propane.

XoC3Hg + x,0, = X,CO, + x;H,0

Stoichiometric constraints.

= Carbon: 3%y = X,.
= Hydrogen:  8x, = 2x;. conservation of mass
= Oxygen: 2%, = 2X, + X3.

* Normalize: x=1.

CsHg + 50, = 3CO,+4H,0

Remark. Stoichiometric coefficients tend to be small integers;

among first hints suggesting the atomic nature of matter.

Linear System of Equations

Linear system of equations. N linear equations in N unknowns.

OXO + lxl + 1X2 8 4 0 1 1 4
2xy + 4% - 2x, = 2 A=124 2|, b=|2
Ox, + 3%, +156x, = 36 0 3 15 36

matrix notation: find x such that Ax = b

Fundamental problems in science and engineering.
= Chemical equilibrium.
= Linear and nonlinear optimization.
= Kirchoff's current and voltage laws.
* Hooke's law for finite element methods.
= Leontief's model of economic equilibrium.
* Numerical solutions to differential equations.

Kirchoff's Current Law

Ex. Find current flowing in each branch of a circuit.

1Q

50
p b ElI°]

$ p i)
QY X, 3

5

10V |+
T X,

L
I
>
>

4
<

Kirchoff's current law.

= 10 = Ixgy+ 25(xy- X;) + 50 (X4 - X,).

= 0 = 25(x; - Xg) + 30x; + 1(x; - X,). conservation of electrical charge
= 0 = 50(x, - Xg) + 1(x;, - X;) + 55x,.

Solution. x4 = 0.2449, x, = 0.1114, x, = 0.1166.



Upper Triangular System of Equations

Upper friangular system. a;; = O fori> j.

2Xxy + 4%, - 2%, = 2
OXO + 1X1 + 1)(2 S 4
Oxy + Ox; +12x, = 24

Back substitution. Solve by examining equations in reverse order.

= Equation 2: x,=24/12 = 2.
= Equation1: x;=4-x, = 2.
= Equation 0: x,= (2 -4x, +2x,)/ 2 = -1.

for (int i = N-1; i >= 0; i--) { 1
double sum = 0.0; s
for (int j = i+l; j < N; j++) u

sum += A[i][j] * x[j];
x[i] = (b[i] - sum) / A[i][i];

Gaussian Elimination: Row Operations

Elementary row operations.

Oxy + 1x; + 1x, = 4
2xy + 4x - 2x, = 2
OXO + 3X1 +15X2 = 36

l (interchange row 0 and 1)

2x9 + 4x - 2x, = 2
Oxy + 1x; + 1x, = 4
OXO + 3Xl «-15)(2 = 36

l (subtract 3x row 1 from row 2)

2xy + 4x - 2x, = 2
Oxqg + 1x, + 1x, = 4
Ox, + Ox; +12x, = 24

Gaussian Elimination

Gaussian elimination.
* Among oldest and most widely used solutions.
* Repeatedly apply row operations to make system upper triangular.
* Solve upper triangular system by back substitution.

Elementary row operations.
* Exchange row p and row q.
* Add a multiple o of row p to row q.

*x k kX X *x kX kX X *x k k k X *x kX X %
p *x k x Xx X *x X kX X *x k x kx X *x x X X%
*x k kX X = *x X ok X X *x k kX X = *x Xx x X%
q *x kX Xx X *x X k X X * *x Xx Xx *x x x X%
*x k kX X *x X x X X * *x X X *x x x X%

Key invariant. Row operations preserve solutions.

Gaussian Elimination: Forward Elimination

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot a,,.

P

* ok ok k% k% * ok ok

S A plo 0@+ « » 00 *
pp =

a, 00 * % * x 000

bi=bi_7abp 00 * % * x 000

L2 00 * * * x 0 00

for (int i =p + 1; 1 < N; i++) {
double alpha = A[i][p] / A[p]lIpl;
b[i] -= alpha * b[p];
for (int j = p; j < N; j++)
A[i][j] -= alpha * A[p][]]’



Gaussian Elimination: Forward Elimination Gaussian Elimination Example

Forward elimination. Apply row operations to make upper triangular.

Pivot. Zero out entries below pivot Q- 1xg + Ox; + 1x, + A4x; = 1
2xy + -l1xg + 1x, + 7x3 = 2

k ok ok ok *k ok ok ok 3k * *k ok ok ok * * k0 ok ok * * * ko ok _2 xo . 1 x1 . 0 xz . -6 )(3 - 3

# ok &k k| [0 * ok ¥ k| =0 0.* # =0 0 * * ¥=|0 Q0 * * * le i lxl > 1x2 i 9X3 S 4

for (int p = 0; p < N; p++) {
for (int i = p + 1; i < N; i++) {
double alpha = A[i][p] / A[p]Ipl;
b[i] -= alpha * b[p]’
for (int j = p; j < N; j++)
A[i][j] -= alpha * A[p][]];

Gaussian Elimination Example Gaussian Elimination Example
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Gaussian Elimination: Partial Pivoting

Remark. Previous code fails spectacularly if pivot a,, = 0.

2 X,

0 x,

1x,
0 x,
0 x,

1 x,
0 xo

0 xo

+ 2X1
+ 3X1
+ 1X1
. on
+ 3X1
+ 1x1
+ Oxl
+ Nan x;

+

0 x4
-2 X3
15 x;3

0 x3
-2 X5
15 x;

0 x;
-2 X3
Inf x;

2
33

Inf

Gaussian Elimination Example

1XO + Oxl + 1X2 + 4X3
Oxg + -1x; + -1x, + -lxg
Oxo, + Ox; + 1x, + 1xg
Ox, + O0x; + Ox, + 5x;
X3 = 8/5
X, = 5-x3 = 17/5
Xy = 0-x,-x3 = -25/5
X = 1-x,-4x; = -44/5

© O O K-

Gaussian Elimination: Partial Pivoting

Partial pivoting. Swap row p with the row that has largest entry in
column p among rows i below the diagonal.

// find pivot row

int max = p;

for (int i =p + 1; i <
if (Math.abs(A[i] [p]) >

max = i;

// swap rows p and max

double[] T
double 5

Q. What if pivot a,, = O while partial pivoting?
A. System has no solutions or infinitely many solutions.

Alp]; Alp]
b[p]l; blpl

N; i++)
Math.abs (A[max] [p]))

A[max]; A[max]
b[max]; b[max]

T

0 k0 ok 3k

plo 0@ *

00 3 *

max |0 0.*

00 2 *



Gaussian Elimination with Partial Pivoting

~N3/3 additions,

~ N2/2 additions,

Numerically Unstable Algorithms

Stability. Algorithm £1 (x) for computing f(x) is numerically stable if £1
(x) =~ f(x+e) for some small perturbation .

: 1-
Ex 1. Numerically unstable way to compute  f(x) = ;20 o

= f1(1.1e-8) = 0.9175.

2sin’(x/2
true answer =~ 1/2. f(x) = xig)

a numerically stable formula

Stability and Conditioning

~ N3/3 multiplications

~ N2/2 multiplications

Numerically Unstable Algorithms

Stability. Algorithm £1 (x) for computing f(x) is numerically stable if £1
(x) =~ f(x+e) for some small perturbation .

Ex 2. Gaussian elimination (w/o partial pivoting) can fail spectacularly.
o - = Xl

Theorem. Partial pivoting improves numerical stability.




Ill-Conditioned Problems

Conditioning. Problem is well-conditioned if f(x) =~ f(x+¢) for all small
perturbation e.

Ex. Hilbert matrix.
= Tiny perturbation to H, makes it singular.
= Cannot solve H, x = b using floating point.

Hilbert matrix

Matrix condition number. [Turing, 1948] Widely-used concept for
detecting ill-conditioned linear systems.

Euler's Method

Euler's method. [to numerically solve initial value ODE]
= Choose At sufficiently small.
= Approximate function at time t by tangent line at 1.
= Estimate value of function at time t + At according to tangent line.
* Increment time to t + At.
" Repeat.

Advanced methods. Use less computation to achieve desired accuracy.
= 4™ order Runge-Kutta: evaluate slope four times per step.
= Variable time step: automatically adjust timescale At.
= See COS 323.

Numerically Solving an Initial Value ODE

Lorenz attractor.
* Idealized atmospheric model to describe turbulent flow.
= Convective rolls: warm fluid at bottom, rises to top, cools off,
and falls down.

dward
x = fluid flow velocity Edward Lorenz

y = V femperature between ascending and descending currents
z = distortion of vertical temperature profile from linearity

Solution. No closed form solution for x(t), y(1), z(t).
Approach. Numerically solve ODE.

Lorenz Attractor: Java Implementation




The Lorenz Attractor

% java Lorenz

(25, 50)

(=25, 0)

Butterfly Effect

Experiment.
* Initialize y = 20.01 instead of y = 20.
* Plot original trajectory in blue, perturbed one in magenta.
* What happens?

Tll-conditioning.
" Sensitive dependence on initial conditions.
* Property of system, not of humerical solution approach.

Predictability: Does the Flap of a Butterfly's Wings in Brazil set of f
a Tornado in Texas? - Title of 1972 talk by Edward Lorenz

The Lorenz Attractor

% java Lorenz

(25, 50)

(=25, 0)

Stability and Conditioning

Accuracy depends on both stability and conditioning.
= Danger: apply unstable algorithm to well-conditioned problem.
= Danger: apply stable algorithm to ill-conditioned problem.
= Safe: apply stable algorithm to well-conditioned problem.

Numerical analysis. Art and science of desighing numerically stable
algorithms for well-conditioned problems.

Lesson 1. Some algorithms are unsuitable for floating point solutions.
Lesson 2. Some problems are unsuitable to floating point solutions.



