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What We've Learned About TOY

Data representation. Binary and hex.

TOY.

 Box with switches and lights.

 16-bit memory locations, 16-bit registers, 8-bit pc.

e 4,328 bits = (255 x 16) + (15 x 16) +(8) = 541 bytes!
e von Neumann architecture.

TOY instruction set architecture. 16 instruction types.
TOY machine language programs. Variables, arithmetic, loops.
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Quick Review: Multiply

multiply. toy




What We Do Today
Data representation. Negative numbers.
Input and output. Standard input, standard output.
Manipulate addresses. References (pointers) and arrays.

TOY simulator in Java and implications.
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Data Representation




Digital World

Data is a sequence of bits. (interpreted in different ways)
e Integers, real numbers, characters, strings, ...
e Documents, pictures, sounds, movies, Java programs, ...

Ex. 01110101

e As binary integer: 1+ 4 +16 + 32 + 64 = 117 (base ten).
e As character: 117™ Unicode character = 'u'.

e As music: 117/256 position of speaker.

* As grayscale value: 45.7% black.

public class HellowWorld {

Programming
in Java

System.out.println("Hello, World");

E public static void main(String[] args)

}




Adding and Subtracting Binary Numbers

Decimal and binary addition.

carries

1/11

013 00001101
+ 092 +01011100
105 01101001

Subtraction. Add a negative integer. ~
eg. 6-4=6+(-4)

Q. How to represent negative integers?



Representing Negative Integers

TOY words are 16 bits each.

« We could use 16 bits to represent 0 to 21¢- 1.

e We want negative integers too.

 Reserving half the possible bit-patterns for negative seems fair.

Highly desirable property. If x is an integer, then the representation of -x,
when added to x, yields zero.

% 00110100
+(-x) + 727?727

0 00 00

% 00110100

+11001011

o +(-x) — 11111111

-x: flip bits and add 1 hl

0 0 00O0OO0OO0OO0CO



Two's Complement Integers

To compute -x from x:

" Start with x. / leading bit determines sign

+4 0 0 0 0 0 0 0 0 0 0

* Flip bits.

-5 1 1 1 1 1 1 1 1 1 1

e Add one.
-4 1 1 1 1 1 1 1 1 1 1



Two's Complement Integers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

binary




Properties of Two's Complement Integers

Properties.

* Leading bit (bit 15 in Toy) signifies sign.

= Addition and subtraction are easy.

= 0000000000000000 represents zero.

* Negative integer -x represented by 2% - x.

* Not symmetric: can represent -32,768 but not 32,768.

Java. Java's int data type is a 32-bit two's complement integer.
Ex. 2147483647 + 1 equals -2147483648.



Representing Other Primitive Data Types in TOY
Bigger integers. Use two 16-bit words per int.
Real numbers.
* Use "floating point" (like scientific notation).
e Use four 16-bit words per double.
Characters.

e Use ASCIT code (8 bits / character).
e Pack two characters per 16-bit word.

Note. Real microprocessors add hardware support for int and double.



Standard Input and Output




Standard output.

Standard Output

e Writing fo memory location rr sends one word to TOY stdout.

e Ex. 9AFF writes the integer in register a to stdout.

00:
01:

10:
11:

12:
13:
14:
15:
16:

0000
0001

8A00
8B01

OAFF
1AAB
2BAB
DAl12
0000

0
1

RA < mem[00]
RB < mem[01]

write RA to stdout
RA <— RA + RB

RB < RA - RB

if (RA > 0) goto 12
halt

a=20

b=1

do {
print a
a=a+b
b=a->b

} while (a > 0)



Standard Input

Standard input.

 Loading from memory address rr loads one word from TOY stdin.

e Ex. 8AFF reads an integer from stdin and store it in register 2.

Ex: read in a sequence of integers and print their sum.

e In Java, stop reading when EOF.

e In TOY, stop reading when user enters 0000.

00:
while (!'StdIn.isEmpty()) ({
a = StdIn.readInt();
sum = sum + a; 10:
;tdo i ; 11:
ut.println (sum) ;
12:
13:
14:
15:
1l6:

0000

8C00
8AFF
CAl5
1Ccca
CO01l1
OCFF
0000

RC <- mem[00]

read RA from stdin
if (RA == 0) pc < 15
RC < RC + RA

pc < 11

write RC 00AE

halt 0046
0003
0000

00F7




Standard Input and Output: Implications

Standard input and output enable you to:

* Put information from real world intfo machine.
* Get information out of machine.

* Process more information than fits in memory.
* Interact with the computer while it is running.

Information can be instructions!

* Booting a computer.

= Sending programs over the Internet
* Sending viruses over the Internet
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Pointers




Load Address (a.k.a. Load Constant)

Load address. [opcode 7]
 Loads an 8-bit integer into a register.
« 7230 means load the value 30 into register a.

Applications. a = 0x30;
o Load a small constant into a register. Java code
» Load an 8-bit memory address into a register. (NOTE hex literal)

\ register stores "pointer" to a memory cell

(o]l zas ] m]e] oo e a]aofz[a]s
0 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0
7 16 Al 6 3 16 0 16




Arrays in TOY

0000
TOY main memory is a giant array.

0001

 Can access memory cell 30 using load and store. 0001

* 8C30 means load mem[30] into register c. 008
0003

* Goal: access memory cell i where i is a variable. 0005
0008

000D

w w w w w w w w
~J (&) (@) S w N (= o

a variable index TOY memory

Load indirect. [opcode A]/
* AC06 means load mem[R6] into register c.

Store indirect. [opcode B] y a variable index
* BCO6 means store contents of register c intfo mem[R6].



Example: Reverse an array

TOY implementation of reverse.
» Read in a sequence of integers and store in memory 30, 31, 32, ...

* Stop reading if 0000.
e Print sequence in reverse order.

T . int i = 0;
ava version. while (!StdIn.isEmpty())
{
a[i] = StdIn.readInt();
i++;

i--;

while (i >= 0)

{
StdOut.println(al[i]) ;
i--;

(We'll just assume a[] is big enough)



TOY implementation of reverse.

TOY Implementation of Reverse

—3» ¢ Read in a sequence of integers and store in memory 30, 31, 32, ...
 Stop reading if 0000.

* Print sequence in reverse order.

10:
11:
12:

13:
14:
15:
16:
17:
18:

7101
7A30
7B0O

8CFF
CC19
16AB
BCO6
1BB1
C013

Rl < 0001
RA < 0030
RB < 0000

read RC

if (RC == 0) goto 19

R6 < RA + RB
mem[R6] < RC
RB < RB + R1
goto 13

read in the data

constant 1

all

n

while (true) {
¢ = StdIn.readInt();
if (¢ == 0) break;
memory address of a[n]
a[n] = c;
n++;



TOY Implementation of Reverse

TOY implementation of reverse.

» Read in a sequence of integers and store in memory 30, 31, 32, ...

 Stop reading if 0000.

—> ¢ Print sequence in reverse order.

10:
11:
12:

19:

1B:
1C:
1D:
1E:
1F:

7101
7A30
7B0O

CB20
16AB
2661
ACO06
9CFF
2BB1
C019

R1 < 0001 constant 1
RA < 0030 all
RB < 0000 n

while (true) {

if (RB == 0) goto 20 if (b == 0) break;

R6 < RA + RB memory address of a[n]
R6 < R6 - R1 n--;

RC < mem[R6] c = al[n];

write RC StdOut.print(c) ;

RB < RB - Rl b--;

goto 19 }

print in reverse order



Unsafe Code at any Speed

Q. What happens if we make array start at 00 instead of 30?

% more crazy8.txt
11111111
11111111
8888 8810

98FF CO011




What Can Happen When We Lose Control (in C or C++)?

Buffer overflow.

* Array buffer[] has size 100. #include <stcioc.h>
int main(void) {
= User might enter 200 characters. char buffer[100];

scanf ("%s", buffer);

* Might lose control of machine behavior. . printf ("ss\n",
uffer) ;

return O;

}
Consequences. Viruses and worms.

unsafe C program

Java enforces security.

* Type safety.

= Array bounds checking.
* Not foolproof.

shine 50W bulb at DRAM
[Appel-Govindavajhala ‘03]



Buffer Overflow Attacks

Stuxnet worm. [July 2010]

= Step 1. Natanz centrifuge fuel-refining plant
employee plugs in USB flash drive.

= Step 2. Data becomes code by exploiting Window
buffer overflow; machine is Owned.

= Step 3. Uranium enrichment in Iran stalled.

More buffer overflow attacks: Morris worm, Code Red, SQL Slammer,
iPhone unlocking, Xbox softmod, JPEG of death [2004], . ..

Lesson.

* Not easy to write error-free software.
* Embrace Java security features.

* Keep your OS patched.
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Dumping
Q. Work all day to develop operating system. How to save it?

A. Write short program dump.toy and run it to dump contents of memory
onto tape.

00: 7001 Rl < 0001
01: 7210 R2 < 0010 i=10
02: 73FF R3 < OOFF

do {
03: AAQ02 RA < mem[R2] a = mem[i]
04: OAFF write RA print a
05: 1221 R2 < R2 + R1 i++
06: 2432 R4 < R3 - R2
07: D403 if (R4 > 0) goto 03 } while (i < 255)

08: 0000 halt

dump. toy



Booting

Q. How do you get it back?

A. Write short program boot . toy and run it to read contents of memory

from tape.
00: 7001
01: 7210
02: 73FF
03: 8AFF
04: BAO2
05: 1221
06: 2432
07: D403
08: 0000

Rl < 0001
R2 < 0010 i=10
R3 < OOFF
do {
read RA read a
mem[R2] < RA mem[i] = a
R2 < R2 + R1 i++
R4 < R3 - R2
if (R4 > 0) goto 03 } while (i < 255)
halt

boot. toy



Simulating the TOY machine




TOY Simulator

Goal. Write a program to "simulate" the behavior of the TOY machine.
—3 ¢ TOY simulator in Java.

public class TOY

{

public static void main(String[] args)

{

int pc
int[] R
int[] mem

0x10;
new int[16];
new int[256]; // main memory

// program counter
// registers

// READ .toy FILE into mem[]

while (true)

{

int inst =
// DECODE
// EXECUTE

mem[pc++] ;

// fetch, increment

[o)

10:
11:
12:
13:
14:
15:
16:

% more add-stdin.toy

8C00 <«—— TOVY program
8AFF
CAlS5
1cca
Co011
O9CFF
0000

% java TOY add-stdin.toy

00AE
0046
0003
0000
00F7

«<—— standard input

«—— standard output




TOY Simulator: Fetch

Ex. Extract destination register of 1caB by shifting and masking.

ofofo: NENNENEN : o 10 1ozt inst

inst >> 8

15

(inst >> 8) & 15

int d = (inst >> 8) & 15; // dest d (bits 08-11)




if (op

TOY Simulator: Execute

switch (op)

{

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

oo Jo U1l WD KL

0) break; // halt

: R[d] = R[s] + R[t];

: R[d] = R[s] - R[t];

: R[d] = R[s] & R[t];

: R[d] = R[s] & R[t];

: R[d] = R[s] << R[t];

: R[d] = R[s] >> R[t];

: R[d] = addr;

: R[d] = mem[addr];

: mem[addr] = R[d];

: R[d] = mem[R[t]];

: mem[R[t]] = R[d];
if (R[d] == 0) pc = addr;
if (R[d] > 0) pc = addr;

: pc = R[d];

: R[d] = pc; pc = addr;

break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;



TOY Simulator: Omitted Details

Omitted details.

* Register O is always O.
-reset R[0]=0 after each fetch-execute step

e Standard input and output.
-if addr is FF and opcode is load (indirect) then read in data
-if addr is FF and opcode is store (indirect) then write out data

e TOY registers are 16-bit integers; program counter is 8-bit.

-Java int is 32-bit; Java short is 16-bit
- use casts and bit-whacking

Complete implementation. See ToY.java on booksite.



Simulation
Building a new computer? Need a plan for old software.
Two possible approaches

» Rewrite software (costly, error-prone, boring, and tfime-consuming).
e Simulate old computer on new computer.

Lode Runner Apple ITe Mac OS X Apple ITe emulator widget
running Lode Runner

Ancient programs still running on modern computers.
e Payroll

 Power plants

e Air traffic control

e Ticketron.

e Games.



