Look

OUTPUT

Introduction o Computer Science -+ Sedgewick and Wayne < Copyright © 2007 - http://www.cs.Princeton.EDU/IntroCS



What We've Learned About TOY

Data representation. Binary and hex.

TOY.

 Box with switches and lights.

 16-bit memory locations, 16-bit registers, 8-bit pc.

e 4,328 bits = (255 x 16) + (15 x 16) +(8) = 541 bytes!
e von Neumann architecture.

TOY instruction set architecture. 16 instruction types.
TOY machine language programs. Variables, arithmetic, loops.

OUTPUT
T ® eee




Quick Review: Multiply

multiply. toy




What We Do Today
Data representation. Negative numbers.
Input and output. Standard input, standard output.
Manipulate addresses. References (pointers) and arrays.

TOY simulator in Java and implications.

Load Look Step Run
OUTPUT

. e




Data Representation




Digital World

Data is a sequence of bits. (interpreted in different ways)
e Integers, real numbers, characters, strings, ...
e Documents, pictures, sounds, movies, Java programs, ...

Ex. 01110101

e As binary integer: 1+ 4 +16 + 32 + 64 = 117 (base ten).
e As character: 117™ Unicode character = 'u'.

e As music: 117/256 position of speaker.

* As grayscale value: 45.7% black.

public class HellowWorld {

Programming
in Java

System.out.println("Hello, World");

E public static void main(String[] args)

}




Adding and Subtracting Binary Numbers

Decimal and binary addition.

carries

1/11

013 00001101
+ 092 +01011100
105 01101001

Subtraction. Add a negative integer. ~
eg. 6-4=6+(-4)

Q. How to represent negative integers?



Representing Negative Integers

TOY words are 16 bits each.

« We could use 16 bits to represent 0 to 21¢- 1.

e We want negative integers too.

 Reserving half the possible bit-patterns for negative seems fair.

Highly desirable property. If x is an integer, then the representation of -x,
when added to x, yields zero.

% 00110100
+(-x) + 727?727

0 00 00

% 00110100

+11001011

o +(-x) — 11111111

-x: flip bits and add 1 hl

0 0 00O0OO0OO0OO0CO



Two's Complement Integers

To compute -x from x:

" Start with x. / leading bit determines sign

+4 0 0 0 0 0 0 0 0 0 0

* Flip bits.

-5 1 1 1 1 1 1 1 1 1 1

e Add one.
-4 1 1 1 1 1 1 1 1 1 1



Two's Complement Integers

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

binary




Properties of Two's Complement Integers

Properties.

* Leading bit (bit 15 in Toy) signifies sign.

= Addition and subtraction are easy.

= 0000000000000000 represents zero.

* Negative integer -x represented by 2% - x.

* Not symmetric: can represent -32,768 but not 32,768.

Java. Java's int data type is a 32-bit two's complement integer.
Ex. 2147483647 + 1 equals -2147483648.



Representing Other Primitive Data Types in TOY
Bigger integers. Use two 16-bit words per int.
Real numbers.
* Use "floating point" (like scientific notation).
e Use four 16-bit words per double.
Characters.

e Use ASCIT code (8 bits / character).
e Pack two characters per 16-bit word.

Note. Real microprocessors add hardware support for int and double.



Standard Input and Output




Standard output.

Standard Output

e Writing fo memory location rr sends one word to TOY stdout.

e Ex. 9AFF writes the integer in register a to stdout.

00:
01:

10:
11:

12:
13:
14:
15:
16:

0000
0001

8A00
8B01

OAFF
1AAB
2BAB
DAl12
0000

0
1

RA < mem[00]
RB < mem[01]

write RA to stdout
RA <— RA + RB

RB < RA - RB

if (RA > 0) goto 12
halt

a=20

b=1

do {
print a
a=a+b
b=a->b

} while (a > 0)



Standard Input

Standard input.

 Loading from memory address rr loads one word from TOY stdin.

e Ex. 8AFF reads an integer from stdin and store it in register 2.

Ex: read in a sequence of integers and print their sum.

e In Java, stop reading when EOF.

e In TOY, stop reading when user enters 0000.

00:
while (!'StdIn.isEmpty()) ({
a = StdIn.readInt();
sum = sum + a; 10:
;tdo i ; 11:
ut.println (sum) ;
12:
13:
14:
15:
1l6:

0000

8C00
8AFF
CAl5
1Ccca
CO01l1
OCFF
0000

RC <- mem[00]

read RA from stdin
if (RA == 0) pc < 15
RC < RC + RA

pc < 11

write RC 00AE

halt 0046
0003
0000

00F7




Standard Input and Output: Implications

Standard input and output enable you to:

* Put information from real world intfo machine.
* Get information out of machine.

* Process more information than fits in memory.
* Interact with the computer while it is running.

Information can be instructions!

* Booting a computer.

= Sending programs over the Internet
* Sending viruses over the Internet

24



Pointers




Load Address (a.k.a. Load Constant)

Load address. [opcode 7]
 Loads an 8-bit integer into a register.
« 7230 means load the value 30 into register a.

Applications. a = 0x30;
o Load a small constant into a register. Java code
» Load an 8-bit memory address into a register. (NOTE hex literal)

\ register stores "pointer" to a memory cell

(o]l zas ] m]e] oo e a]aofz[a]s
0 1 1 1 1 0 1 0 0 0 1 1 0 0 0 0
7 16 Al 6 3 16 0 16




Arrays in TOY

0000
TOY main memory is a giant array.

0001

 Can access memory cell 30 using load and store. 0001

* 8C30 means load mem[30] into register c. 008
0003

* Goal: access memory cell i where i is a variable. 0005
0008

000D

w w w w w w w w
~J (&) (@) S w N (= o

a variable index TOY memory

Load indirect. [opcode A]/
* AC06 means load mem[R6] into register c.

Store indirect. [opcode B] y a variable index
* BCO6 means store contents of register c intfo mem[R6].



Example: Reverse an array

TOY implementation of reverse.
» Read in a sequence of integers and store in memory 30, 31, 32, ...

* Stop reading if 0000.
e Print sequence in reverse order.

T . int i = 0;
ava version. while (!StdIn.isEmpty())
{
a[i] = StdIn.readInt();
i++;

i--;

while (i >= 0)

{
StdOut.println(al[i]) ;
i--;

(We'll just assume a[] is big enough)



TOY implementation of reverse.

TOY Implementation of Reverse

—3» ¢ Read in a sequence of integers and store in memory 30, 31, 32, ...
 Stop reading if 0000.

* Print sequence in reverse order.

10:
11:
12:

13:
14:
15:
16:
17:
18:

7101
7A30
7B0O

8CFF
CC19
16AB
BCO6
1BB1
C013

Rl < 0001
RA < 0030
RB < 0000

read RC

if (RC == 0) goto 19

R6 < RA + RB
mem[R6] < RC
RB < RB + R1
goto 13

read in the data

constant 1

all

n

while (true) {
¢ = StdIn.readInt();
if (¢ == 0) break;
memory address of a[n]
a[n] = c;
n++;



TOY Implementation of Reverse

TOY implementation of reverse.

» Read in a sequence of integers and store in memory 30, 31, 32, ...

 Stop reading if 0000.

—> ¢ Print sequence in reverse order.

10:
11:
12:

19:

1B:
1C:
1D:
1E:
1F:

7101
7A30
7B0O

CB20
16AB
2661
ACO06
9CFF
2BB1
C019

R1 < 0001 constant 1
RA < 0030 all
RB < 0000 n

while (true) {

if (RB == 0) goto 20 if (b == 0) break;

R6 < RA + RB memory address of a[n]
R6 < R6 - R1 n--;

RC < mem[R6] c = al[n];

write RC StdOut.print(c) ;

RB < RB - Rl b--;

goto 19 }

print in reverse order



Unsafe Code at any Speed

Q. What happens if we make array start at 00 instead of 30?

% more crazy8.txt
11111111
11111111
8888 8810

98FF CO011




What Can Happen When We Lose Control (in C or C++)?

Buffer overflow.

* Array buffer[] has size 100. #include <stcioc.h>
int main(void) {
= User might enter 200 characters. char buffer[100];

scanf ("%s", buffer);

* Might lose control of machine behavior. . printf ("ss\n",
uffer) ;

return O;

}
Consequences. Viruses and worms.

unsafe C program

Java enforces security.

* Type safety.

= Array bounds checking.
* Not foolproof.

shine 50W bulb at DRAM
[Appel-Govindavajhala ‘03]



Buffer Overflow Attacks

Stuxnet worm. [July 2010]

= Step 1. Natanz centrifuge fuel-refining plant
employee plugs in USB flash drive.

= Step 2. Data becomes code by exploiting Window
buffer overflow; machine is Owned.

= Step 3. Uranium enrichment in Iran stalled.

More buffer overflow attacks: Morris worm, Code Red, SQL Slammer,
iPhone unlocking, Xbox softmod, JPEG of death [2004], . ..

Lesson.

* Not easy to write error-free software.
* Embrace Java security features.

* Keep your OS patched.

25



Dumping
Q. Work all day to develop operating system. How to save it?

A. Write short program dump.toy and run it to dump contents of memory
onto tape.

00: 7001 Rl < 0001
01: 7210 R2 < 0010 i=10
02: 73FF R3 < OOFF

do {
03: AAQ02 RA < mem[R2] a = mem[i]
04: OAFF write RA print a
05: 1221 R2 < R2 + R1 i++
06: 2432 R4 < R3 - R2
07: D403 if (R4 > 0) goto 03 } while (i < 255)

08: 0000 halt

dump. toy



Booting

Q. How do you get it back?

A. Write short program boot . toy and run it to read contents of memory

from tape.
00: 7001
01: 7210
02: 73FF
03: 8AFF
04: BAO2
05: 1221
06: 2432
07: D403
08: 0000

Rl < 0001
R2 < 0010 i=10
R3 < OOFF
do {
read RA read a
mem[R2] < RA mem[i] = a
R2 < R2 + R1 i++
R4 < R3 - R2
if (R4 > 0) goto 03 } while (i < 255)
halt

boot. toy



Simulating the TOY machine




TOY Simulator

Goal. Write a program to "simulate" the behavior of the TOY machine.
—3 ¢ TOY simulator in Java.

public class TOY

{

public static void main(String[] args)

{

int pc
int[] R
int[] mem

0x10;
new int[16];
new int[256]; // main memory

// program counter
// registers

// READ .toy FILE into mem[]

while (true)

{

int inst =
// DECODE
// EXECUTE

mem[pc++] ;

// fetch, increment

[o)

10:
11:
12:
13:
14:
15:
16:

% more add-stdin.toy

8C00 <«—— TOVY program
8AFF
CAlS5
1cca
Co011
O9CFF
0000

% java TOY add-stdin.toy

00AE
0046
0003
0000
00F7

«<—— standard input

«—— standard output




TOY Simulator: Fetch

Ex. Extract destination register of 1caB by shifting and masking.

ofofo: NENNENEN : o 10 1ozt inst

inst >> 8

15

(inst >> 8) & 15

int d = (inst >> 8) & 15; // dest d (bits 08-11)




if (op

TOY Simulator: Execute

switch (op)

{

case
case
case
case
case
case
case
case
case
case
case
case
case
case
case

oo Jo U1l WD KL

0) break; // halt

: R[d] = R[s] + R[t];

: R[d] = R[s] - R[t];

: R[d] = R[s] & R[t];

: R[d] = R[s] & R[t];

: R[d] = R[s] << R[t];

: R[d] = R[s] >> R[t];

: R[d] = addr;

: R[d] = mem[addr];

: mem[addr] = R[d];

: R[d] = mem[R[t]];

: mem[R[t]] = R[d];
if (R[d] == 0) pc = addr;
if (R[d] > 0) pc = addr;

: pc = R[d];

: R[d] = pc; pc = addr;

break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;
break;



TOY Simulator: Omitted Details

Omitted details.

* Register O is always O.
-reset R[0]=0 after each fetch-execute step

e Standard input and output.
-if addr is FF and opcode is load (indirect) then read in data
-if addr is FF and opcode is store (indirect) then write out data

e TOY registers are 16-bit integers; program counter is 8-bit.

-Java int is 32-bit; Java short is 16-bit
- use casts and bit-whacking

Complete implementation. See ToY.java on booksite.



Simulation
Building a new computer? Need a plan for old software.
Two possible approaches

» Rewrite software (costly, error-prone, boring, and tfime-consuming).
e Simulate old computer on new computer.

Lode Runner Apple ITe Mac OS X Apple ITe emulator widget
running Lode Runner

Ancient programs still running on modern computers.
e Payroll

 Power plants

e Air traffic control

e Ticketron.

e Games.



